Enviado por Do utilizador5562

Aula 2 - Transformador I

Propaganda
Aula 2
TRANSFORMADORES I
Prof. Dr. Maurício Salles
[email protected]
USP/POLI/PEA
Aula 2
TRANSFORMADORES
•
Utilização do transformador
•
Princípio de funcionamento do transformador (ideal e real)
•
Transformador em vazio e em carga
•
Obtenção dos parâmetros do circuito equivalente
•
Características de desempenho: cálculo das perdas,
rendimento e regulação de tensão
Transformadores
Embora
o
transformador
não
seja
um
dispositivo
eletromecânico de conversão de energia ele é comumente
utilizado em sistemas de conversão de energia e em sistemas
elétricos.
Transformadores são utilizados para transferir energia elétrica
entre diferentes circuitos elétricos através de um campo
magnético, usualmente com diferentes níveis de tensão.
Transformadores – aplicações
As principais aplicações dos transformadores são:
• Adequar os níveis de tensão em sistemas de geração, transmissão e
distribuição de energia elétrica.
• Isolar eletricamente sistemas de controle, medição e eletrônicos do
circuito de potência principal.
• Realizar casamento de impedância, maximizando a transferência de
potência.
• Evitar transferência de corrente contínua de um circuito para o outro.
• Realizar medidas de tensão e corrente.
Transformador – diagrama equivalente
 O transformador tem a função de transformar energia elétrica c.a. de um determinado nível de
tensão para um outro nível de tensão através da ação de um campo magnético.
 Esse dispositivo consiste de duas ou mais bobinas enroladas em um núcleo ferromagnético.
 Normalmente, a única conexão entre essas bobinas é o fluxo magnético que circula pelo
núcleo ferromagnético (com exceção do autotransformador).
Transformadores
Transformadores
Transformadores
Transformadores
transformador utilizado em
sistemas de distribuição
(alimentação da rede
secundária)
Transformadores
transformador utilizado em
subestação de sistemas
industriais
Transformadores
transformador utilizado em subestação de sistemas de
distribuição (cerca de 3,5 metros de altura)
Transformadores
Transformadores
Corte em um transformador
(bobinas, buchas, radiador)
Transformadores
Transformador utilizado para realizar casamento de impedância
em circuito impresso.
Transformadores – Isolação elétrica
Isolação elétrica entre dois dispositivos existe quando não há conexão
física entre eles através de condutores elétricos. Na figura abaixo, o
transformador evita que a corrente contínua de um circuito elétrico seja
transferida para o outro circuito elétrico.
Transformadores – Isolação da alta tensão
Um transformador pode fornecer isolação entre linhas de distribuição e
dispositivos de medição (e.g., voltímetro.)
Transformador – tipo de núcleos
(a) núcleo envolvido
(b) núcleo envolvente
Transformador – tipo de núcleos
(a) núcleo envolvido
Uso de transformadores em sistemas de potência
Custo
O custo de um transformador pode chegar a 60% do custo total de subestações de
distribuição, industriais ou de conexão. (pode custar Milhões U$)
Transformador – tipo de núcleos
Transformador – tipo de núcleos
Transformador – tipo de núcleos
Desastres
Desastres
Transformador ideal
Polaridade em corrente alternada
A polaridade é instantânea em relação a outro enrolamento
do mesmo transformador.
As tensões neles induzidas dependem da direção do fluxo
mútuo:
• em concordância de sentido;
• em sentido oposto.
Transformador ideal
v1
e1
e2
v2
Transformador ideal (sem perdas):
• A resistência dos enrolamentos são desprezíveis
• A permeabilidade do núcleo é infinita (portanto a corrente de magnetização é nula)
• Não há dispersão
• Não há perdas no núcleo
Transformador ideal
Transformador ideal com carga (i2  0)
Com carga no secundário, existe uma corrente i2 no mesmo que cria uma fmm N2i2 que
tende a alterar o fluxo no núcleo (desmagnetizando o núcleo). Portanto, o equilíbrio
entre as forças magnetomotrizes será perturbado.
v1
e1
e2
v2
A equação do circuito magnético de um transformador é dada por:
N1i1 =  + N2i2
Onde  é a relutância do núcleo, como consideramos que o núcleo tem permeabilidade
infinita, temo  = l/(A) = 0. Assim, temos:
N1i1 = N2i2
Transformador ideal com carga (i2  0)
Transformador ideal com carga (i2  0)
Visto que N1i1 = N2i2, a corrente i1 varia com o aumento de i2.
Pode-se dizer que uma fmm adicional é exigida do primário.
Assim, temos:
i1 N 2 1


i 2 N1 a
ou, tem termos fasoriais:
I1 N 2 1


I 2 N1 a
I2
I1 
a
Transformação de impedância (impedância refletida)
Ao se conectar uma impedância no secundário, qual a impedância vista pelo primário?
I1
V1
I2
E1
E2
V2
N1 N 2
Com base no circuito acima, temos que a impedância nos terminais do secundário é
dada por:
Z2 
V2
I2
Analogamente, a impedância equivalente vista dos terminais do primário (vista pela
fonte) é:
Z1 
V1
I1
Assim, temos:
Z1 
V1 aV2
V

 a2 2  a2Z2
I1
I2
I2
a
Transformação de impedância (impedância refletida)
Isto significa que a impedância conectada ao terminal do secundário produz no primário
o mesmo efeito que o produzido por uma impedância equivalente Z’2 conectada aos
terminais do primário cujo valor é igual a a2.Z2 = (N1/N2)2 .Z2. Z’2 é chamada de
impedância do secundário refletida ao primário
I1
I2
I1
Z 2'  a 2 Z 2
V1
V1
Z 2'  a 2 Z 2
N1 N 2
De maneira similar, as correntes e tensões podem ser refletidas de uma lado para o outro
através da relação de espiras:

 I1 


V 
 1
N2
I
I2  2
N1
a
N1
V2  aV2
N2
Transformação de impedância (impedância refletida)
Exercício 1
Transformação de impedância (impedância refletida)
Polaridade dos enrolamentos do transformador
Dois terminais são considerados de mesma polaridade quando correntes entrando nesses
terminais produzem fluxo na mesma direção no núcleo magnético.
Considere o exemplo abaixo:
Os terminais “1” e “3” têm polaridades iguais pois correntes que entram por esses
terminais produzem fluxo na mesma direção (sentido horário).
Os terminais “2” e “4” também tem polaridades iguais pois correntes que entram por
esses terminais produzem fluxo na mesma direção (sentido anti-horário).
Os enrolamentos de um transformador podem ser marcados para indicar os terminais de
mesma polaridade
Polaridade dos enrolamentos do transformador
Convenção de pontos: Usualmente coloca-se um ponto nos terminais da bobinas que
sejam de mesma polaridade indicando a forma como as bobinas estão enroladas no
núcleo, como mostrado no diagrama esquemático abaixo.
Isto, na realidade, significa que um fluxo mútuo variável através das duas bobinas
produz tensões induzidas e12 e e34 em fase, ou seja:
e12 E12

a
e34 E34
Obs:
A relação acima vale em todos os instantes (valores instantâneos)
Note que e12/e43 = a
Se os enrolamentos pudessem ser fisicamente visualizados dentro do transformador, as
polaridades poderiam ser determinadas através da regra da mão direita. No entanto,
usualmente somente os terminais do transformador estão expostos. Portanto, existem
testes que podem ser utilizados para determinar as polaridades dos enrolamentos.
Polaridade dos enrolamentos do transformador
Método 1 - Usando fonte CA e voltímetro
Polaridade dos enrolamentos do transformador
Método 1 - Usando fonte CA e voltímetro
Método 2 - Usando baterias
Transformador
Transformador ideal com carga (i2  0)
Obs: na análise acima, desprezamos a corrente de magnetização
(permeabilidade infinita), mas na prática é necessário uma pequena
corrente de magnetização im no enrolamento primário para estabelecer
o fluxo no núcleo. Assim, temos
em vazio:
i1 = im
com carga:
i1 = im + i’2
onde i’2 é a corrente necessária para se opor ao efeito
desmagnetizante provocado pela corrente i2 na carga. Na prática, im
<< i’2 (1-5%).
Download