Espectroscopia de Emissão Atômica com Plasma APRESENTAÇÃO A espectrometria de emissão atômica com plasma ICP-AES, vem sendo utilizada no Brasil desde 1976, quando foram instalados os primeiros equipamentos comerciais. A técnica foi muito bem sucedida em função da capacidade de análises multielementares em diversos tipos de amostras, o que garantiu a sua utilização em laboratórios de química analítica de rotina para as mais diversas aplicações. A superação da qualidade analítica, devidas às limitações instrumentais, foi acompanhada pelo desenvolvimento de várias montagens óticas, recursos eletrônicos e sistemas de detecção nestes últimos 20 anos. O sucesso da técnica foi sendo cada vez mais prestigiado e, hoje no Brasil estima-se um total de 300 equipamentos. A espectrometria de emissão com plasma está sendo usada na industria metalúrgica, mineradora, agrícola, de alimentos, fertilizantes, do petróleo e inúmeros centros de pesquisas. Após sete anos de oferecimento da disciplina de espectrometria de emissão atômica no curso de Pós-graduação, foi decidido escrever em português os conhecimentos nesta área. Embora existam vários livros bons, esta contribuição, escrita em português, vinha sendo cobrada por vários setores de usuários da técnica. Nestes últimos doze anos foram escritas em torno de vinte Teses e Dissertações sobre este tema, lamentavelmente a sua circulação fica restrita ao ambiente acadêmico. Agradeço ao Prof. Henrique Bergamin Filho (in memorian) e aos colegas Elias A. G. Zagatto, Francisco José Krug, Boaventura Freire dos Reis e Antonio O. Jacintho pelo ensino e parceria científica no transcurso dos últimos 20 anos. M.F.G. i Espectrometria de Emissão Atômica com Plasma ESPECTROMETRIA DE EMISSÃO ATÔMICA COM PLASMA ACOPLADO INDUTIVAMENTE. (ICP-AES). Maria Fernanda Giné Centro de Energia Nuclear na Agricultura - CENA Universidade de São Paulo - USP PIRACICABA SÃO PAULO -BRASIL SUMÁRIO Espectrometria de Emissão Atômica com Plasma Capítulo 1. Introdução à Espectroscopia Atômica 03 1.1 Primórdios da espectroscopia. 03 1.2 Métodos Espectroquímicos de Análise 5 07 1.3 O espectro do átomo 6 07 Capítulo 2. Fontes de Energia 17 2.1 A fonte de plasma 17 2.2 Fundamentos da espectroscopia de plasma 20 2.3 Plasma para fins analíticos 20 2.4 A tocha do ICP 24 2.5 Formação de Plasma 25 2.6 Geradores de RF 27 Capítulo 3. Introdução da Amostra 31 3.1 Introdução de amostras líquidas 32 3.1.1 Nebulizadores Pneumáticos 33 3.1.2 Nebulizadores Ultrassônico 37 3.1.3 Outros Nebulizadores. 39 3.2.Introdução de amostras gasosas. 41 3.2.1 Geração de hidretos 41 3.2.2 Vaporização electrotérmica 43 3.3 Introdução de Amostras sólidas 44 3.4 Desempenho na Introdução da amostra 45 3.5 Dispositivos para Seleção do Aerossol 46 3.5.1 Câmaras de nebulização 46 Espectrometria de Emissão Atômica com Plasma 3.5.2 Desolvatadores 48 3.6 Processamento das amostras no plasma 49 3.7 Sistema de Analise por Injeção em Fluxo em ICP 51 Capítulo 4. Espectros de Emissão e Paramêtros Energéticos no plasma. 4.1 Intensidade da emissão 61 61 4.2 O espectro contínuo da radiação de fundo 64 4.3 Parâmetros energéticos no ICP 68 4.3.1 Equilíbrio Termodinâmico 69 4.3.2 Condições de Equilibrio aplicadas à fonte de Plasma 71 4.4 Técnicas de Diagnóstico usadas para medir os parâmetros do plasma 4.4.1 Temperatura e densidade eletrônica no plasma 72 73 4.4.2 Mapeamento do plasma 74 4.4.3 Medição da Temperatura de Excitação 76 4.4.4 Temperatura de Ionização 79 4.4.5 Medição da Temperatura dos elétrons 80 4.4.6 Espalhamento da radiação para medir a Temperatura Cinética do gás 4.5 Modelos Dinâmicos do Plasma 82 84 4.6 Mecanismos de Excitação 85 4.6.1 Reação de Ionização de Penning 85 4.6.2 Reação de transferência de carga 87 4.6.3.Modelo de Colisional-radiativo 87 Capítulo 5. A Detecção 93 Espectrometria de Emissão Atômica com Plasma 5.1 Instrumentação ótica 93 5.1.1 Princípios da Difração 93 a) propriedade ondulatória 93 b) difração da radiação 96 c)a difração numa grade - Fórmula p/ grade de difração 98 5.3 Poder de resolução 100 Grades de difração 102 Eficiência das grades de dfração 102 5.4 Os espectrômetros Capítulo 6. Condições de Operação e Desempenho Analítico 105 115 6.1 Efeito dos Parâmetros Instrumentais 115 6.2 Condições de Operação em Aplicações 123 6.3 Avaliação da Performance do ICP-AES 125 6.4 Interferências 128 6.4.1 Efeito de Matriz 128 6.4.2 Interferências Espectrais 130 6.4.3 Compensação das Interferências pelo Método GSAM 135 6.4.4 Exemplos de Aplicação 138 Espectrometria de Emissão Atômica com Plasma CAPÍTULO 1. INTRODUÇÃO À ESPECTROSCOPIA ATÔMICA 1.1 Primórdios da espectroscopia. Espectroscopia é uma palavra derivada da palavra latina ‘spectrum’, usada por Isaac Newton para referir-se à imagem, e da raiz grega skopos, que significa observar. Newton, em 1666, elaborou a hipótese de que a luz branca se decompunha em 7 cores quando atravessava um prisma. Somente em 1777, Scheele demostrou que existia uma radiação invisível abaixo do violeta que tinha a propriedade de mudar o AgCl de branco para púrpura. Desta forma, incorporou-se ao espectro uma radiação que não tinha imagem visível. Em 1800, Herschel descobriu a radiação na região além do vermelho, usando medições de temperatura. O espectro, pasou a ser ampliado e hoje, sabe-se que a região visível do espectro corresponde a uma fração pequena, entre 800 e 400 nm. A espectroscopia atômica refere-se a fenômenos envolvendo os elétrons de valência, abrangendo a região do espectro Visível e Ultra Violeta, entre 800 e 180 nm. As bases da espectroscopia atômica foram descobertas pelas observações da luz solar e os espectroscopistas foram associados à astronomia até os tempos recentes. Uma das revistas mais conceituadas nesta área, a Spectrochimica Acta, foi fundada na década de 30 no Vaticano por astrônomos. Em 1802, Wollaston e logo, Fraunhofer em 1817, construíram um espectroscópio registrando na região visível do espectro solar uma série de riscos pretos. Fraunhofer chamou estas linhas pelas letras A, B, até H. Na época a observação era ocular. Poucos anos após, em 1826 Seebach desenvolve a termocupla, que seria o primeiro sensor usado em espectroscopia e substituída pela termopilha por Melloni em 1833. Em 3 Espectrometria de Emissão Atômica com Plasma 1842, Becquerel desenvolveu um sistema fotográfico para registrar o espectro do sol, projetando-o em uma folha de papel com AgCl. EFEITOS Rotações de spin Rotações Vibrações Transi- Transição molecula- Molecula- ção eletrônica res res elétrons interna de valência COMPRIMENTOS DE ONDA ondas radar Infra Vis. UV Raios Raios de micro- Vermelho X gama radio ondas cm 10 1 400 µm 800 400 100 1 nm 1 A Transições nucleares Raios Cósmicos 0,1 0,01 Figura 1.1 Esquema das radiações eletromagnéticas mostrando os efeitos que as produzem a denominação e a região de comprimento de onda que as caracteriza. O experimento, que foi fundamental para explicar os processos de absorção e emissão atômica, foi realizado por Kirchoff e Bunsen, em 1850. Neste, colocaram sódio numa chama e observaram a radiação emitida. Pouco depois em 1860, Foucald montou um sistema ótico para observar a radiação proveniente do sódio e concluiu que correspondiam às linhas denominadas D no espectro solar de Fraunhofer. A linha mais proeminente do espectro do H foi detectada em 1853, por Angström. A primeira série de linhas do átomo do H foi detectada no espectro das estrelas, uma vez que, para efetuar as medidas em laboratório, o entrave consistia em preparar H atômico puro. O H2 apresenta um espectro muito mais complicado e as chamas ou fonte eletrotérmicas disponíveis na época não forneciam energia suficiente para a dissociação 4 Espectrometria de Emissão Atômica com Plasma desta molécula. Esta dissociação é conseguida com tubos de descarga gasosa através de choques com elétrons acelerados por uma diferença de potencial. Balmer em 1885, usando as medidas astronômicas encontrou uma relação empírica para as linhas do espectro do H, iniciando pela linha vermelha (6563A) detectada por Angström, que foi chamada de alfa, sendo as outras denominadas de beta (4861A), gama (4340 A), delta (4102A), etc. Em 1889, Rydberg descubriu que as linhas do espectro de muitos elementos, mais notadamente as dos alcalinos, podem ser ajustadas por uma fórmula simples, estabelecendo um valor constante R que serve para todas as linhas dos diferentes elementos. Se o comprimento de onda expressa-se em metros, a constante de Rydberg tem valor 1.097 × 107 m-1. Zeeman em 1896, descobre o desdobramento das linhas espectrais usando um campo magnético. A explicação da produção de espectros de linhas foi possível após as descobertas de Rutherford sobre a constituição do átomo, o modelo de Bohr e o princípio de quantum introduzido por Planck. A partir de 1920, as formulações da mecânica quântica (Schrödinger e Heinsenberg) permitiram explicações para as formas e desdobramento das linhas. Em 1928, as descobertas do spin e do momento angular do elétron permitiram explicar as linhas dos espectros e, através da mecânica quântica de Dirac, pode-se predizer linhas mais complexas dos espectros, estruturas hiperfinas, etc. Prismas e redes de difração feitos de vidro, foram usadas por Angström. A espectrografia foi aplicada à análise química quantitativa por Hartley, em 1884. Na mesma época, Rowland inventou a rede côncava conseguindo comparação de comprimentos de onda mais exatos, usando o método da coincidência. Assim em 1887, Rowland apresentou o mapa espectral solar e tabelas contendo as linhas do espectro de vários elementos aquecidos por descarga de arco voltaico. Uma notável contribuição para as medições de radiações no UV foi dada por Stokes em 1862, quem descobriu a transparência do quartzo nesta região e conseguiu, com ajuda 5 Espectrometria de Emissão Atômica com Plasma de uma tela fluorescente de urânio-fosfato observar espectros de arco e faísca de numerosos metais. As medições no UV até 2150A, foram feitas por Rowland, evitando-se a absorção das linhas abaixo de 2350A que ocorre na gelatina da emulsão fotográfica. Posteriormente Schumann, em 1893, usando uma câmara sob vácuo conseguiu estender o espectro até 1200A. Em 1906, Lyman substituiu as redes côncavas por ótica com prismas de fluorita sob vácuo chegando-se até 50A. Posteriormente, com fontes de luz baseadas em descargas de faíscas no vácuo e grades de difração feitas em alumínio (Millikan, Bowen) conseguiu-se chegar até 4A. Os interferômetros, produzidos primeiro por Michelson (1892) e, depois em 1900, por Fabry e Perot, foram instrumentos sensíveis para comparar dois comprimentos de onda. Em 1889, Ebert e em 1892, Paschen e Runge, dedicaram-se ao desenho de espectrógrafos para medição de linhas espectrais. Estas montagens óticas foram incorporados a espectrômetros de emissão com faíscas de alta voltagem, fontes de arco DC e AC de baixa e alta voltagens. Ao redor de 4000 trabalhos foram publicados sobre linhas espectrais entre 1920 e 1930. Em 1920, foram publicados 5 trabalhos usando a espectrografia como método para análise espectroquímica. A partir de 1934, mais de 100 publicações anuais foram registradas e após 1947, subiram para 250. A detecção, usando tubos fotomultiplicadores em espectrógrafo com fonte de faísca, foi reportada por Saunderson et al. em 1945. Alguns dos livros mais ilustrativos do desenvolvimento da espectrografia foram o do Prof. Brode (1939) e o do Prof. Sawyer (1944). Lundergardh na decada de 1930 desenvolveu um fotômetro de chama para emissão atômica, usando chama de combustão e detecção com tubo fotomultiplicador. Mais tarde em 1955, Walsh, Alkemade e Milatz, propuseram o método baseado na propriedade de absorção da radiação pelos átomos produzidos em uma chama. Como fonte de radiação foram usados tubos de descarga de câtodo oco, desenvolvidos em 1926 por 6 Espectrometria de Emissão Atômica com Plasma Schüler, para estudos de estruturas hiperfinas. Posteriormente, em 1959, L’vov desenvolveu um forno de grafite com aquecimento eletrotérmico como reservatório de átomos para absorção atômica. A espectrometria de emissão atômica renasceu a partir de 1964 com a proposta do uso do plasma como fonte de excitação (Greenfield, Fassel). 1.2 Métodos Espectroquímicos de Análise Os métodos espectroquímicos de análises que utilizam as propriedades da energia eletromagnética do espectro para efetuar a quantificação das espécies, encontram-se relacionados na tabela T 1.3. 1.3 O espectro do átomo. Um metal M emite um foton quando ocorre a transição de um elétron de um nível de maior energia (E1), para outro de menor energia (E2). A freqüência da radiação emitida determina-se pelo balanceamento energético ν = (E1 - E2)/h [1.1] onde: ν freqüência e h constante de Planck. 7 Espectrometria de Emissão Atômica com Plasma Tabela 1.3 MÉTODOS ESPECTROQUÍMICOS Classe Base de medição Emissão Potencia radiante ΦE Absorção Absorvância ou razão entre a potência transmitida e incidente Potência luminiscente ΦL Luminiscência Espalhamento Potência radiante espalhada ΦSC Métodos Indiretos Mudanças no índice de refração, ondas acústicas, corrente de íons Exemplos Emissão com chama, Arco voltaico, faísca ou centelha, plasmas ICP e DCP UV/VIS absorção molecular e absorção atômica. Fluorescência molecular e fosforescência, fluorescência atômica, quimioluminiscência Turbidimetria, nefelometria, e espalhamento RAMAN Lentes térmicas, fotoacústica e fotoionização. A probabilidade de que ocorra uma transição do nível 1 para o 2, depende da fração dos elétrons que estão no nível 1 e que passam para o 2 por unidade de tempo. Esta probabilidade depende do tempo de permanência do elétron no nível 1 e da competição do nível 2 com outros níveis possíveis, de menor energia. Se a transição ocorre para o estado fundamental E = 0, então se denomina linha de ressonância. As linhas mais acentuadas para cada elemento são as de ressonância dos estados menores de excitação. Estas linhas têm alta probabilidade de ocorrência e energia de excitação possível de ser atingida por processos de colisão. O espectro de emissão contém todas as radiações provocadas pelas transições de energia. Nas moléculas, o espectro de emissão forma bandas, 8 Espectrometria de Emissão Atômica com Plasma uma vez que o estado excitado envolve diferentes níveis de vibração e rotação dos componentes. Na Figura 1.2 podem-se observar as transições energéticas para o átomo de H. As linhas da esquerda (Série de Lyman) correspondem às linhas de ressonância que são comuns aos espectros de absorção e emissão. Figura 1.2 Representação esquemática do espectro do átomo de Hidrogênio 9 Espectrometria de Emissão Atômica com Plasma As linhas das séries de Lyman e Balmer no átomo de H apresentam freqüência ν dada pela seguinte relação: ν = R (1/n1 -1/n2) [2] onde: R constante de Rydberg = 109,687 cm-1 Série de Lyman è n1 = 1 e n2 = 2,3,4,5,… Série de Balmer è n1 = 2 e n2 = 3,4,5,… n2 è ∞ ν = R ( λ = 911A na série de Lyman) Para átomos mais complexos devem-se considerar quânticos: tres números L número quântico total do orbital (0,1,2,…, n-1) S número quântico do spin, (±1/2) J número quântico interno, (L+S, ….,L-S) L Símbolo 0 S 2 3 DF 1 P 4 G 5 …… H …… De acordo com as leis de seleção ∆L 0 ou ±1 produzindo as séries : Transições S-P P-S P-D D-F Séries principal pontual difusa fundamental 10 Espectrometria de Emissão Atômica com Plasma Dentro das séries podem-se reconhecer grupos (singletes, dupletes, tripletes, etc) a multiplicidade M é dada por M = 2S + 1 , sendo que S se refere ao spin dos elétrons de valência. Comparando o átomo dos elementos alcalinos com o do H, nestes encontram-se 4 conjuntos de subníveis de energia, com orbitais do tipo: s, p, d e f. Os níveis para um elétron nas órbita 4s, 4p, 4d e 4f no átomo de H são práticamente idénticos, mesmo sendo as três primeiras elípticas e a última circular. No caso dos átomos alcalinos, as órbitas elípticas penetram dentro das órbitas da camada mais interna de elétrons. Esta interação entre orbitais provoca perturbações energéticas que produzem deslocamentos dos níveis de energia. O momento angular do spin de cada elétron para os alcalinos S = ½ e M = 2 leva a produção de dubletes como as linhas D (Fraunhofer). As linhas destes dubletes são mais separadas quanto maior for o átomo. Os dupletes do Li são dificéis de observar por estarem muito juntos. Para os metais alcalinos terrosos com 2 elétrons de valência, as seguintes combinações de spin são possíveis: +1/2 e +1/2 = 1 -1/2 e -1/2 = 1 -1/2 e +1/2 = 0 +1/2 e -1/2 = 0 sendo S =1 ou 0 M = 3 e 1, ocorrendo singletes e tripletes no espectro destes elementos. Na Fig.1.3 mostram-se os Singletes e Tripletes produzidos no diagrama de energia do Ca. 11 Espectrometria de Emissão Atômica com Plasma Figura 1.3 Transições energéticas do átomo de Ca mostrando os singletes e tripletes. Em alguns átomos existem níveis de energia, dos quais, o elétron não consegue retornar espontaneamente para o estado normal. Estes níveis de energia são chamados de estados energéticos Metaestáveis. Um átomo que encontra-se em estado de excitação metaestável, pode retornar ao estado normal se recebe energia externa por colisão com outro átomo ou, se ocorre transferência de energia de um elétron, que esteja em um estado de energia superior ao metaestável. A meia vida de um elétron em um estado excitado é de 10-7 a 10-8 s: no caso do estado metaestável é bem mais prolongada. Na Fig. 1.4 são mostrados os níveis de energia para o átomo de Au onde apresenta-se uma transição proibida e um nível metaestável 12 Espectrometria de Emissão Atômica com Plasma Figura 1.4 Diagrama de Gotrian de níveis de energia para átomos de Au. 13 Espectrometria de Emissão Atômica com Plasma s espectros de emissão multielementares são muito complexos e, dependendo da energia fornecida às espécies, o espectro produzido contém raias espectrais devidas aos átomos neutros, indicadas nas tabelas como (I) e as dos átomos ionizados (ionização simples) como (II). Na Fig. 1.5 mostram-se os níveis de energia para Mg(I) e Mg(II) e na Fig. 1.6 mostrase o espectro correspondente obtido usando uma fonte de plasma. Figura 1.5 Níveis de energia para Mg(I) e Mg(II) (fonte Boumans) 14 Espectrometria de Emissão Atômica com Plasma A F o t o c o r r e n t e λ (nm) Figura 1.6 Espectro obtido com 1 mg/L de Mg usando plasma com acoplamento indutivo (ICP). REFERÊNCIAS BIBLIOGRÁFICAS 1. BRODE, W.R. Chemical spectroscopy. New York: John Wiley & Sons, 1943. 677p. 2. SAWYER, R.A. Experimental spectroscopy. New York: Dover Publications, 1963. 358p. 3. NACHTRIEB, N.H. Principles and practice of spectrochemical analysis. New York: McGraw-Hill, 1950. p. 150-190, chap.8: The origin of spectra. 4. AHRENS, L.H.; TAYLOR, S.R. Spectrochemical analysis.2.ed. London: Addison-Wesley, 1961. chap.2, p. 7-16: Origin and interpretation of spectra. 5. WIESE , Spectroscopy reference data. In: MONTASER, A.; GOLIGHTLY, D.W.X. Inductively coupled plasma in analytical Atomic-Spectrometry. 2.ed. New York: VCH Publishers, 1992. p. 451-460. 15 Espectrometria de Emissão Atômica com Plasma 16 Espectrometria de Emissão Atômica com Plasma CAPÍTULO 2. FONTES DE ENERGIA Descargas elétricas em gases, são denominadas "plasmas", termo sugerido por Langmuir em 1929. Os plasmas são caracterizados por apresentarem ionização parcial e terem uma densidade de elétrons livres bastante alta. 2.1 A fonte de plasma O plasma pode ser definido como um gás parcialmente ionizado onde co-existem elétrons livres e íons positivos em movimento, em um processo onde ocorre transferência de energia por radiação, condução e aquecimento Joule entre outros. Para transformar um gás em plasma, é necessário fornecer energia para produzir íons. O mecanismo de ionização pode ser térmico, por radiação ou por descarga elétrica. A energia de ionização do átomo depende da sua estrutura, sendo superior à energia de ligação do elétron mais externo. Os elementos mais facilmente ionizáveis são os alcalinos monovalentes e os mais difíceis são os gases nobres. A forma mas comum de formar um plasma, em laboratório, é através de descargas elétricas. A ionização numa descarga depende da produção de uma avalanche de elétrons, sendo a energia transferida por diferentes mecanismos. As primeiras investigações sobre as propiedades de descargas capacitivas em gases produzidas sem eletrodos, foram descritas por Babat, em 1942. Posteriormente, em 1947, este autor descreveu as descargas capacitivas sem eletrodos formadas por campos elétricos e as descargas produzidas pela ação de campos magnéticos alternados. 17 Espectrometria de Emissão Atômica com Plasma Em 1961, Reed descreveu uma tocha de quartzo constituída por três tubos concêntricos, a qual era introduzida em uma espiral de cobre, para formação de plasma em seu extremo. Para indução do campo eletromagnético que sustenta o plasma, usou um gerador com freqüência de 4 MHz e potência de 10 kW. As espécies químicas, na forma de sal, eram transportadas por arraste com argônio pelo canal central da tocha até o plasma, como mostra a Fig. 2.1. O autor utilizou este sistema para efetuar crescimento de cristais e os íons produzidos no plasma eram depositados de forma homogênea na superficie dos cristais. Figura 2.1 Tocha de plasma descrita por Reed [2] Posteriormente, esta tocha foi descrita para fins analíticos por Greenfield, em 1964 e, Wendt & Fassel em 1965, onde a solução da amostra era arrastada pelo canal central na forma de aerossol. A partir de 1965, o interesse em aplicar o plasma induzido à espectrometria foi progressivo. Iniciou-se, então, a fabricação de equipamentos usando a 18 Espectrometria de Emissão Atômica com Plasma fonte de plasma com acoplamento indutivo (ICP- Inductively Coupled Plasma), com corrente contínua (DCP-Direct-Current Plasma), com acoplamento capacitivo (CCP-Capacitively Coupled Plasma) e induzido por microondas (MIP - Microwave Induced Plasma), em espectrômetros de emissão atômica simultâneos e seqüenciais (AES - Atomic Emission Spectrometer) espectrômetros de fluorescência atômica (AFS - Atomic Fluorescence Spectrometer), espectrômetros de massas (MS - Mass Spectrometers) Na prática, a fonte de plasma produzido por acoplamento indutivo foi a mais bem sucedida na sua hifenação com espectrometria de emissão atômica (ICP-AES) e com espectrometria de massas (ICP-MS). Entretanto, nas aplicações com especiação, têm-se preferido o acoplamento da cromatografia gasosa (GC-MIP) e da cromatografia líquida de alta performance (HPLC-MIP) com plasma induzido por microondas, seja com espectrômetro de emissão MIP-AES ou de massas MIP-MS. Outras técnicas têm sido muito usadas para introdução de amostras nos plasmas, entre estas, a vaporização electrotérmica (ETV Electrothermal vaporization), a injeção em fluxo (FI Flow Injection), a geração de hidretos (HG Hydride Generation), a nebulização de alta pressão (HPN- High Pressure Nebulization), a nebulização ultrassônica (USN - Ultrasonic Nebulization), a injeção direta no plasma (DIN Direct Injector Nebulizer) e a injeção direta com alta eficiência (DIHEN-Direct Injection High Efficiency Nebulizer). Entre os espectrômetros de massas que têm sido acoplados para determinação multi-isotópicas, temos os baseados em quadrupolo (QUAD), os de alta resolução combinando setor elétrico e magnético (HR - High Resolution) e os de tempo de vôo (TOF Time of Flight). 19 Espectrometria de Emissão Atômica com Plasma 2.2 Fundamentos da espectroscopia de plasma A importância do plasma como fonte espectroscópica reside na transferência de energia entre elétrons acelerados e outras partículas. Este processo pode ser efetuado em baixas pressões (tubos fluorescentes), onde os elétrons percorrem uma grande distância antes da colisão com outro átomo. Neste trajeto, o elétron ganha energia do campo magnético para ionizar e excitar o átomo com o qual colide. O átomo excitado decai para o estado fundamental emitindo uma radiação. Estes plasmas apresentam baixa temperatura porque o número de choques não é suficiente para distribuir a energia cinética dos elétrons de forma eficiente. Nos processos em altas pressões, a trajetória média dos elétrons é menor, produzindo um número de choques suficientemente grande para distribuir, uniformemente, a energia entre os elétrons, átomos e íons. Nestes plasmas se atingem altas temperaturas. Nos plasmas produzidos à pressão atmosférica, atingem-se temperaturas de até 10.000 0K, e um grau de ionização parcial do gás. Estes plasmas são usados para fins analíticos porque permitem a introdução da amostra de forma mais fácil. 2.3 Plasmas para fins analíticos A formação de um plasma à pressão atmosférica que seja útil para finalidades analíticas, depende da forma como a energia é proporcionada ao plasma e da geometria deste para a introdução das amostras. A energia proporcionada ao plasma deve ser fornecida por uma fonte suficientemente estável para manter o equilíbrio dinâmico das partículas formadas. Como esta energia é proporcionada por uma fonte externa 20 Espectrometria de Emissão Atômica com Plasma (gerador de radio-freqüência no ICP, eletrodos de corrente contínua no DCP (Fig. 2.2) e gerador de microondas no MIP (Fig. 2.3), teoricamente, não existe limite para o calor gerado, em contraste com as chamas, onde as condições energéticas dependem da composição da mistura de gases no proceso de combustão. Nas fontes que empregam descarga elétrica por arco voltaico ou centelha, os elétrons obtém energia por aceleração no campo elétrico estabelecido entre eletrodos. O plasma DCP formado com o dispositivo mostrado na direita da Fig. 2.2 opera usando uma fonte de 20 A de corrente contínua. Entre os dois ânodos e o câtodo forma-se o plasma pela ionização do Ar que flui com vazão total de 7 L/min através dos blocos contendo os ânodos. O plasma apresenta duas colunas que convergem e no centro é despejado o aerossol da amostra. Os eletrodos (ânodos) são de grafite e o câtodo de tungstênio, são resfriados com água e isolados com cerâmica. A instrumentação necessária para formar este plasma é mais simples do que a do ICP, mesmo que os eletrodos devem ser substituídos periodicamente. Este plasma não apresenta problemas de entupimento por soluções com alto teor salino e mantém-se estável por longos períodos de trabalho. Entretanto, a transferência de energia entre a amostra e o plasma é menos eficiente do que no ICP, pelo que são detectadas preferencialmente linhas do espectro dos átomos neutros. 21 Espectrometria de Emissão Atômica com Plasma Figura 2.2 Configurações de plasma de corrente contínua DCP. O da esquerda apresenta tres eletrodos colocados em Y invertido e o da direita apresenta configuração cônica. O plasma DCP mostrado na Fig. 2.2 à direita, foi proposto como tentativa de melhorar a penetração da amostra. Os eletrodos estão dispostos em ângulos de 300 com respeito à horizontal e separados em 1200. O aerossol da amostra é despejado no plasma através de um capilar de 1 mm d.i. Esta configuração não apresentou vantagens pelo que não tem equipamentos comerciais. Outras configurações apresentam eletrodos distribuídos simetricamente no interior de uma tocha parecida ao ICP. Nestas configurações ocorrem problemas de desgaste dos eletrodos e contaminação com o material destes, geralmente tungstênio. O plasma induzido por microondas é formado em uma cavidade onde as microondas são focalizadas em um furinho central por onde çhega a amostra. Este tipo de plasma é mais adequado para operar com amostras gasosas. Pode ser formado em He obtendo-se radiação de fundo muito menor que o plasma formado em Ar. Permite aplicações em especiação em linha através do acoplamento com cromatografia gasosa. Inicialmente 22 Espectrometria de Emissão Atômica com Plasma foram usadas cavidades de Beenakker e posteriormente cavidades surfatron, mostrada na Fig. 2.3. As maiores dificuldades residem na focalização das microondas e na sintonização entre a fonte e o plasma. Para conseguir isto as cavidades devem ser construídas com instrumentação de alta precisão. Figura 2.3 Esquema da cavidade de Beenakker usada no plasma de microondas MIP. No processo indutivo do ICP, os elétrons recebem energia do campo magnético induzido, produzido numa espiral energizada pela fonte de alta radio freqüência. Quando se energiza uma espiral tipo solenóide, o campo magnético induzido apresenta linhas distribuídas de forma homogênea, no sentido do eixo da espiral. Como a corrente é produzida por fonte de radiofreqüência, energia alternada, o campo formado é oscilante, mudando o sentido dependendo da freqüência. No caso de 27,12 MHz têm-se 27,12 × 106 ciclos/s. 23 Espectrometria de Emissão Atômica com Plasma 2.4 A tocha no ICP. O plasma é formado na tocha, a qual é constituída por três tubos concêntricos de quartzo, com entradas independentes para cada seção anular. Na seção anular externa, o gás é introduzido tangencialmente, com fluxo superior a 12 L/min. Nas primeiras configurações de tochas, a entrada do gás do plasma era inclinada, de forma a produzir o chamado "vórtice de Reed", que se supunha, era isolante térmico dos tubos de quartzo e permitia a centralização do plasma. Na seção anular intermediária entra o gás auxiliar, a uma vazão de 1 L/min, necessário para estabilizar o plasma. Na seção interna ou tubo injetor, entra o aerossol da amostra, por arraste com gás em vazões abaixo de 1 L/min. O tipo de gás e as vazões podem modificar a forma do plasma, seu tamanho e a nitidez do contorno. Quando se emprega Argônio, obtémse um plasma comprido e semidifuso; ao utilizar Nitrogênio o plasma é menor e com margens bem definidas. O Nitrogênio tem que ser dissociado para depois ionizar-se, o que requer aproximadamente 1000 Kcal/mol, enquanto o Argônio requer menos que 500 Kcal/mol. Esta diferença energética dificulta a formação do plasma, pelo que, em geral, o gás utilizado pelos equipamentos comerciais é o Argônio. A tocha de quartzo é introduzida no interior da espiral de indução, colocada de forma equidistante. A ponta da tocha sobressai da espiral, enquanto que o tubo mais interno não chega a ser introduzido na mesma. As linhas do campo magnético induzido ficam distribuídas axialmente ao longo da tocha. A espiral, em geral, tem três voltas de tubo de cobre oco (3 mm de di) e é refrigerada com água. O esquema da montagem da tocha e da espiral é mostrado na Fig. 2.4. 24 Espectrometria de Emissão Atômica com Plasma Figura 2.4 Esquema da montagem da tocha e espiral de indução. 2.5 Formação do plasma Para iniciar o processo de formação do plasma, usa-se uma fonte de Tesla que proporciona descarga elétrica na região de entrada do argônio do plasma. Estes elétrons provocam as primeiras ionizações do Argônio. Aumentando-se a energia na fonte de RF, os elétrons produzidos são acelerados pelo campo magnético, atingindo energia cinética elevada. 25 Espectrometria de Emissão Atômica com Plasma Entrada dos gases: Plasma, Auxiliar e Nebulização Entrada de água pela bobina de indução Fechar entrada de gás de nebulização Verificar a posição do capacitor de Acionar a descarga Tesla Iniciar o Fornecimento de ENERGIA RF Ar+ + e Ar + e Ar+ + e Ar Ar Ar+ + e Equilibrio dinâmico PLASMA {Ar (15 L/min), Ar+ (2%) , e (1015 /cm3)} Figura 2.5 Esquema do processo de formação do plasma em ICP. Esta energia é transferida para outros átomos através de colisões, produzindo mais íons do gás e elétrons. Assim, inicia-se um processo em cascata até a formação do plasma. Neste período, até atingir o ajuste entre a energia cedida pela fonte de RF e a utilizada no plasma, ocorre o processo de sintonização do acoplamento. A técnica denomina-se “plasma com acoplamento indutivo” e o dispositivo que garante o acoplamento é chamado de matching box. Este deve ser ajustado de tal forma que a energia refletida seja a mínima possível (<5 W). Este parâmetro indica a 26 Espectrometria de Emissão Atômica com Plasma estabilidade do acoplamento. Porém, se a energia refletida permanecer alta, há indicação de problemas na geometria da montagem de tocha, ou quando ocorre uma mudança brusca, o que pode ser devido à solução introduzida. 2.6 Geradores de RF Os geradores de radio-freqüência nos equipamentos comerciais de ICP são osciladores que proporcionam corrente alternada a freqüências de 27,12 MHz ou 40,68 MHz, dependendo do fabricante, e potência nominal de 2 kW. Os circuitos osciladores básicos consistem em um capacitor e un indutor (bobina) em paralelo. Os dois tipos de osciladores mais usados em ICP são: os controlados por cristal e os free-running. Fontes de RF baseadas em cristal piezoelétrico oscilando a freqüência fixa, proporcionam RF constante. As mudanças de impedância no plasma refletem-se em perda de potência, provocando aumento da energia refletida. Nestes casos, para estabiliza-lo deve ser efetuada nova sintonização. Existem sistemas que têm sistema automático para sintonizar-se (autotunning) quando ocorrem instabilidades. A fonte de RF, pode ser acoplada ao plasma através de um capacitor variável, que serve para sintonizar a energia entre os dois sistemas, através do casamento de impedâncias. A radio-freqüência pode ser produzida por um circuito oscilador do tipo L-C, indutor-capacitor (free-running). A freqüência do oscilador é auto-ajustada pelos valores dos componentes do circuíto que inclui a bobina de indução. Nestes sistemas, os valores são modificados quando ocorrem mudanças na impedância do acoplamento ao plasma, ocorrendo 27 Espectrometria de Emissão Atômica com Plasma mudanças na freqüencia de operação mas a transferência de potência é garantida. Com o aumento da RF, altera-se a distribuição das linhas do campo magnético dentro da tocha produzindo-se o chamado “skin depth effect”. Este efeito é inversamente proporcional a √ da freqüência. A largura radial do plasma é determinada por esse efeito. O efeito do largura radial do plasma nos parâmetros como densidade eletrônica e Temperatura dos elétrons é importante, uma vez que afeta o fluxo de partículas carregadas que são balanceadas pelos processos de produção delas. A Temperatura dos elétrons é determinada pelo balanceamento de elétronsíons, enquanto que a densidade eletrônica determina-se pelo balanceamento da energia dos elétrons. (Capítulo 4) O aumento da radiofreqüencia até 100 MHz, produziu um plasma anular, parecendo uma rosca, pela distribuição das linhas do campo magnético na região perto da bobina de indução. Desta forma, a introdução da amostra na forma de aerossol pelo centro do plasma fica mais fácil e não provoca perturbação energética. Os plasmas induzidos usando RF mais alta apresentam menor contribuição da radiação do continuum, contudo maior produção de íons moleculares tem sido reportada. REFERÊNCIAS BIBLIOGRÁFICAS CAP. 2 1. BABAT, G.I. Electrodeless discharges and some allied problems. Journal of Inst. Electr. Eng., v. 94, p. 27-37, 1947. 2. REED,T. Induction-coupled plasma Torch. Physics, v. 32, p. 821-824, 1961. 28 Journal of Applied Espectrometria de Emissão Atômica com Plasma 3. REED, T. Growth of refractory crystals using the induction plasma torch. Journal of Applied Physics, v. 32, n. 12, p. 2534-2536, 1961. 4. GREENFIELD, S.; JONES, I.L.I.; BERRY, T.C. High pressure plasmas as spectroscopy emission sources. Analyst, v. 89, p. 713-720, 1964. 5. WENDT, R.H.; FASSEL, V.A. Induction-coupled plasma spectrometric excitation source. Analytical Chemistry, v. 37, p. 920922, 1965. 6. MONTASER ,A.; FASSEL, V.A Inductively coupled plasma as atomization cells for atomic fluorescence spectrometry. Analytical Chemistry, v. 48, p. 1490-1499, 1976. 7. HOUK, R.S.; FASSEL, V.A.; FLESH, G.D.; SVEC, H.J.; GRAY, A.L.; TALOR, C.E. Inductively coupled argon plasma as ion sources for mass spectrometric determination of trace elements. Analytical Chemistry, v. 52, p. 2283-2289, 1980. 8. MEYER, G.A. Conical three-electrode DC Plasma for spectrochemical analysis. Spectrochimica Acta, v. 42B, p. 333-339, 1987. 9. BOLLO-KAMARA, A.; CODDING, E.G. Considerations in the design of a microwave induced plasma utilizing the TM010 cavity for optical emission spectroscopy. Spectrochimica Acta, v. 36B, p. 973982, 1981. 10. GOODE, S.R.; CHAMBERS, B.; BUDDIN, N.P. Use of a tangential flow torch with a microwave induced plasma emission detector for gas chromatography. Spectrochimica Acta, v. 40B, p. 329-333, 1985. 11. HEITKEMPER, D.; CREED, J.T.; CARUSO, J.A. Helium microwave induced plasma mass spectrometry detection for reverse phase high performance liquid chromatograph. Science, v. 28, p. 175-181, 1990. 29 Journal of Chromatographic Espectrometria de Emissão Atômica com Plasma 12. MONTASER, A. Assessment of the potentials and limitations of plasma sources compared to ICP discharges spectrometry. In: MONTASER, A.; for analytical GOLIGHTLY, D.W.X. Inductively coupled plasma in analytical Atomic-Spectrometry. 2.ed. New York: VCH Publishers, 1992. p. 1-44. 13. GREENFIELD, S.; MONTASER, A. Common RF generators, and sample introduction systems. In: MONTASER, A.; GOLIGHTLY, D.W.X. Inductively coupled plasma in analytical AtomicSpectrometry. 2.ed. New York: VCH Publishers, 1992. p.187-220. 14. BRADSHAW, N.; HALL, E.F.H.; SANDERSON, N.E. Inductively coupled plasma as an ion source for high resolution mass spectrometry. Journal of Analytical Atomic Spectrometry, v. 4, p. 801-803, 1989. 30 Espectrometria de Emissão Atômica com Plasma CAPÍTULO 3. INTRODUÇÃO DA AMOSTRA. Uma vez formado o plasma, procede-se à introdução do aerossol da amostra pelo tubo central. Isto modifica o aspecto do plasma; observa-se um escurecimento no canal central e, no topo aparece uma chama comprida. Esta configuração do plasma tem uma seção de corte transversal, denominada de toroidal, que caracteriza-se por dois círculos concêntricos. A Fig. 3 mostra a distribuição na região do plasma e do canal da amostra. O aumento da energia refletida durante o processo de introdução da amostra no plasma homogêneo pode indicar problemas na colocação da tocha, dimensões desta e/ou vazão do gás de nebulização [1]. Estes fatores as vezes impedem um bom acoplamento e a estabilização do plasma. Em equipamentos usando fontes de RF de 50 e 148 MHz a estabilização do plasma é mais fácil do que naqueles de 27 MHz [2-4]. Para compensar o efeito da introdução da amostra, em alguns sistemas é recomendado desligar o gás auxiliar para estabilizar o plasma. Instabilidades da energia refletida durante a análise podem ocorrer devidas ao tipo de solução introduzida, a entupimento do injetor ou variações no sistema de introdução da amostra. A introdução da amostra pelo canal central do plasma apresenta um formato com as seguintes vantagens: 1. Os átomos da amostra ficam restritos ao túnel central. Este canal é estreito e conduz a amostra ao seio do plasma sem alterar o regime energético que o sustenta. Desta forma, o plasma fica robusto para aceitar amostras de diferentes natureza e concentração. 2. A região do plasma formado no meio da espiral (região ativa) permite a transferência eficiente da energia do plasma para a amostra. 31 Espectrometria de Emissão Atômica com Plasma 3. O volume ocupado pela amostra alarga-se à medida que se afasta da espiral e, na região utilizada para deteção da emissão ocupa a maior parte do corte transversal. Nesta região, a radiação de fundo devida ao plasma diminui, o que permite atingir melhores limites de detecção. 4. Evita-se a mistura do gás do plasma com o aerossol da amostra, reduzindo a probabilidade de autoabsorção e contaminação pelo gás do plasma. Isto, na prática reflete-se em faixas analíticas lineares mais amplas e na possibilidade de uso de Ar comercial. Um dos aspectos mais importantes para o bom desempenho analítico do plasma, reside no procedimento de introdução de amostras[5]. As amostras podem ser introduzidas nas formas gasosa, líquida e sólida. 3.1 Introdução de amostras líquidas A forma mais comum para introdução de amostras é através da formação de aerossol gás/líquido num nebulizador. Diversos sistemas de nebulização instalados em câmaras de nebulização de diferentes geometrias, têm sido descritos [6]. A formação do aerossol, a seleção de uma porção homogênea de gotas e a condução para o plasma, são de extrema importância para a obtenção de bons resultados[7]. Entre as propriedades do aerossol são importantes: o tamanho e a distribuição das gotículas, as quantidades de amostra e solvente transferidas para o plasma, as flutuações do sistema de nebulização. A qualidade do aerossol produzido depende do nebulizador, enquanto que a seleção da parte do aerossol transferido para o plasma depende da câmara de nebulização [25] 32 Espectrometria de Emissão Atômica com Plasma 3.1.1 Nebulizadores Pneumáticos Existem vários projetos de nebulizadores pneumáticos para introduzir amostras líquidas no plasma. Estes são construídos com dois tubos finos (1 mm di), por onde entra o gás, geralmente Argônio, e a amostra líquida. Na passagem do gás, de uma constrição a uma expansão brusca, provoca-se uma região de vácuo (princípio de Venturi) permitindo a aspiração da amostra líquida. Além de aspirar a amostra os nebulizadores pneumáticos servem para formar o aerossol da amostra. Na Fig. 2.4 são mostrados alguns nebulizadores deste tipo. Entre estes, temos: os de fluxo cruzado, os concêntricos e os que toleram maior quantidade de sólidos como o de Babington. Estes nebulizadores por ter tubos de diâmetro pequeno, apresentam pouca tolerância de ajuste e problemas para amostras com teor de sólidos acima de 2% [7]. Nos nebulizadores pneumáticos a vazão de aspiração depende da diferença de pressão provocada pelos fatores de construção e dimensões relacionados pela equação de Poiseuille [eq.3.1]. O principal requisito é que o gás atinja altas velocidades para que, na expansão, provoque uma queda considerável de pressão e o líquido seja aspirado. Os nebulizadores pneumáticos mais usados foram os de fluxo cruzado (cross flow). No início estes nebulizadores eram ajustáveis (Fig. 3.1 à esquerda) onde o operador devia encostar as agulhas até chegar na posição de aspiração. Depois foram comercializados os nebulizadores fixos e no anos 80 foram introduzidos os nebulizadores concêntricos (Fig. 3.1 à direita) [8,9] 33 Espectrometria de Emissão Atômica com Plasma Figura 3.1 Nebulizadores pneumáticos para ICP. A direita mostra-se o nebulizador concêntrico e a esquerda o nebulizador de Fluxo Cruzado (Cross-flow). A produção de um aerossol com gotículas de tamanho menor é resultante da maior interação entre o gás e o líquido. Q = π R4 ∆P/ 8 η L [3.1] onde : Q a vazão de aspiração do líquido R o raio do tubinho capilar para a amostra ∆P a diferença de pressão η a viscosidade da solução L o comprimento do capilar. Nesta equação não se considerou o fator de fricção do líquido nas paredes do capilar e se supõe que a velocidade junto às paredes é nula. Através desta equação entende-se porque a capacidade de aspiração varia com a viscosidade da solução[10,11]. 34 Espectrometria de Emissão Atômica com Plasma O mecanismo de formação das gotículas após a aspiração da amostra nos nebulizadores pneumáticos, foi descrita por Nukijama e Tanasawa. pela equação empírica a seguir. do=585/v(σ/ρ)1/2 + 597[η/(σ/ρ)1/2]0,45 {1000 Qliq/Qgas}1,5 [3.2] onde : do diâmetro médio das gotículas (µm) v diferença entre a velocidade do gás e do líquido (m/s) σ tensão superficial (dinas.cm) ρ densidade do líquido (g/ml), η viscosidade do líquido (poises) Qliq, Qgás fluxos volumétricos de líquido e gás. As faixas de variação de alguns parâmetros testados foram 30 < σ < 73; 0,01 < η < 0,3 e 0,8 < ρ <1,2. Para outros valores a equação pode levar a resultados errados. A equação 2.2 foi desenvolvida considerandose ar como gás, mas utilizando-se Argônio não se introduz erro significativo. Para nebulizadores concêntricos a equação foi modificada. A equação para o cálculo do diâmetro da gotícula dado por Sauter, d3,2 (µm) é dada pela equação : d3/2 = 585(σ1/2 /c ρ1/2 )+ 597 [µ/(σ/ρs)1/2]0,45 {1000 Qliq/Qgas}1,5 onde: ρ densidade em g/cm3 σ tensão superficial (dinas.cm) µ coeficiente de viscosidade do líquido (dinas/cm2) 35 [3.3] Espectrometria de Emissão Atômica com Plasma c velocidade relativa entre o gás e o líquido (m/s) Qliq, Qgás fluxos volumétricos de líquido e gás. Na distribuição por tamanhos de gotas têm-se que considerar as vazões de gás e líquido, as propriedades físicas de vários solvente e gases e as dimensões dos nebulizadores Para manter a vazão constante através do nebulizador e evitar problema com a viscosidade das soluções, as amostras são introduzidas por bombeamento usando-se bombas peristálticas. O efeito de usar a bomba peristática pode ser observado nas curvas da Fig. 3.2. Em geral a eficiência dos nebulizadores concêntricos aumenta, quando se aumenta a vazão do gás de nebulização. O uso da bomba peristáltica para introduzir soluções refletiu-se em aumento da eficiência para vazões acima de 0,8 L/min do gás de nebulização somente nos nebulizadores concêntricos tipo 20. % Vazão do gás de nebulização [L/min] Figura 3.2. Efeito do uso da bomba peristáltica na eficiência de transporte em nebulizadores pneumáticos. Nebulizadores Concêntricos e de Fluxo Cruzado fixo ou ajustáveis, sem (-) ou com (+) bombeamento. 36 Espectrometria de Emissão Atômica com Plasma Para os nebulizadores de fluxo cruzado FC ajustáveis a eficiência é constante, mesmo aumentando a vazão do gás de nebulização. Quando se emprega bombeamento da solução no nebulizador FC ajustável, a eficiência melhora para vazões acima de 0,8 L/min do gás de nebulização. Para os nebulizadores FC fixos com bombeamento da solução, a eficiência aumenta com o aumento da vazão do gás de nebulização. O maior efeito da bomba peristáltica reflete-se na precisão das medidas, principalmente para introdução de soluções com densidade ou viscosidade diferentes. 3.1.2 Nebulizadores Ultrassônicos. Este tipo de nebulizador produz aerossol da amostra líquida em uma membrana que vibra com freqüência ultrassônica promovida pela ação de uma fonte de RF transmitida por água. A solução da amostra escorre pela membrana e pelo efeito de cavitação ou de "gêiser" formam-se finas partículas de líquido que formam um aerossol e são transportadortadas por um gás que é introduzido tangencialmente [12]. Estes nebulizadores são utilizados para amostras com concentrações salinas altas [13]. Nestes nebulizadores a eficiência de transporte da amostra para a tocha é de 5 a 10 % sendo descartada a maior fração da mesma. Um esquema do nebulizador ultrassônico é mostrado na Fig. 3.3. Este nebulizador pode ser acoplado a uma unidade de dessolvatação. No esquema, vê-se o gerador de ultrassom que fornece energia a freqüências entre 200 kHz e 10 MHz. Estas ondas são focalizadas na superficie de um líquido usando uma lente ou um guia de ondas. 37 Espectrometria de Emissão Atômica com Plasma As ondas logitudinais se propagam num transdutor, esfriado por água ou ar, e atigem a membrana a qual vibra intensamente, desagregando a amostra líquida em gotículas. Figura 3.3 Esquema do nebulizador ultrassônico. O comprimento de onda na superficie da membrana é : λ= (8π σ/ρ ν2)1/3 [3.4] onde : λ comprimento de onda σ tensão superficial ρ densidade do líquido ν é a freqüência do ultrassom. A média do diâmetro das gotículas produzidas é : d = 0,34 λ. 38 Espectrometria de Emissão Atômica com Plasma 3.1.3 Outros Nebulizadores. O nebulizador de injeção direta, conhecido como DIN (Direct Injection Nebulizer), foi projetado para introdução de pequenos volumes de amostra com alta eficiência [14]. Este sistema tem uma válvula de amostragem automática com uma alça de volumes entre 10 e 100µl. A solução da amostra é empurrada por gás bombeado a alta pressão (120 psi) através de um tubo injetor, que despeja as gotículas da amostra diretamente no plasma. A bomba de pistão serve para o deslocamento do gás no capilar introduzido na tocha como mostra a Fig. 3.4. Embora a pressão seja alta a movimentação da solução pelo capilar é variável e depende da densidade. O capilar encontra-se dentro do tubo mais interno da tocha, e por este tubo é usada uma vazão de argônio auxiliar baixa de 0,1 L/min-1. Este sistema foi usado para introdução de compostos orgânicos no plasma . O nebulizador hidráulico de alta pressão, denominado HHPN (Hydraulic High Pressure Nebulizer), usa bomba de pistão de alta pressão para introduzir amostras viscosas (óleos). O aerossol é impactado numa esfera na entrada da câmara de nebulização, onde se desagrega em partículas que são carregadas por gás para o plasma [15]. Este injetor pode ter acoplado uma válvula de injeção da amostra como a do DIN. Outro dispositivo que foi recentemente proposto, permite a decomposição da amostra no percurso usando aquecimento sob altas pressões em um capilar de Pt/ Ir aquecido externamente com filamento de Ni/Cr. A importância deste tipo de nebulizador reside no bico que produz o jato de amostra a alta pressão sobre o impactador. 39 Espectrometria de Emissão Atômica com Plasma ICP Unidade de controle injetor Bomba de gás DIN dreno 1 mm Capilar da amostra Material Cerâmico Figura 3.4 Esquema do sistema de nebulização com injeção direta DIN. 3.2.Introdução de amostras gasosas. 3.2.1Geração de hidretos Diversos elementos (As, Sb, Bi, Se, Te, Ge, Sn, Pb) quando encontram-se nos estados de valência menor podem ser reduzidos a hidretos voláteis. Para a geração de hidretos tem sido usada redução com zinco metálico, através de processo electrolítico e borohidreto de sódio. 40 Espectrometria de Emissão Atômica com Plasma Sendo que este último tem sido mais usado. A geração de hidretos voláteis permite a separação destes compostos da amostra usando um separador gás/líquido. Após separados são arrastados para o plasma com um fluxo de argônio [16,17]. Diferentes dispositivos para separação dos hidretos têm sido acoplados em linha com o plasma, seja pela introdução direta na câmara de nebulização ou conetados com o nebulizador. Para manter a estabilidade do plasma, somente o Argônio arrastando os hidretos devem entrar no tubo injetor, evitando-se a passagem do líquido. O separador de fases construído em vidro deve ser dimensionado de forma que, permita manter o nivel constante na coluna de líquido no tubo em U, caso contrário descompensam-se as pressões e o líquido pode ser arrastado para o plasma. A separação dos hidretos também pode ser efetuada usando uma câmara com membrana ou tubo microporoso de Teflon PTFE, sendo que a primeira apresenta maior risco de romper-se. Os compostos gasosos difundem pelo PTFE e são transportados por Argônio para o plasma. O transporte dos hidretos para o plasma apresenta eficiência > 95%. 41 Espectrometria de Emissão Atômica com Plasma Bomba Peristáltica Separador gás/líquido NaBH4 HCl ICP dreno Amostra Argônio Rotâmetro dreno Figura 3.5 Esquema do sistema para Geração de Hidretos. 3.2.2 Vaporização electrotérmica A amostra em solução pode ser dessolvatada e evaporada num dispositivo electrotérmico tal como, bote de tântalo, forno de grafite [18] e diferentes tipos de peças construídas en tungstênio (filamentos, cubas, etc). Na Fig. 3.6 é mostrado o sistema de vaporização eletrotérmica com forno de grafite acoplado ao ICP. 42 Espectrometria de Emissão Atômica com Plasma Figura 3.6 Acoplamento de sistema de vaporização eletrotérmica ao ICP. Um pequeno volume (20 a 40 µl) de amostra é colocado no vaporizador eletrotérmico. O aquecimento do dispositivo eletrotérmico é efetuado de forma gradual, tendo uma etapa de secagem de forma a eliminar o vapor de água, em seguida a temperatura é aumentada para produzir a vaporização da amostra. Em alguns casos, programa-se uma etapa intermediária que permite dissociar as moléculas e eliminar por volatilização espécies da matriz da amostra, que constituem-se em possíveis interferentes. 43 Espectrometria de Emissão Atômica com Plasma Os vapores da amostra, quando são transportados para o plasma sofrem dispersão, gerando um gradiente de concentração que reflete-se em um sinal transiente. Para conseguir bons resultados, o controlador de aquecimento do dispositivo eletrotérmico deve estar sincronizado com o sistema de aquisição do sinal no ICP. 3.3 Introdução de Amostras sólidas. A introdução direta de amostras sólidas pode efetuar-se utilizando un recipiente de grafite colocado na ponta de um haste que é introduzida pelo tubo central da tocha (modificada) até o plasma. A quantidade de amostra é de 1 a 20 mg. [19] Outro sistema utiliza ultrassom para produzir o arraste das partículas sólidas por Ar. A amostra sólida finamente dividida é introduzida em um tubo (0,5×5 cm) usando ultrassom para a deposição homogênea dentro do tubo. Este tubo é colocado em um sistema que recebe Ar para resuspender o material e, formar um aerossol sólido/gás que é transportado para o plasma, como mostra a Fig. 3.7.[20] Este sistema tem sido usado para amostras de origem geolólcas finamente divididas (400 mesh). A análise indireta de amostras sólidas pode ser efetuada pela dissolução em linha, ca por electrodissolução de uma liga metálica em sistema em linha acoplado ao nebulizador [21], electroerosão e volatilização por ação de laser (laser ablation) [22]. 44 Espectrometria de Emissão Atômica com Plasma Figura 3.7 Sistema para transporte de amostra sólida diretamente no ICP. 3.4 Desempenho na Introdução da amostra a) Utilização de 100 % da amostra, formação de nuvem com homogeneidade de gotículas. Os aerosois produzidos por nebulizadores pneumáticos convencionais são polidispersos com mais de 108 gotas/s. Tamanho de gota ideal 10 -20µm para ser completamente vaporizada. b) Sensibilidade indicando bom compromisso de fluxo do transporte da amostra através do plasma, homogeneidade da nuvem de amostra e a energia deste. c) Reduzida produção de óxidos através da eliminação dos solventes. 45 Espectrometria de Emissão Atômica com Plasma d) Baixo sinal de fundo evitando-se ruidos provocados por gotículas ao acaso. e) Tempo de lavagem curto, evitando-se efeitos de memória 3.5 Dispositivos para Seleção do Aerossol 3.5.1 Câmaras de nebulização Os nebulizadores despejam o aerossol em câmaras de nebulização. A primeira função destas câmaras consiste em separar as gotículas de aerossol, sendo as maiores condensadas e descartadas e as menores que formam uma nuvem mais homogênea deverão ser conduzidas para o plasma. O efeito da adição de metanolna formação do aerossol é mostrado na Fig. 3.8. Nestas câmaras ocorre uma redução do total de aerossol introduzido pelo nebulizador e uma modificação da distribuição pelo tamanho de gotículas. 46 Espectrometria de Emissão Atômica com Plasma % % (a) Água (b) 10% MeOH Diâmetro gota (µm) Diâmetro gota (µm) % % c) 20% MeOH (d) 30% MeOH Diâmetro gota (µm) Diâmetro gota (µm) Figura 3.8 Efeito da concentração de metanol em solução aquosa na distribuição do tamanho de gotas. A câmara será avaliada pela capacidade na separação do aerossol, através da homogêneidades e de tamanho de gotículas deste, a eficiência de transporte, as facilidades para limpeza diminuindo efeitos de memória e a estabilidade de pressão e temperatura. As mais simples (Fig. 3.9a) tem um compartimento reto com um dreno perto do nebulizador e a saída do aerossol para a tocha no outro extremo. No interior destas câmaras coloca-se um anteparo para impedir a passagem de gotículas grandes para 47 Espectrometria de Emissão Atômica com Plasma o plasma. Câmara de nebulização de duplo passo, desenvolvida por Scott et alii (1974) apresenta dois tubos concêntricos sendo o tubo interno aberto no fundo (Fig. 3.9). No extremo oposto do nebulizador tem o dreno, uma vez que a maior condensação de gotículas ocorre ao chocar com a parede do fundo. O aerossol que não condensa, passa pela região entre os tubos e sobe para a tocha. Este tipo de câmara pode ter dupla parede externa refrigerada para aumentar a eficiência na remoção das gotículas grossas do aerossol. Outras câmaras usando formato cônico com impactadores tem sido usadas (Fig.3.9), uma delas denominada de câmara de ciclão desenhada de forma que o aerossol adquere movimento em espiral e a separação das gotas maiores se da pela ação da força centrífuga. Câmaras de tamanho pequeno tem sido desenhadas para trabalhar com sistemas de injeção em fluxo [25]. Figura 3.9 Câmaras de nebulização. A esquerda a câmara de duplo passo ou tipo Scott, a direita câmara com elemento de impacto. 3.5.2 Dessolvatadores. Unidades de dessolvatação tem sido acopladas aos nebulizadores para evitar o transporte de solvente para o plasma, principalmente útil 48 Espectrometria de Emissão Atômica com Plasma para remoção de solvente orgânicos. A desolvatação consegue-se pelo aquecimento até evaporação do solvente e depois remoção por condensação. Dispositivos com membranas hidrofóbicas de PTFE permitem a difussão de vapor de água. Na Fig 3.10, são mostrados alguns sistemas. MDMI injetor de micropartículas secas monodispersas Um feixe monodisperso de gotículas gera-se com uma microbomba, injeta as gotas em um fluxo de gás de forma isocinética. Dessolvata as gotas até um ponto ajustável em um forno e carrega as gotas e as partículas desolvatadas no centro do ICP. Figura 3.10 Sistemas para dessolvatação da amostra nebulizada com nebulizador ultrassônico (Cetac U-6000). 3.6. Processamento das amostras no plasma. As soluções quando são nebulizadas formam aerossol que é despejado em uma câmara onde grande parte das gotículas são 49 Espectrometria de Emissão Atômica com Plasma condensadas. Os componentes da amostra na fase líquida (MX) seguem para a tocha e no transporte ocorre a desolvatação pasando à fase gasosa (MX)g. Em continuação, durante a passagem pelo plasma ocorre a dissociação produzindo moléculas (MO, MOH, MH, MAr, MN, etc.), atômos (M), iôns (M+, M++), elétrons livres (e), moléculas excitadas (MX*), átomos excitados (M*), íons excitados (M+*) e as radiações decorrentes. O equilibrio da fase gasosa no plasma é muito complexo, coexistindo as espécies mencionadas envolvidas em diferentes processos. Um esquema dos processo envolvidos no equilibrio da fase gasosa da amostra no plasma é mostrada na Figura 3.11 MXlíq. Excitação MXgas Emissão Associação Ionização M+ + Dissociação Ionização Recombinação E x c. M+ Associação Recombinação E m i s. E x c. M+* MX* M Dissociação E m i s. M* MO, MOH, MH E E x c. m i s. MO* MOH* MH* Figura 3.11 Esquema dos processos e espécies no equilíbrio da fase gasosa no ICP. 50 Espectrometria de Emissão Atômica com Plasma 3.7 Sistemas de Análise por injeção em fluxo em ICP A análise por injeção em fluxo (FIA), descrita por Ruzicka e Hansen em 1975, teve como principios básicos a injeção da amostra em um fluido carregador onde durante o transporte sofre dispersão controlada e os sinais gerados são detectados em tempos reprodutíveis. O transporte da amostra nos sistemas FIA, geralmente ocorre na forma líquida-líquida, o que envolve um processo de difusão-convecção sob fluxo em regime laminar. O processo total de dispersão é caracterizado pelo sinal transiente monitorado enquanto a amostra passa pelo detector. Os sinais transientes gerados são consequência dos parâmetros hidrodinâmicos de fluxo, sendo os principais o volume injetado, vazão do fluido transportador e dimensões do percurso analítico [27]. Além destes, são relevantes, os efeitos sobre a dispersão devidos à forma de efetuar a introdução da amostra por tempo ou por alça de amostragem, tipo de reatores no percurso analítico, lineares, helicoidais, trançados em 3-D, etc, cinética das reações envolvidas e volume morto do detector. Através da exploração do gradiente de concentrações gerados é possível excecutar o gerenciamento de soluções, podendo adicionar reagentes, diluir soluções, efetuar processos de separação e preconcentração e outros em linha com diferentes detectores. Acoplamento FIA-ICP. O sistema de fluxo é acoplado ao sistema de entrada de amostras no plasma, geralmente um nebulizador. A zona dispersa da amostra chegando ao nebulizador é transformada em aerossol com argônio, desta forma passa por uma câmara de nebulização de onde é transportada na 51 Espectrometria de Emissão Atômica com Plasma forma de gotículas até a tocha. Neste percurso a amostra sofre desolvatação, desta forma o soluto entra disperso em argônio pelo centro do plasma. O processo de geração de aerossois provoca condições de fluxo turbulento, principalmente no interior da câmara de nebulização e a alta razão entre a superfície e o volume das gotículas favorece a remoção do solvente enquanto são transportadas para o plasma. Durante a desolvatação, o volume da fase gasosa é muito maior e as condições de fluxo laminar são reestabelecidas, entretanto com este processo se observa um alargamento da zona da amostra [28]. Para conseguir resposta rápida e evitar dispersão, têm sido propostas câmaras de nebulização de volume reduzido [29,30]. Para efetuar medição multielementar em sinais FIA são requeridos espectrômetros simultâneos ou sequenciais de varredura rápida. Em geral, as montagens óticas empregam tubos fotomultiplicadores como transdutores. Detectores multicanais como detectores lineares de arranjo de fotodiodos (photodiode array), tubos vidicon ou arranjos bidimensionais baseados em transferência de carga (CCD charge coupled device e CID charge injection device) têm sido incorporados aos equipamentos de plasma [31,32]. Outro ponto relevante refere-se à medição simultânea do fundo em sinais transientes. Usualmente, os espectrômetros simultâneos estão provistos com um acessório ótico para efetuar medições do fundo nas imediações (0,01 nm) do pico, este tipo de medição é possível em sinais constantes, uma vez que o tempo requerido é bem maior. Para efetuar este tipo de medição de fundo em um sinal transiente é necessário produzir um sinal largo, com a consequente perda de sensibilidade [33]. Para efetuar de forma mais dinâmica a medição do fundo em sinais transientes, foi desenvolvido um sistema ótico usando arranjo de 52 Espectrometria de Emissão Atômica com Plasma fotodiodos que medem simultaneamente o sinal e o fundo [34] e outro sistema com eletrônica muito rápida para aquisição destes sinais alternadamente [32] A medição de vários isótopos por espectrometria de massas em sinais transientes pode ser efetuada através de varredura rápida da região do espectro de interesse ou pode-se medir usando somente o máximo dos picos dos isótopos de interesse. Enquanto na medição por varredura temse informação de diversos elementos na amostra, a sensibilidade pode ser prejudicada pelo curto tempo para aquisição das leituras. A medição empregando o máximo dos picos é vantajosa para poucos picos. Para determinação de mais de 10 picos o desempenho é comparável com a medição por varredura. A vantagem da medição individual dos picos é a possibilidade de programar o tempo de aquisição do sinal diferente para cada isótopo, e desta forma compensar aqueles isótopos menos abundantes ou aqueles que na amostra encontram-se em menor concentração. A combinação da análise por injeção em fluxo (FIA) com a espectrometria de plasma tem sido muito eficiente para algumas aplicações em química analítica visando determinações multielementares. Entre estas podemos citar a introdução de microvolumes de amostra, especialmente quando se dispõe de volumes reduzidos de amostra [3537], ou para introducçao de amostras contendo altos teores salinos [38,39]. As facilidades da análise em fluxo se extendem também para efetuar diluições em linha [33,40] e calibrações usando adições de padrão, adição de padrão interno e adição de material com razão isotópica alterada[41-43]. Introduzindo na linha alguns dispositivos para efetuar separação da matriz [44], preconcentrações [45,46], especiação [47], e também dissolução da amostra. 53 Espectrometria de Emissão Atômica com Plasma 1. REFERÊNCIAS BIBLIOGRÁFICAS 2. GREENFIELD, S.; JONES, I.L.I.;. BERRY, C.T. High pressure plasmas as spectrocopic emission sources. Analyst, v. 89, p. 713-720, 1964. 3. MICHAUD-POUSSEL, E.; MERMET, J.M. Influence od the generator frequency and plasma gas inlet area on torch design in inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta, v. 41B, p. 125-132, 1986. 4. WEBB, B.D.; DENTON, M.B. Comparison of a very high frequency 148 MHz inductively coupled plasma to a 27 MHz ICP. Spectrochimica Acta, v. 41B, p. 361-376, 1986. 5. BOUMANS, P.W.J.M.; VRAKKING, J.J.A.M. Detection limits of about 350 prominent lines of 65 elements observed in 50 and 27 MHz inductively coupled plasma ICP: effect of source characteristics, noise and spectral bandwidth - “Standard” values for the 50 MHz ICP. Spectrochimica Acta, v. 42B, p. 553-579, 1987. 6. BROWNER, R.F.; BOORN, A.W. Sample introduction: the Achilles’ Heel of stomic spectroscopy. Analytical Chemistry, v. 56, p. 787798A, 1984. 7. SHARP, B.L. Pneumatic nebulizers and spray chambers for inductively coupled plasma spectrometry. A review. 1. Nenulizers. Journal of Analytical Atomic Spectrometry, v. 3, p. 613-652, 1988. 8. BAGINSKI, B.R.; MEINHARDT, J.E. Some effects of high solids matrices on the sample delivery system and the Meinhardt concentric nebulizer during ICP emission analysis. Applied Spectroscopy, v. 38, n. 4, p. 568-572, 1984. 54 Espectrometria de Emissão Atômica com Plasma 9. ROUTH, M.W. An improved pneumatic concentric nebulizer for atomic absorption. Aerosol characterization. Applied Spectroscopy, v.45, p.170-175, 1981. 10. GUSTAVSSON, A. Mathematical model for concentric nebulizer systems. Analytical Chemistry, v. 55, n. 1, p. 94-98, 1983. 11. OLESIK, J.W.; MOORE JUNIOR, A.W. Influence of small amounts of organic solvents in aqueous samples on argon inductively coupled plasma spectrometry 12. BOORN, A.W.; BROWNER, R.F. Applications: organics. In: BOUMANS, P.W.J.M. (Ed.). Inductively coupled plasma emission spectrometry. Part II. Applications and Fundamentals. New York: Wiley Interscience, 1987. p. 151-216. 13. FASSEL, V.A.;. BEAR, B.R. Ultrasonic nebulization of liquid samples for analytical inductively coupled plasma-atomic emission spectroscopy: An update. Spectrochimica Acta, v. 41B, p. 10891113, 1986. 14. HALICZ, L.; BRENNER, I.B. Nebulization of slurries and suspensions of geological materials by inductively coupled plasmaatomic emission spectrometry. Spectrochimica Acta, v. 42B, p. 207217, 1987. 15. AVERY, T.W.; CHAKRABARTY, C.; THOMPSON, J.J. Characterization and optimization of a direct injection nebulizer for introduction of organic solvents and volatyle species into an inductively coupled plasma. Applied Spectroscopy, v. 44, p. 16901698, 1990. 16. BERNDT, H.; SCHALDACH, G. Improvement of power of detection in ICP-OES by a new way of sample introduction (Hydraulic High- 55 Espectrometria de Emissão Atômica com Plasma pressure nebulization), Fresenius Z. Analytical Chemistry, v. 355, p. 367-369, 1989. 17. PAHLAVANPOUR, B.; THOMPSON, M.; THORNE, L. Simultaneous determination of trace concentrations of arsenic, antimony, and bismuth in soils and sediments by volatile hydride generation and inductively coupled plasma emission spectrometry. Analyst, v. 105, p. 756-761, 1980. 18. OLIVEIRA, E.; MCLAREN, J.W.; BERMAN, S.S. Simultaneous determi-nation of arsenic, antimony and selenium in marine samples by ICP-AES. Analytical Chemistry, v. 55, p. 20472050, 1983. 19. REN, J.M.; SALIN, E.D. Evaluation of a modified electrothermal vaporization sample introduction system for the analysis of liquids by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, v. 8, p. 59-63, 1993. 20. VERMEIREN, K.A.; TAYLOR, P.D.P.; ADAMS, R. Use of a thermospray nebulizer as a sample introduction system for inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, v. 2, p. 283-287, 1987. 21. SALIN, E.D.; HORLICK, G. Direct sample insertion device for inductively coupled plasma emission spectroscopy. Analytical Chemistry, v. 51, p. 2284-2286, 1979. 22. DE SILVA, K.N.; GUEVREMONT, R. Statistical considerations for the direct introduction of particulate samples for plasma emission and plasma source mass spectrometry. Spectrochimica Acta, v. 5, p. 285291, 1990. 23. SOUZA, I.G.;.BERGAMIN FILHO, H.;. KRUG, F.J.; NÓBREGA,J.A.; OLIVEIRA, P.V.;. REIS, B.F.;. GINÉ, M.F. On- 56 Espectrometria de Emissão Atômica com Plasma line electrolytic dissolution of alloys in flow injection analysis. Part3. Analytica Chimica Acta, v. 245, p. 211-216, 1991. 24. THOMPSON, M.; GOULTER, J.E; SIEPER,F. Laser ablation for the introduction of solid samples into an inductively coupled plasma for atomic emission spectrometry. Analyst, v. 106, p. 32-39, 1981. 25. SCOTT, R.H.; FASSEL, V.A.; KNISELEY, R.N.; NIXON, D.E. Inductively Coupled Plasma optical emission analytical spectrometry. A compact facility for trace analysis of solutions. Analytical Chemistry, v. 46, p. 75-80, 1974. 26. SHARP, B.L. Pneumatic nebulizers and Spray chambers for inductively coupld plasma spectrometry. A review 2. Spray chambers. Journal of Analytical Atomic Spectrometry, v. 3, p. 939-963, 1988. 27. RUZICKA, J.; HANSEN, E.H. Flow injection analysis. 1.ed. New York: John Wiley & Sons, 1975. 207 p. 28. RUZICKA, J.; HANSEN, E.H. Flow injection analysis. 2.ed. New York: John Wiley, 1988. 29. KOROPCHAK, J.A.; ALLEN,L.; DAVIS, J.M. Aerosol interfacing effects on discrete sample introdution coupled with spectrometric detection. Applied Spectroscopy, v. 46, n. 4, p. 682, 1992. 30. KEMPSTER, P.L.; VAN STADEN, J.F.; VAN VLIET, H.R. Investigation of small volume cloud chambers for use in Inductively Coupled Plasma nebulization. Journal of Analytical Atomic Spectrometry, v. 2, n. 8, p. 823, 1987. 31. ISOYAMA, H.; UCHIDA, T.; NIWA, T.; LIDA, C.; NAKAGAWA, G. Small spray chamber for ICP-AES and its evaluation by a digital signal sampling technique. Journal of Analytical Atomic Spectrometry, v. 4, n. 4, p. 351, 1989. 57 Espectrometria de Emissão Atômica com Plasma 32. LEVY, G.M.; QUAGLIA, A.; LAZURE, R.E.; MCGEORGE, S.W. A photodiode array based spectrometer system for ICP-AES. Spectrochimica Acta, v. 42B, n. 1/2, p. 341, 1986. 33. SWEEDLER ,J.V.; JALKIAN, R.D.; POMEROY ,R.S.; DENTON, M.B A comparison of CCD and CID detection for atomic emission spectroscopy. Spectrochimica Acta, v. 44B, n. 7, p. 683, 1989. 34. ISRAEL,Y.; LASTITY, A.; BARNES, R.M. On-line dilution steady state concen-trations for ICP-AES and MS achieved by tandem injection and merging stream FI. Analyst, v. 114, p. 1259, 1989. 35. FURUTA, N.; BRUSHWYLER, K.R.; HIEFTJE, G.M. FIA utilizing a spectrally segmented diode array ICP-AES. 1. Microcolumn preconcentration for the determination of Mo. Spectrochimica Acta, v. 44B, n. 4, p. 349, 1989. 36. ITO,T.; KAWAGUCHI, H.; MIZUIKE, A. Inductively coupled plasma emission spectrometry of microliter samples by flow injection technique. Bunseki Kagaku, v. 29, p. 332, 1980. 37. ALEXANDER, P.W.; FINLAYSON, R.J.; SMYTHE, L.E.;.THALIB, A. Rapid flow analysis with ICP-AES using a micro-injection technique. Analyst, v. 107, p. 1335, 1982. 38. ITO, T.; NAKAGAWA, E.; KAWAGUCHI, H.; MIZUIKE, A. Semiautomatic microlitre sample injection into an ICP for simultaneous multielement analysis. Mikrochimica Acta, v. 1, p. 423, 1982. 39. JACINTHO, A.O.; ZAGATTO, E.A.G.; BERGAMIN FILHO, H.; KRUG, F.J.; REIS B.F.; BRUNS, R.E.; KOWALSKI, B.R. Flow injection systems with ICP-AES. Part 1. Fundamental considerations. Analytica Chimica Acta, v. 130, p. 243, 1981. 40. GREENFIELD, S. ICP-AES with flow injection analysis FIA. Spectrochimica Acta, v. 38B, p. 93, 1983. 58 Espectrometria de Emissão Atômica com Plasma 41. REIS, B.F.; GINÉ, M.F.; KRUG, F.J.; BERGAMIN FILHO, H. Multipurpose FI-ICP-AES system. 1. Programmable dilutions and standard additions. Journal of Analytical Atomic Spectrometry, v. 7, n. 6, p. 865, 1992. 42. ZAGATTO, E.A.G.; JACINTHO, A.O.; KRUG, F.J.; REIS, B.F.; BRUNS, R.E.; ARAUJO, M.C.U. Flow injection systems with ICPAES. Part 2. The Generalized Standard Addition Method. Analytical Chimica Acta, v. 145, p. 169, 1983. 43. ISRAEL, Y.; BARNES, R.M. Standard addition method in FIA with ICP-AES. Analytical Chemistry, v. 56, p. 1188, 1984. 44. KUMAMARU, T.; NITTA, Y.; NAKATA, F.; MATSUO H. Determination of Cd by suction flow liquid-liquid extraction with ICP-AES. Analytica Chimica Acta, v. 174, p. 83, 1985. 45. MCLEOD, C.W. FI techniques in ICP spectrometry. Plenary lecture. Journal of Analytical Atomic Spectrometry, v. 2, p. 549, 1987. 46. HARTENSTEIN, S.D.; RUZICKA, J.; CHRISTIAN, G.D. Sensitivity enhancement for FIA-ICP-AES using an on-line preconcentrating ion-exchange column. Analytical Chemistry, v. 57, p. 21, 1985. 47. KUMAMARU, T.; MATSUO, H.; OKAMOTO, Y.; IKEDA, M. Sensitivity enhancement for ICP-AES of Cd by suction flow on-line exchange preconcentration. Analytica Chimica Acta, v. 181, p. 271, 1986. 48. COX, A.G.; COOK, I.G.; MCLEOD, C.W. Rapid sequential determination of Cr(III) -Cr(VI) by FIA-ICP-AES. Analyst, v. 110, p. 331, 1985. 59 Espectrometria de Emissão Atômica com Plasma 60 Espectrometria de Emissão Atômica com Plasma CAPÍTULO 4. ESPECTROS DE EMISSÃO E PARÂMETROS ENERGÉTICOS NO PLASMA. 4.1 Intensidade da emissão. O processamento da amostra líquida introduzida no plasma inclui várias étapas críticas, em termos de necessidade energética. A amostra líquida é transformada em aerossol em um nebulizador como visto no Capítulo 3. Na câmara de nebulização separam-se as gotículas maiores, as quais são drenadas e uma pequena fração (<5%) mais homogênea do aerossol é conduzida para o plasma. No transporte pela tocha, ocorre o processo de dessolvatação e a amostra, na forma de partículas sólidas, é arrastada por argônio para o plasma. No plasma, a energia recebida permite a dissociação das moléculas. Nas etapas seguintes ocorrem os processos de atomização e excitação dos átomos, com a consequënte emissão do espectro atômico. Na seqüencia, têm-se a ionização simples e a excitação dos íons, com a formação do espectro do íon. Considerando que a energia média do plasma é dada pelo potencial de ionização do Ar (15,76 eV), para elementos como Ba e Sr conseguem-se produzir íons com dupla carga. A transferência de energia do plasma para a amostra ocorre enquanto a amostra passa pelo canal central, o que faz com que a formação das espécies no plasma seja bem caracterizada. Em geral, a emissão dos átomos é mais intensa na região do plasma focalizada 10 mm acima da bobina de indução, enquanto que, a dos íons ocorre na região mais afastada, entre 15 e 20 mm. Na imagem da capa desta publicação, pode-se visualizar o efeito produzido pela introdução de Y no plasma. A cor vermelha corresponde à emissão do Y e a azul é produzida pela emissão do íon Y+. 61 Espectrometria de Emissão Atômica com Plasma As temperaturas conseguidas no plasma (entre 6000 e 10000 K) facilitam a dissociação das moléculas e radicais, diminuindo espectros de banda e reduzindo os efeitos de matriz. A intensidade da radiação emitida em um comprimento de onda, é proporcional aos átomos excitados no nivel de energia correspondente. A intensidade de uma raia espectral de um elemento pode ser estimada se a temperatura e a densidade eletrônica são conhecidas. Supondo que se focaliza um pequeno volume V, da amostra no canal central do plasma com Ni* átomos emitindo radiação, a energia emitida por unidade de tempo, ou potência P, pode ser medida em uma dada freqüência ν correspondente a uma certa transição i ⇒ j P = (hν)( 10 ) (Ni*) ( V ) (Aij) [watts] [4.1] onde: P potência em watts hν energia da transição i,j em ergs Ni* número de átomos excitados por cm3 Aij probabilidade da transição. A potência emitida pelo plasma de uma certa freqüência pode ser transformada em intensidade, usando-se a área do plasma A, o fator geométrico esferoidal (4π), e o fator de conversão de unidades erg/s = 10 -7watts, ficando: I = P / 4π A = (10E -7 / 4π )L hνNi* Aij 62 [4.2] Espectrometria de Emissão Atômica com Plasma Os parâmetros Aij e ν, são característicos do átomo, enquanto que Ni* depende da estrutura atômica, da concentração total de átomos do metal e da concentração das espécies no equilíbrio à temperatura do plasma. Para uma radiação emitida, caracterizada por um certo comprimento de onda λ = 1/ν, a intensidade da emissão I é proporcional a Ni. Isto permite construir uma curva de calibração medindo as intensidades para concentrações conhecidas do elemento M. A inclinação desta curva indica como Ni depende de N (nº total de átomos) e dos outros parâmetros da equação. A fração Ni/N geralmente depende das condições experimentais. Através dos componentes óticos, procura-se obter a máxima radiância de um certo ponto localizado no canal central, por onde passa a amostra. Entretanto a emissão dos elementos na região do plasma, dentro do ângulo sólido observado, contribuem para a radiação de fundo. A transmissão da radiação pode ser conseguida usando-se espelhos ou, diretamente com fibras óticas. Para se conseguir iluminação máxima na janela de entrada do espectrômetro, usa-se uma lente que forma uma imagem do ponto do plasma observado ou, um espelho côncavo, com foco na janela. A iluminação deve ser uniforme ao longo da mesma. No plasma, alguns fotons emitidos pelos átomos de interesse podem ser reabsorvidos por outros átomos do mesmo elemento, em processo de autoabsorção. Este processo provoca redução da intensidade da radiação emitida. Outros processos, que serão descritos mais adiante, provocam alargamento das raias espectrais emitidas. 63 Espectrometria de Emissão Atômica com Plasma 4.2 O espectro contínuo da radiação de fundo Além do espectro de linhas discretas, ocorre a emissão de um espectro contínuo (ou continuum). Este espectro é caracterizado por apresentar intensidade espectral descrita por uma função contínua do comprimento de onda I(λ). As espécies moleculares excitadas, apresentam espectro de banda devido aos estágios de energia envolvidos na rotação e vibração dos átomos da molécula. As amostras introduzidas na forma líquida, contribuem com espectros de banda de OH, O2H, etc. Também, ocorre radiação de fundo devida ao plasma, sendo esta, característica para cada região espectral. A radiação de fundo, depende do gás formador do plasma, das espécies formadas e do processo cinético entre as espécies do plasma. As perdas de energia ocorrem, em grande parte, devidas ao desvio ou freagem dos elétrons livres acelerados pelo campo magnético. No plasma formado por indução electromagnética ICP, há uma região ativa de descarga, altamente ionizante, localizada na região anular dentro da bobina de indução. Nesta região, o processo de ionização é mais intenso que o processo de recombinação e os elétrons livres são acelerados, mudando de direção devido ao efeito do campo magnético oscilante. Esta desaceleração e mudança de direção dos elétrons (efeito brehmstralung) produz radiação contínua (luz síncroton). Esta energia fica distribuída em um espectro contínuo, com intensidade dada pela relação: I(ν) = K ne/Te [4.3] onde: K constante, ne densidade eletrônica e Te temperatura. 64 Espectrometria de Emissão Atômica com Plasma Sobre a bobina de indução, o aquecimento devido a efeito Joule diminui, e favorece-se o processo de recombinação. Nesta zona, o processo de recombinação supera o de ionização e a densidade de elétrons diminui. A energia liberada no processo de recombinação é a somatória da energia discreta de ionização e dissociação das partículas produzidas e a energia translacional do movimento relativo, a qual é distribuída continuamente. No caso do plasma formado em Argônio temos: Ar+ + e ⇒ Ar + hν [4.4] Para um plasma formado em Nitrogênio, Greenfield et al. (1980), observaram diminuição da intensidade do continuum em um fator de 106, quando a temperatura disminuiu de 12000 a 6000 0 K. Esta forte dependência da temperatura é, o principal motivo, para não se usar a região mais quente do plasma como fonte espectroscópica. O espectro produzido pelo plasma de Ar à pressão atmosférica, consiste na superposição, de espectro de átomos de Ar sobre a radiação de fundo, ou continuum. Para o espectro de emissão ou continuum do plasma têm-se, contribuição da radição produzida pela energia de aquecimento, excedente de energia na colisões e freagens das partículas. O espectro de fundo é função do comprimento de onda e aumenta consideravelmente entre 190 e 270 nm; a corrente produzida pelos fotons varia de 1×10-9 a 8×10-8 A. Abaixo de 200 nm ocorrem quatro quedas abruptas devido às bandas de absorção molecular de oxigênio em 199,75; 197,14; 194,67 e 192,35 nm. Nesta região, aparecem 2 raias de emissão do átomo de C proveniente de impurezas de CO2 no Ar. Porém, a emissão de bandas 65 Espectrometria de Emissão Atômica com Plasma moleculares, principalmente devidas a NO+ pode ser diminuída, aumentando-se a vazão do gás que forma o plasma. Em geral, a diminuição da vazão do gás do plasma leva a maior interferência da atmosfera circundante (Fig 4.2). Na região espectral entre 270 e 350 nm, a radiação de fundo aumenta de 8×10-8 para 2×10-7 A. Bandas moleculares de OH e raias espectrais do átomo de Ar caracterizam o espectro de fundo nesta região, como observase na Fig.4.2. O espectro entre 350 e 430 nm, apresenta fotocorrente de fundo (≈2×10-7A) constante e numerosas raias espectrais do Ar. Acima de 430 nm, o espectro de fundo decresce, chegando à fotocorrente de 2×10-9 A em 590 nm. Nesta região espectral aparecem diversas raias do espectro do Ar e destaca-se a raia Hβ do espectro do H em 486,133 nm. 66 Espectrometria de Emissão Atômica com Plasma Figura 4.2 Espectros de fundo do plasma de Ar formado usando 10 ou 20 L/min. 67 Espectrometria de Emissão Atômica com Plasma Figura 4.2. Espectros de fundo do plasma de Ar formado usando 10 ou 20 L/min. 4.3 Parâmetros energéticos no ICP. A fonte de plasma, formada em Argônio, apresenta uma ampla variedade de espécies distribuídas em diferentes regiões. O plasma após formado é continuamente alimentado pelo gás Argônio e sustentado pelo campo magnético induzido pela fonte de Radiofreqüência. O plasma emite radiação eletromagnética numa geometria esférica (4π), entretanto a radiação lateral e radial não é uniforme, demonstrando que, no seu seio existe variação espacial de temperaturas e espécies. Neste capítulo serão analisados aspectos fundamentais do plasma. 4.3.1 Equilíbrio Termodinâmico 68 Espectrometria de Emissão Atômica com Plasma O Equilíbrio Termodinâmico Completo (CTE Complete Thermodynamic Equilibrium) entre a materia e a energia atinge-se em um corpo negro, quando a radiação emitida fica igual a radiação absorvida e não há transporte radiativo nem, gradiente de temperaturas. O comportamento termodinâmico deste sistema fica descrito pelas seguintes características: 1. Uma única Temperatura descreve a distribuição da energia. 2. A lei de distribuição da radiação de Planck descreve os campos de radiação do corpo negro. 3. A energia cinética de todas as partículas segue a lei de distribuição de Maxwell. Da termodinâmica clássica, uma Temperatura pode ser relacionada com a Energia Cinética das partículas. E = 3/2 k Tcin [4.5] onde : k cte de Boltzmann A distribuição de velocidade das partículas é dada pela relação de Maxwell: f(v) = 4 π v2 (m/ 2π k Tcin)3/2 exp (-mv2/2kTcin) [4.6] 4. O grau de liberdade interno das partículas para rotar, vibrar, dissociar, excitar e ionizar segue a distribuição de Saha-Boltzmann. 5. Variavéis macroscópicas como condutividade térmica e elétrica, viscosidade, entalpia e energia interna são especificadas pela temperatura T. 69 Espectrometria de Emissão Atômica com Plasma 6. Os processos radiativos e colisionais tem reversibilidade e ocorrem com a mesma energia cinética. 7. A distribuição de Guldberg-Waage relaciona os produtos da dissociação das moléculas e a temperatura envolvida neste processo. O Equilíbrio Termodinâmico Local (LTE Local Thermodynamic Equilibrium) pode ocorrer numa região da fonte de energia onde, na ausência de campos radiativos se cumpra: 1. Os processos de excitação e de-excitação devem estar em equilíbrio. Pode ser usada a equação de Boltzmann para determinar a razão da população que se encontra em estados excitados. Consideremos os estados de energia Ep e Eq, a população em cada estado é dada pela equação : np = nq [gp/Q(T) ] exp (-Ep/k Texc) [4.7] onde: nq é a concentração total de átomos neutros ou íons gp é o peso estatístico associado ao nivel de Energia p Q(T) função de partição de átomos ou íons Ep é a energia de excitação do nível p k constante de Boltzmann Texc é a temperatura que define a população no estado excitado 2. Os átomos neutros e ionizados devem estar em equilíbrio colisional, ou seja equilíbrio entre os processos de ionização e recombinação A razão entre as concentrações de átomos neutros e íons é dada pela relação de Saha-Eggert: S = np+ ne/nq = 2gp+/gq [ 2πmek Tion/ h2 ]3/2 exp {- (Eion - Ep)/ k Tion } 70 Espectrometria de Emissão Atômica com Plasma [4.8] onde: np+ concentração de íons ne concentração de elétrons nq concentração de átomos neutros. Para o local onde existe LTE, todas as temperaturas devem ser iguais (Texcitação = Tionização = Tdissociação) e a energia cinética das partículas seguem a distribuição de Maxwell, com uma única T. 4.3.2 Condições de Equilíbrio aplicadas à fonte de Plasma. Os plasmas usados em analítica (DCP, ICP, MIP, CCP) são fontes não homogêneas onde existem gradientes de Temperatura, densidade de elétrons e concentração das espécies. O Equilíbrio Termodinâmico Local e Parcial (p-LTE) foi definido para a fonte de plasma, uma vez que demonstraram-se desvios das condições de LTE. Os plasmas são fontes que irradiam luz, pelo que, não podem ser comparados com corpos negros, violando a lei de Planck. No plasma existem campos radiativos, e não ocorre equilíbrio na reversibilidade dos processos de excitação e deexcitação. Linhas de emissão prominentes de espectros de átomos e íons são originadas por transições de energia em altos níveis, de modo que, a separação de energia entre os estados não pode ser comparada com a energia cinética. Duas temperaturas podem ser descritas para aplicação da distribuição da energia de Maxwell, uma para os elétrons Te e, outra para as partículas mais pesadas (átomos e íons) a menor temperatura Tg. Nestes sistemas existe a possibilidade de usar uma aproximação da estatística de Boltzmann para descrever a razão entre populações geradas por processos 71 Espectrometria de Emissão Atômica com Plasma colisionais, mesmo que não existe reversibilidade entre os processos energéticos, nem igualdade entre as temperaturas. Os desvios da distribuição de Boltzmann devidas as condições p-LTE mostram-se na Fig. 4.1. Figura 4.3 Desvios do LTE em atomos e íons. 4.4 Técnicas de Diagnóstico usadas para medir os parâmetros do plasma. A medição de alguns dos parâmetros do plasma, permitem estimar os mecanismos de transferência de energia, entre o gás do plasma e os componentes das amostras introduzidas no canal central. As técnicas de diagnóstico usam medições espectrais, para estimar a Temperatura ou a densidade de elétrons (Te e ne). Os métodos usados para efetuar diagnóstico devem ser, independentes da suposição de condições de equilíbrio e, no possível, das funções de distribuição. Em alguns usamse cálculos incluindo constantes de transição, o que acarreta imprecisões. 72 Espectrometria de Emissão Atômica com Plasma 4.4.1 Temperatura e densidade eletrônica no plasma As principais espécies no plasma em Argônio, são : elétrons e, átomos neutros Ar0, X0, íons Ar+, X+ , íons moléculares N2+, NO+, etc, moléculas MX, OH, NO, ArO, ArN, etc. Estas espécies encontram-se em diferentes estados energéticos, nas diferentes regiões do plasma. O efeito Stark O perfil das linhas espectrais no plasma sofre alargamento provocado pelo campo elétrico produzido pelas partículas carregadas movimentando-se aoredor do átomo emitindo. Para estimar a densidade de elétrons no plasma emprega-se o alargamento provocado pelo efeito Stark sobre a emissão da linha H(β) (486,1 nm). A largura média desta linha ∆λH é proporcional a ne2/3, então a densidade de elétrons pode ser calculada por: ne = CH(ne, T) ∆λH3/2 [4.9] onde: CH é uma constante que depende pouco de ne e T. Usa-se a linha H(β) porque têm-se valores confiáveis da constante CH, esta linha não sofre interferências espectrais devidas aos componentes do plasma e a linha tem boa sensibilidade e perfil largo. Em geral as medidas apresentam precisão < 5%. Este método independe de ter condições de LTE no plasma. No caso de outros átomos a perturbação pelo efeito Stark é quadrática, a energia de interação é proporcional ao quadrado do campo elétrico. Nestes casos o alargamento é provocado pelo impacto de elétrons 73 Espectrometria de Emissão Atômica com Plasma sobre o átomo emitindo. Então o alargamento é proporcional à densidade de elétrons. Linhas atômicas do Ar originadas com os maiores niveis energéticos são usadas comumente para efetuar estas medidas. O motivo é que para esas linhas o alargamento Stark é relativamente maior do que o Doppler. Contudo a incerteza dos dados das constantes é alta levando a um erro de 20 a 30% na estimativa da densidade de elétrons. 4.4.2 Mapeamento do plasma. Inversão de Abel A distribuição espacial da Temperatura e da densidade de elétrons, na direção vertical e radial do plasma, pode ser determinada usando informações espectrais e o método de Inversão de Abel. A transformação das intensidades espectroscópicas medidas no perfil lateral, em dados do perfil radial foi proposto usando a transformação de coordenadas da equação de Abel. O procedimento consiste em efetuar medidas ao redor do plasma, em infinitas camadas em diferentes alturas (seguindo uma helicoide) até mapear todo o perfil lateral. A intensidade lateral é dada pela integração da contribuição de cada seção radial: R0 I(x) = 2 ∫x i(r)/ (x2 - r2)1/2 dr [4.10] onde : R0 raio da fonte, i(r) intensidade radial no raio r Aplicando a mudança de coordenadas, obtem-se a intensidade radial: R0 i(r) = - 1/π ∫x [(dI (x)/dx) / (x2 - r2)1/2] dx 74 [4.11] Espectrometria de Emissão Atômica com Plasma Vários procedimentos para obter a intensidade lateral do plasma, que se apresenta assimétrica, tem usado uma média entre valores obtidos de diferentes lados do plasma. Com pequenas modificações as equações descritas podem ser aplicadas para casos assimétricos. Yang e Barnes propuseram a técnica de inversão de Abel, para calcular a largura das linhas espectrais baseando-se nos perfis lateral e radial das linhas observados em uma fonte cilíndrica. Na Fig. 4.4 mostram-se as isotermas na região do plasma. No centro do plasma existe uma discontinuidade. Pode-se observar que na região anular foram calculadas temperaturas de 8000 0K abaixando para 4000 0K nas laterais. Nota-se pelas isotermas a assimetria na distribuição da temperatura e densidade de elétrons. A densidade de elétrons atinge 1015 e/cc na região interna. As isotermas mostradas na Fig.4.4 correspondem a um plasma formado em argônio,com introdução de argônio no lugar da amostra, e a potência de RF de 1,75 kW. As isotermas modificam-se com a introdução de aerosol úmido no ICP. A distribuição das isotermas depende muito da potência da RF e da composição gasosa em que é produzido o plasma. Choot e Horlick desenvolveram uma série de pesquisas mostrando a distribuição da densidade de elétrons e temperatura em plasmas formados com N2 -Ar, O2-Ar e Ar-He. 75 Espectrometria de Emissão Atômica com Plasma Figura 4.4 Perfis de Temperatura e densidade eletrônica obtidos pela inversão de Abel. 4.4.3 Medição da Temperatura de Excitação Método das intensidades absolutas Supondo que a fonte é oticamente estreita, a emissão observada Ip,q correspondente à transição de um nivel de energia maior p para um menor q, dada pela relação: Ip.q = (l/4π)n(p) Apq hc / λpq 76 [4.12] Espectrometria de Emissão Atômica com Plasma para conhecer a concentração da espécie emitindo tem que aplicar a equação de Boltzmann. Para um sistema em LTE a temperatura T a densidade de átomos ou íons no nivel p segue a distribuição : n(p) = n [gp/ Z(T)] exp {- Ep/kT) Ip,q = (l/4π) n [gp/Z(T)] Apq hc / λpq exp {-Ep/kT} [4.13] [4.14] onde: l passo ótico da fonte Apq probabilidade de transição para emissão expontânea n concentração total do átomo ou íon gp peso estatístico do nivel p Z(T) função de partição entre átomos e íons Ep energia de excitação do nivel p k constante de Boltzmann T temperatura de excitação h constante de Planck c velocidade da luz λpq comprimento de onda da radiação emitida. Este método pode ser aplicado ao Argônio, uma vez que a probabilidade de transição do Argônio é conhecida e a concentração podeser estimada pelas leis dos gases. Método das intensidades relativas de duas linhas 77 Espectrometria de Emissão Atômica com Plasma Este método tem aplicação mais ampla. Aplicando logarítmo à equação anterior temos: ln { Ipqλpq/gp Ap,q} = -Ep/kT + ln [ n l hc/4πZ(T)] [4.15] Construindo o gráfico de: ln (Ipqλpq/gp Ap,q) versus Ep a inclinação da reta -1/kT permitirá calcular a Temperatura. Para aplicar este método fazse necessário conhecer as probabilidades de transição, as linhas devem estar próximas, para manter a calibração do detetor, e as energias de excitação devem permitir a determinação da T de excitação com precisão. Mermet em 1991, propôs o Mg como elemento teste para efetuar diagnóstico usando a razão das linhas de Mg(II) 280,270nm e Mg(I) 285,213 nm. Os Métodos descritos requerem das probabilidades das transições absolutas ou relativas as que são afetadas por problemas de exatidão. Método de Absorção A absorvância da radiação emitida de uma fonte estreita é proporcional à função de Voigt e inversamente proporcional ao alargamento provocado pelo efeito Doppler. A razão entre a radiação emitida e absorvida permite determinar a Texcitação: I/A = ∆λD(π/ln2)1/2hc2 / λ5 V(a,0) exp (Ep/kT) onde: V é a função de Voigt, com parâmetro a ∆λD o alargamento Doppler. 78 [4.16] Espectrometria de Emissão Atômica com Plasma Neste método não são usadas as constantes de transição mais devem conhecer-se os alargamento das linhas. 4.4.4 Temperatura de Ionização Supondo que temos uma região do plasma onde temos equilíbrio de colisões entre átomos e íons então a razão destas espécies é dada pela relação de Saha: [n+ ne/ n ] = { 2πmekT/h2} {2Zi/Za } exp (-Ei/kT) [4.17] onde: n é a concentração de átomos n+ de íons ne de elétrons me massa do elétron, Zi e Za são as funções de partição Ei potencial de ionização. A Tion fica determinada pela razão entre as intensidades das linhas do átomo e íon e densidade de elétrons. 4.4.5 Medição da Temperatura dos elétrons 79 Espectrometria de Emissão Atômica com Plasma No plasma ocorre recombinação radiativa processo no qual elétrons livres passam para elétrons de valência e ocorre emissão de radiação contínua.(Eq. 4.4). O coeficiente de recombinação radiativa é proporcional à densidade de elétrons ne e densidade de íons nAr+ , mais é inversamente proporcional a √Te ou Temperatura cinética dos elétrons e ao λ emitido. Supondo que o plasma como um todo é eletricamente neutro e que, a radiação do contínuo deve-se à recombinação radiativa, então a intensidade da emissão observada numa janela de largura espectral ∆λ será: I cont =(1/4π) g(λ, T) ne nAr+ ∆λ = (1/4π) g(λ, T) ne2 ∆λ [4.18] de acordo com esta equação a Te, pode ser derivada da intensidade absoluta de emissão do contínuo. A Te pode ser estimada da inclinação da função g(λ, T) gráficada com coordenadas ln(Icont) versus λ, mesmo sem conhecer ne. dln(Icont)/dλ = ϑ ln [g(λ, T)] / ϑλ [4.19] A Te pode ser derivada da equação de Saha se, Te = Tion . Para isto mede-se uma linha atômica do Argônio e do contínuo adjacente. Este procedimento é mais preciso que os outros, mais o uso da equação de Saha não tem validade restrita em ICP. Das equações 3, 6 e 7 temos: IBG/Ilinha=[g(λ,T)λ∆λ/Apqhc][(2πmekT)3/2/h3(2gi/gp)]exp(-(Ei-Ep)/kT) [ 4.20] 80 Espectrometria de Emissão Atômica com Plasma A sonda de Langmuir foi usada no plasma de Ar e inclusive na região atrás dos cones de amostragem e skimmer no ICP-MS. Consiste em uma sonda de tungstênio que se insere no plasma, de forma a registrar a curva corrente-voltagem I-V. Para prevenir contra a erosão, a sonda é encapsulada em um tubo de quartzo e cerámica de forma que somente a ponta fica exposta ao plasma. Além da Te pode também ser determinada a densidade eletrônica ne. A determinação da Te pode ser efetuada pelo espalhamento Thompson. Os elétrons livres que estão no plasma espalham a radiação eletromagnética intensa produzida por um laser pulsante. Como os elétrons livres no plasma se movimentam em diferentes direções, com velocidades entre 100 e 1000 km/s, o espalhamento da radiação do laser e deslocada por efeito Doppler, em até 5 nm em plasma em Argônio observando a 10 mm sobre la bobina de indução. Supondo distribuição de velocidades, conforme Maxwell, a radiação espalhada produz um sinal Gaussiano. A largura do sinal Gaussiano permite determinar Te, enquanto que, a integração do sinal sob o espectro deslocado Doppler permite calcular o número de elétrons no volume. Os lasers permitem mapear, ponto a ponto, diversas regiões do plasma. Mesmo que o espalhamento da radiação possa ser medido com um espectrômetro comúm, a montagem do experimento é complicada. Isto deve-se a baixa eficiência do uso do laser pulsado, apenas um total de 105 fotons espalhados são gerados para cada espectro, isto principalmente devido a pequena massa do elétron e a alta radiação de fundo. 81 Espectrometria de Emissão Atômica com Plasma 4.4.6 Espalhamento da radiação para medir a Temperatura Cinética do gás. Para determinação da Tgás mede-se o espalhamento provocado pela incidência de um laser nos átomos de Argônio, ou espalhamento Rayleigh. Os átomos de Ar constituem alvos maiores que os elétrons, além disto a concentração deles no plasma e 103 vezes maior que a de elétrons, isto faz com que este procedimento seja mais facilmente aplicável. Com o registro da radiação espalhada e a lei dos gases n/V = P/RTgás pode-se determinar a Tgas, uma vez que n é o número de átomos de Ar no volume medido V, a pressão atmosférica. Quando aumenta a Tgás a densidade n/V decrece reduzindo a intensidade da radiação espalhada. Supõe-se que os átomos de Ar seguem a distribuição de velocidades de Maxwell. A figura equematiza o uso do laser como técnica de diagnóstico. espalhamento Rayleigh Laser espalhamento Thompson e Laser ve Ar Figura 4.4 Esquema dos processos de Thompson para medir Te e de Rayleigh para medir Tg. A elipse representa o plasma. Um resumo das técnicas espectrais usadas para diagnóstico de Te e ne no plasma e os requerimentos necessários, assim como as constantes usadas e os comentários são apresentados na Tabela 4.1 82 Espectrometria de Emissão Atômica com Plasma Tabela 4.1 Técnicas usadas no diagnóstico espectroscópico para medir alguns parâmetros do plasma. Não foram consideradas as que requerem CTE. Técnica Parâmetro Requer medido p-LTE Inclinação da reta no Texc grafico de Boltzmann Razão de intensidade Texc p-LTE de duas linhas da mesma espécie Dados extra Comentários Aki(rel) 3. Razão entre a linha Te espectral e o contínuo p-LTE Aki(rel) ξ(λ,T) 4. Largura Doppler Tgas átomos distribuição Maxwell 5. Largura Stark ne 6. Intensidade contínuo elétrons distribuição Maxwell p-LTE Probabilidade de transição relativas para muitas linhas Aki(rel) exatos ampla diferencia energética entre os níveis. aplicação limitada a H, He e Ar dos que tem-se ξ(λ,T) exatos. Resolução instrumental alta, outros alargamentos devem ser mínimos. Estimativa aprox. da Temperatura 7. 8. Interferometria ne, ngas Espalhamento do Te, ne, ngas laser (Thompson, Raleigh) 1. 2. do ne Distribuição de Maxwell 4.5 Modelos Dinâmicos do Plasma. 83 Aki(rel) ∆λs1/2 (Ne,,T) ξ(λ,T) Medições Temperatura aprox. de Espectrometria de Emissão Atômica com Plasma Inicialmente, para facilitar a explicação descreveremos um modelo da descarga de plasma formada somente em meio gasoso. O plasma terá um formato definido dependendo de : a)Gás usado para formação. Na tocha pode ser usado um mesmo gás nas três entradas (Ar, He, N2, outro). Também deforma-se o formato do plasma se em algumas das entradas são introduzidas mistura de gases, por exemplo Ar+N2; Ar+H2; etc. b) Distribuição das linhas do campo. Neste aspecto a energia fornecida na forma de radiofreqüência, o número de espiras na bobina de indução e a colocação da tocha no centro da bobina são os fatores mais importantes. Em geral os equipamentos usam fontes de radiofreqüência (27 MHz) com campo magnético distribuído de forma bastante homogênea dentro da espiral, produzindo um plasma toroidal, como descrito anteriormente. Na medida que usam-se fontes com maior radiofreqüência, as linhas do campo se retraem aoredor da espiral, este efeito foi denominado de “skin depth”, produzindo um plasma na forma de rosca com um buraco maior no centro. O número de espirais na bobina de indução afeta a distribuição do campo magnético e por consequência a forma do plasma. A colocação da tocha no interior da bobina de forma equidistante pode provocar assimetria do plasma. Em geral os plasmas são assimétricos, isto pode ser observado nas curvas de distribuição radial de temperatura e densidade eletrônica. Ao introduzir o aerossol da amostra no canal central, novas variáveis são introduzidas no modelo. O formato do plasma pode ser afetado pela dinâmica da transporte do aerossol da amostra, composição do gás de arraste e tipo de solvente. 84 Espectrometria de Emissão Atômica com Plasma Para simular uma descarga de plasma o modelo deve considerar: a) efeito 2-D do campo magnético para balanceamento de energia e momento b) difussão ambipolar das partículas carregadas, ou seja os pares elétrons e íons. Os elétrons tem massa muito menor que os íons pelo que adquerem maior velocidade o que facilita a transferência de energia através de colisões. c) Processos de excitação e ionização que não consideram LTE, tais como ionização de Penning e transferência de carga entre Ar e átomos da amostra d) Processos dinâmicos de transporte, aquecimento, decomposição e atomização da amostra. e) Efeito da carga de solvente no aerossol aquoso da amostra pelo canal central f) Interação com moléculas gasosas do ambiente N2, O2 e CO2. 4.6 Mecanismos de excitação 4.6.1 Reação de Ionização de Penning A reação entre Argônio no estado metaestável com um átomo do analito na qual ocorre transferência de energia (11,55 e 11,76 eV) suficiente para ionizar o analito. Arm + X → Ar + X+ + e- [4.21] A reação ocorre no sentido indicado uma vez que existe uma população muito alta de Ar no estado metaestável. No nivel metaestável o 85 Espectrometria de Emissão Atômica com Plasma tempo de meia vida é muito mais longo do que nos outros estados de energia. A excitação posterior do íon requer energia maior que a disponível pelo Arm pelo que ocorre após colisão com eletrons: Arm + X → Ar + X+* + e- [4.22] X+ + e- → X+* + e- [4.23] A grande população de átomos excitados pode ser consequência da reação com Arm e a recombinação da sobrepopulação de íons com elétrons conformando a recombinação de 3-corpos : Arm + X → Ar + X* + e- [4.24] X+ + 2e- → X* + e- [4.25] Segundo Boumans e de Boer 1977 (spcha 32b 365-395) a sobrepopulação de Arm causaria a ionização de Penning mais também a produção de Ar+ , dando uma explicação para a alta densidade de eletrons livres no plasma. Arm + e- → Ar+ + 2 e- [4.26] 4.6.2 Reação de transferência de carga. Uma reação possível no plasma consiste na transferência de carga do íon Argônio com energia 15,76 eV para excitar o átomo ou o íon do 86 Espectrometria de Emissão Atômica com Plasma analito desde que a a soma da energia ionização e excitação seja menor que a indicada. Ar+ + X → Ar + X+ [4.27] Ar+ + X → Ar + X+* [4.28] Esta reação ocorre principalmente devida à grande população de Ar+, que sendo maior que a população de Arm deve favorecer este mecanismo. As reações de ionização de Penning e de troca de carga descritas são hipotéticas e competem com as reações de ionização por impacto eletrônico. 4.6.3 Modelo de Colisional-radiativo Hasegawa e Haraguchi 1985 propuseram um modelo que descreve as propriedades básicas do ICP resumido a seis processos: 1) impacto eletrônico para excitação e de-excitação Ar + e- → Ar* + e- [4.29] 2) Impacto eletrônico para ionização e recombinação de 3 corpos (eletron-átomo-íon) Ar + e- → Ar+ + 2 e- [4.30] 87 Espectrometria de Emissão Atômica com Plasma 3) Emissão espontânea e absorção induzida Ar* → Ar + hν [4.31] 4) Recombinação Radiativa Ar+ + e- → Ar + hν [4.32] 5) Difusão Ambipolar Γ = D ∇2 ne [4.33] 6) Convecção Γ = -ν ∇ne [4.34] em 5) e 6) Γ é o número de pares e--Ar+ fluindo por segundo através de um volume em (x,y,z) com coeficiente de difusão ambipolar D e ν é a velocidade do gás. O número de colisões depende da densidade eletrônica ne e da Te, que são propriedades do plasma. O processo radiativo depende da probabilidade de transições o que é íntrinseco do átomo ou íon. REFERÊNCIAS BIBLIOGRÁFICAS 1. BATA, A.; MERMET, J.M. Calculation of some line profiles in ICPAES assuming a van der Waals potential. Spectrochimica Acta, v. 36B, p. 993-10003, 1981. 88 Espectrometria de Emissão Atômica com Plasma 2. BOUMANS, P.W.J.M.; VRAKKING, J.J.A. The widths and shape of about 350 prominent lines of 65 elements emitted by an inductively coupled plasma. Spectrochimica Acta, v. 41B, p. 1235-1275, 1986. 3. KATO, K.; FUKUSHIMA, H.; NAKAJIMA, T. Observation of spectral lines emitted by an inductively coupled plasma. I. On the wavelength shift of spectral lines. Spectrochimica Acta, v. 49B, p. 979-991, 1984. 4. WING, R.K.; FASSEL, V.A.; PETERSON, V.J.; FLOYD, M.A. Inductively coupled plasma atomic emission spectrometry an atlas of spectral information. Amsterdam: Elsevier, 1985. 5. CAUGHLIN, B.L.; BLADES, M.W. An evaluation of ion-atom intensity ratios and local thermodynamic equilibrium in an argon inductively coupled plasma. Spectrochimica Acta, v. 39B, p. 15831602, 1984. 6. GREENFIELD, S.; BURNS, D.T. Comparison of argon cooled and nitrogen cooled plasma torches under optimized conditions based on the concept of intrinsic merit. Analytica Chimica Acta, v. 113, n. 2, p. 205-220, 1980. 7. KALNICKY, D.J.; KNISELEY, R.N.; FASSEL, V.A. Inductively coupled plasma optical emission spectroscopy, excitation temperature experienced by analyte species. Spectrochimica Acta, v. 30B, p. 511525, 1975. 8. MERMET, J.M. Coparaison des températures e des densités électroniques measures sur le gaz plasmagéne et sur des éléments excites dans un plasma. Spectrochimica Acta, v. 30B, p. 383-396, 1975. 9. FASSEL, V.A.; KNISELEY, R.N. Excitation temperatures and electron number densities experienced by analyte species in inductively 89 Espectrometria de Emissão Atômica com Plasma coupled plasma with and without presence of an easily ionized elements. Applied Spectroscopy, v. 31, p. 137-149, 1977. 10. VISSER, K.; HAMM, F.; ZEEMAN, P.B. Temperature determination in an inductively coupled RF plasma. Applied Spectroscopy, v. 30, p. 34-38, 1976. 11. VAN DE MULLEN, J.A.M.; NAGAKI, S.; LAMMEREN, A.C.A.P.; SCHRAM, D.; VAN DER SIJDE, B. Non equilibrium characterization and spectros- copic analysis of an inductively coupled argon plasma. Spectrochimica Acta, v. 43B, p. 317-324, 1988. 12. MONTASER, A.; FASSEL, V.A.; LARSEN, G. Electron number densities in analytical inductively coupled plasmas as determined via series limit line merging. Applied Spectroscopy, v. 35, p. 385-389, 1981. 13. CHOOT, E.H.; HORLICK, G. Vertical spatial emission profiles in ArN2 mixed gas ICP. Spectrochimica Acta, v. 41, n. 9, p. 889-906, 1986. 14. CHOOT, E.H.; HORLICK, G. Spectral characteristics of Ar-N2, ArO2, Ar-air and Ar-He mixed gas ICP. Spectrochimica Acta, v. 41B, n. 9, p. 907-924, 1986. 15. CHOOT, E.H.; HORLICK, G. Spatially resolvedelectron density measurements in Ar, N2-Ar and O2-Ar ICPs using a photodiode array detection system. Spectrochimica Acta, v. 41B, n. 9, p. 935-945, 1986. 16. BASTIANS, G.J.; MANGOLD, R.A. The calculation of electron densities and temperature in Ar spectroscopy plasmas from continuum and line spectra, Spectrochim. Acta, v.40B,p.885-892., 1985. 90 Espectrometria de Emissão Atômica com Plasma 17. GENNARI, R. Estudo dos mecanismos de emissão da fonte de plasma de argônio induzido. São Paulo, 1996. 82p. Tese (Doutorado) Instituto de Química, Universidade de São Paulo. 18. YANG, P.; BARNES, R.M. Modification of Abel inversion technique for line width calculation. Spectrochimica Acta, v. 44B, p. 561-570, 1989. 19. CHOI, B.S.; KIM, H. On Abel inversions of emission data from an inductively coupled plasma. Applied Spectroscopy, v. 36, p. 71-74, 1982. 20. PEI-QI, L.; PEI-ZHNG, G.; TIE-ZHENG, L.;. HOUK, R.S. Langmuir probe measurements of electron temperature in an inductively coupled plasma. Spectrochimica Acta, v. 43B, p. 273-275, 1988. 21. HUANG, M.; HIEFTJE, G.M. Thompson scattering from an inductively coupled plasma. Spectrochimica Acta, v. 40B, p. 13871400, 1985. 22. POUSSEL E.; MERMET, J.M.; SAMUEL, O. Simple experiments for the control, evaluation and diagnosis of Inductively coupled plasma sequential systems. Spectrochimica Acta, v. 48B, p. 743-755, 1993. 23. MERMET, J.M. Use of magnesium as a test element for inductively coupled plasma atomic emission spectrometry diagnostics. Analytica Chimica Acta, v. 250, p. 85-94, 1991. 24. BURTON, L.L.; BLADES, M.W. A simple method for calculating deviations from local thermodynamic equilibrium in inductively coupled argon plasma. Spectrochimica Acta, v. 45B, p. 139-144, 1990. 91 Espectrometria de Emissão Atômica com Plasma 92 Espectrometria de Emissão Atômica com Plasma CAPÍTULO 5. A DETECÇÃO. 5.1 Instrumentação ótica Um sistema espectrométrico eficiente para ser acoplado à fonte de plasma deverá permitir a medição de um ampla região espectral (160 a 800 nm) com um máximo de sensibilidade e resolução. Um sistema ótico para atender estes requisitos deverá ter uma fenda de entrada que selecione uma banda fina de radiação ótica, com as mesmas dimensões da fenda, e que esteja alinhada para focalizar a região do plasma onde os elementos de interesse apresentem a máxima razão entre intensidade da emissão e intensidade do fundo. Deve constar ainda de um colimador para produzir um feixe paralelo que atinge o elemento dispersivo, geralmente grade de difração e, em certas montagens, também de prismas. Usam-se elementos focalizadores e uma ou mais fendas de saída para separar as raias espectrais. 5.1.1 Princípios da Difração a) Propriedade ondulatória da luz Uma onda senoidal pode ser gerada pela rotação de um vetor de comprimento A, no sentido anti-horário aoredor de um círculo, a uma freqüência angular ω. A freqüência angular tem unidades de radianes/s ω=2π ν onde ν é a freqüência em Hertz. O ângulo de fase Φ indica a posição do vetor no início t=0. O comprimento do vetor é a amplitude da onda descrita no movimento dada pela equação: 93 Espectrometria de Emissão Atômica com Plasma y = A sen (ωt - Φ) [5.1] Figura 5.1 Geração de uma onda pela rotação de um vétor A0 ao redor de um círculo à freqüência angular ω. A distância linear entre duas ondas defasadas é dada por: x = (Φ/2π)λ [5.2] de onde Φ = (2π/λ) x λ comprimento de onda Para ondas defasadas com o mesmo λ tem-se: Φ = kx [5.3] onde k é denominado Número de propagação Para duas ondas com o mesmo λ, a diferença de fase δ entre elas é: δ = Φ 2 - Φ1 = (2π/λ) (x2 - x1) onde: 94 [5.4] Espectrometria de Emissão Atômica com Plasma (x2 - x1) é a diferença de percurso das duas ondas. Define-se como percurso ótico o percurso geométrico, vezes o índice de refração do meio. Ou seja, refere-se à distância que a onda de luz atravessaria em um tempo definido no vácuo. De acordo com a física clássica, a energia de uma onda é proporcional ao quadrado de sua amplitude. Se uma partícula é deslocada a partir do repouso por uma onda, a energia total que adquire em cada ponto corresponde à soma das energias cinética e potencial. Quando passa pelos pontos de máxima energia potencial, a velocidade instantânea é zero. A velocidade da partícula pode ser determinada pela derivada do deslocamento vertical: dy/dt = ωA cos(ωt-Φ) [5.5] O cosseno varia de 0 a 1, então a máxima velocidade ocorre quando : cos (ωt-Φ) = 1, ou seja, a máxima energia cinética ocorre quando a energia potencial é zero. A energia total da partícula, então, é dada por: ½ m vmax2 = ½ mω2A2 [5.6] demonstrando que a mesma é proporcional ao quadrado da amplitude. A energia que flui por segundo e por unidade de área perpendicular à direção do movimento, é definida por radiância E = dF/dA, onde dF é o fluxo radiante, E se mede como watts/cm2. A radiância E varia inversamente ao quadrado da distância; para uma esfera de amplitude A=1, a uma distância x, a equação 5.1 fica : 95 Espectrometria de Emissão Atômica com Plasma y = (A/x) sen (ωt-kx) de onde v = ω2 A2/x2 [5.7] b) Difração da radiação Os raios de luz se propagam em linha reta. Isto, em nível macroscópico é verdadeiro e constitui a base da ótica geométrica. Entretanto, quando ondas de luz passam por uma pequena ranhura ocorre um espalhamento. Este fenômeno se chama difração, e pode ser explicado pelo princípio de Huygen que estabelece que cada ponto de uma frente de onda, passando por uma pequena abertura, constitui uma fonte pontual de onda esférica. A difração devida a uma fonte colocada longe da abertura e observada numa tela também longe (no ∞), resulta numa difração de Fraunhofer e é mais fácil de ser tratada matemáticamente. Para observar-se a difração de Fraunhofer monta-se o experimento mostrado na Fig. 5.2 Figura 5.2 Representação da difração de Fraunhofer para uma única fenda, iluminada por luz monocromática. Observando a Fig. 5.2 tem-se que, para os raios que partem do ângulo θ e termina em R1 ou R2, com diferença de fase de λ/2, ocorre 96 Espectrometria de Emissão Atômica com Plasma interferência totalmente destrutiva. Com o aumento do número de fendas, os padrões de interferência vão se tornando mais nítidos, as linhas produzidas são cada vez mais estreitas e brilhantes, sobre um fundo cada vez mais escuro. O elemento ótico constituído de um arranjo de fendas regulares próximas e igualmente espaçadas é conhecido como grade de difração e, a distância entre os centros de fendas sucessivas é chamada de constante de grade. Fraunhofer foi o primeiro a estudar a difração da luz com uma rede feita com arames finos. A qualidade da difração afeta muito o desempenho dos sistemas óticos. Um padrão de difração de uma fenda estreita não dá uma única imagem definida, mas várias imagens difusas e espaçadas. Os vários pontos ao longo da fenda tornam-se fontes de pequenas ondas secundárias e raios podem propagar-se de cada um deles em todas as direções. Se as amplitudes das pequenas ondas estão em fase, ocorre um reforço da intensidade. A imagem de 2 linhas espectrais adjacentes no plano focal do espectrômetro são próximas; a iluminação resultante corresponde a um perfil similar ao desenhado na Fig. 5.3 Figura 5.3 Resultante da iluminação da sobreposição de dois perfis difratados. c) A difração numa grade. Fórmula para grade de difração 97 Espectrometria de Emissão Atômica com Plasma Teoricamente, a grade de difração consiste em um grande número de sulcos finos, paralelas e equidistantes, localizadas num mesmo plano. Na prática, estes sulcos são conseguidos fazendo-se ranhuras paralelas sobre uma superfície metálica recoberta com deposição de quartzo ou cerâmica. A fórmula que descreve a difração de um feixe paralelo de luz monocromática atingindo a grade de forma perpendicular é dada por: mλ = d senθ [5.8] onde : m = 1, 2, 3, é a ordem da difração (ou ordem espectral) θ é o ângulo de reflexão formado com a normal da grade N Se a radiação incide sobre a grade num ângulo diferente de 900, como mostra a Figura 5.4 a equação geral da grade é: mλ = d (sen i + sen θ) [5.9] onde : i ângulo incidente e θ, ângulo formado entre o raio incidente e o refletido. Um fenômeno de interferência construtiva será observado na direção onde ∆=mλ (onde m é inteiro >0 ou <0 ) Na eq. 5.9 para cada i todos os valores de θ onde um máximo da intensidade desse λ é encontrado, um máximo para cada valor de m. A equação da grade é : sen i + senθ = mλ/d = m n λ 98 [5.10] Espectrometria de Emissão Atômica com Plasma onde: n é o número de sulcos por mm. A equação da grade 5.10, mostra que θ depende de λ e como cosequência a luz é dispersada pela grade. Para cada valor de m >0 temos um espectro. Para m=0 não há dispersão. Configuração de Littrow para i= θ. Neste caso a equação da grade é: 2senθ = mλ/d [5.11] Figura 5.4 Representação geométrica para difração por uma grade plana. A dispersão da radiação dentro de um espectrômetro, depende da largura da fenda de entrada e da capacidade do elemento dispersivo para separar a banda de radiação, nas diferentes freqüências presentes na frente de onda. A dispersão angular é expressa pela derivada dθ/dλ, e é uma medida da separação angular dθ de dois raios diferindo em dλ. Para uma grade de difração, a dispersão angular é : 99 Espectrometria de Emissão Atômica com Plasma dθ/dλ = m/d cosθ [5.12] Uma medida mais utilizada é a dispersão linear recíproca, indicando os nm/mm no foco ou no plano focal do instrumento. Esta dispersão é: dλ/dl = λ (cosθ) / (sen i + sen θ) f [5.13] onde : f é o comprimento focal do instrumento. 5.3 Poder de Resolução A Resolução de um instrumento ótico mede sua habilidade para separar linhas adjacentes, como as mostradas na Fig. 5.3. Geralmente, a resolução é definida por : R = λ / dλ [5.14] onde : dλ a diferença no λ de duas linhas espectrais de igual intensidade e λ o comprimento de onda médio entre as linhas. Pelo critério de Raleight dois picos consideram-se resolvidos se o máximo do primeiro cai justo ou antes do início do outro. A relação entre a resolução R, o número de sulcos N iluminados na grade e m o número de espectros formados é: R=Nm [5.15] 100 Espectrometria de Emissão Atômica com Plasma Para aumentar a resolução poderia pensar-se em aumentar o número de sulcos na grade, mas deve-se considerar que, fazendo isto, certas ordens desaparecem porque m diminui. Na equação acima substituindo-se m : R = d/λ (sen i + senθ) N [5.16] R = W/λ (senα + senβ) [5.17] onde: W é a largura da grade. Na fórmula escrita desta forma mostra que a resolução depende da largura de grade, dos ángulos dos raios e do comprimento de onda. Outra interpretação pode se obter usando a equação 5.9: R = d(sen i+sen θ) N/λ = N ∆/λ = N ∆TOTAL/λ [5.18] Indicando que a resolução é dependente da diferença, no caminho ótico, entre os extremos da grade. Todas as equações anteriores trataram da difração de ondas planas. Se a onda apresenta deflexão maior que λ/4, a largura da imagem difratada aumentará e a resolução piorará gradativamente. Para medir isto, usa-se um interferômetro de Michelson, de forma que todas as grades que saim mais do que λ/4 da frente de onda são rejeitadas. Grades de difração A primeira grade de difração em superficie sólida foi construída pelo astrônomo americano D. Rittenhouse, em 1786. No final do século XIX H. 101 Espectrometria de Emissão Atômica com Plasma Rowland construiu máquinas para riscar as grades de difração. No equipamentos atuais usam-se grades planas, côncavas e esféricas. As grades de difração podem ser feitas através de fendas ou ranhuras finas, paralelas e equidistantes, localizadas num mesmo plano em um metal ou em vidro, ou imprimindo franjas de interferência sobre uma superficie fotossensível (grade holográfica). As primeiras foram fabricadas em série, usando-se moldes, num processo similar à fabricação de discos de vinil. As grades de tipo holográficas são feitas com uma fonte de laser, cujo feixe é separado em dois. Estes dois feixes produzem as franjas de interferência na sua zona de cruzamento, imprimindo uma superficie fotossensível colocada sobre um vidro. Desta forma, é possível produzir uma grade de até 5400 riscos/mm de até 40 cm de largura. Este processo também serve para produzir as matrizes para efetuar grades pelo sistema de fendas. Eficiência das grades de difração Os espectrômetros de plasma usam redes de difração, geralmente com 1500 sulcos/mm para a região visível, outros com 2400 sulcos/mm e até 3600 sulcos/mm para a região do ultravioleta. Existem redes de difração holográficas. As redes de difração com 120 riscos/mm, conhecidas como echelle são usadas em montagens óticas para separar as ordens da radiação. 102 Espectrometria de Emissão Atômica com Plasma Tabela 5.1 Características de espectrômetros usando redes de Propriedade Convencional Echelle Comprimento focal (m) 1,0 0,5 Largura da rede (mm) 102 128 Sulcos/mm 1800 79 Ordens a 300 mm 1 75 Resolução a 300 mm 183.600 763.000 Dispersão linear recíporca a 300 mm (nm/mm) 0,55 0.15 f - número f/8,8 f’10,2 Grades do tipo Echelle são grades com poucos sulcos, razão pela qual os espectros de diferentes ordens são projetados em diferentes ângulos. Este tipo de grade é atualmente usada nas montagens modernas dos espectrômetros de emissão atômica para evitar-se a superposição e consequente interferência espectral. Na montagem da Fig. 5.5 mostra-se o efeito na difração, quando se usa a combinação de uma grade Echelle e um prisma. 103 Espectrometria de Emissão Atômica com Plasma Figura 5. 5 Efeito de dispersão produzido por grade tipo Echelle e a mesma combinada com Prisma (Littrow). 5.4 Os espectrômetros O espectrômetro é um compartimento bem selado, onde encontram-se os componentes óticos. O espectrômetro pode operar à pressão atmosférica, sob vácuo ou purgado numa atmosfera inerte (Nitrogênio) para evitar-se a absorção da radiação UV pelos componentes do ar (CO2). Em geral, tem-se uma janela de entrada, espelhos, redes de 104 Espectrometria de Emissão Atômica com Plasma difração e janela de saída. A resolução e intensidade da energia radiante que se detecta, depende das dimensões das janelas de entrada e saída. Figura 5.6 Esquema de um espectrógrafo de arco e faísca com montagem Ebert. Alguns espectrômetros de plasma usam redes de difração, geralmente com 1500 sulcos/mm para a região visível, outros com 2400 sulco/mm e até 3600 sulcos/mm para a região do UV. Existem redes de difração holográficas. As redes de difração com 75 a 120 sulcos/mm, conhecidas como echelle são usadas em montagens óticas para separar as ordens da radiação, evitando-se a complexidade espectral. Diferentes formas de montagem dos componentes óticos têm sido desenvolvidas para conseguir-se deteção das diferentes regiões do espectro. Ebert, Czerny- Turner e Paschen-Runge. A montagem Ebert foi usada nos espectrógrafos com fonte de excitação de arco e faísca. Nestes equipamentos, o percurso ótico era muito grande para obter boa resolução 105 Espectrometria de Emissão Atômica com Plasma espectral. A deteção fotográfica dos espectros permitia a determinação semi-quantitativa através da medida por densitometria. O espectrômetro com montagem Czerny-Turner tem uma grade de difração móvel, girando através do comando de um computador. Desta forma, este monocromador funciona para detectar seqüencialmente, por varredura, as diferentes regiões do espectro. Para detecção usa uma fotomultiplicadora. Outros equipamentos permitem a detecção seqüencial utilizando rede de difração fixa, mas algumas fotomultiplicadoras, instaladas em um sistema móvel se deslocam para efetuar a varredura. Ambos sistemas são mostrados na Fig. 5.7. Figura 5.7 Esquema dos espectrômetros sequênciais. 106 Espectrometria de Emissão Atômica com Plasma A montagen Paschen Runge permite adaptar até 60 fotomultiplicadoras fixas para efetuar determinações simultâneas do espectro gerado no ICP, o esquema da Fig. 5.8 mostra a fonte de ICP, a janela de entrada, a placa refratora, a rede de difração e as janelas de saída, na frente dos detectores. Figura 5.8 Espectrômetro simultâneo com montagem PaschenRunge para ICP-AES. A placa refratora, entre a janela de entrada e a rede, permite efetuar a correção de fundo. A movimentação desta placa é controlada por um motor., normalmente encontra-se perpendicular ao feixe de radiação, mas ao ser inclinada em ambos os sentidos desloca a radiação incidente em ∆λ. 107 Espectrometria de Emissão Atômica com Plasma As fotomultiplicadoras e as janelas de saída encontram-se colocadas em posições fixas, sendo a detecção realizada simultaneamente. No esquema da Fig. 5.9, temos a associação de um monocromador e de um policromador. O policromador permite a detecção seqüencial nas fotomultiplicadoras colocadas no círculo de Rowland. Diferentes tipos de fotomultiplicadoras são utilizadas, tendo fotocatodo mais sensível para a região do espectro a detectar. Acoplado às fotomultiplicadoras encontram-se componentes eletrônicos, dimensionados de tal forma que a voltagem de saída do sinal seja da mesma ordem para os diferentes elementos, compensando o desequilíbrio de sensibilidade, de forma a preservar a linearidade do sinal. A transmissão do sinal para o computador associado é efetuada cada vez que se atinge uma certa voltagem e isto ocorre várias vezes por segundo durante o tempo de leitura. Desta forma, determinam-se vários elementos simultaneamente numa ampla faixa de concentrações. Com estes espectrômetros é possível efetuar medições de um número ilimitado de raias espectrais. Uma das vantagens reside na possibilidade de escolha de diferentes linhas de emissão para um mesmo elemento, no caso deste encontrar-se muito concentrado na amostra, podese escolher uma raia espectral menos intensa. Em muitos dos equipamentos comerciais são combinados espectrômetros simultâneo e sequencial como mostra a Fig. 5.9 Os espectrômetros simultâneos são submetidos a um ajuste da ótica que consiste no alinhamento da janela de entrada com a de saída, de forma a se conseguir máxima sensibilidade. Para efetuar este alinhamento, alguns equipamentos possuem uma lâmpada de Hg colocada na frente da janela de entrada do espectrômetro, de forma a posicionar a janela para conseguir-se a máxima sensibilidade. Depois, introduzindo no plasma uma 108 Espectrometria de Emissão Atômica com Plasma solução de um elemento, ajusta-se a ótica (espelhos) para conseguir a máxima iluminação da janela de entrada. Figura 5.9 Combinação de espectrômetro simultâneo e seqüencial usando uma fonte de ICP. 109 Espectrometria de Emissão Atômica com Plasma Para correção da radiação de fundo, nos equipamentos simultâneos foi incorporada movimentação na janela de entrada, através de um motor de passo. Desta forma, consegue-se o deslocamento da radiação para ambos os lados da posição de máxima sensibilidade. e forma que a mesma incidindo na rede de no comprimento de onda correspondente à máxima sensibilidade e nas proximidades desta (aprox 0,03 nm) para todos os elementos, como representado na Fig. 5.8. Nestes processos requer-se efetuar ao menos três medições, uma no máximo de sensibilidade e duas deslocadas. Figura 5.10 Montagem de espectrômetro simultâneo usando rede Echelle. (Leeman Lab.) Espectrômetros usando montagem com rede echelle permitem separar as radiações nas diferentes ordens e, assim, diminuir a superposição espectral. Nas Figs. 5.10 e 5.11 apresentam-se os esquemas 110 Espectrometria de Emissão Atômica com Plasma de montagem usado nos equipamentos mais modernos. As montagens incluem combinação de vários dispositivos óticos e separação das ordens espectrais. No esquema da Fig. 5.10 para deteção usamse fotomultiplicadoras em diferentes posições em um plano. Na montagem mostrada na Fig. 5.11 a radiação VIS e UV é separada no espectrômetro, usando diferentes recursos automatizados. Neste sistema foi empregado detetor de estado sólido CCD (Charge Coupled Device). Figura 5.11 Esquema de espectrômetro simultâneo usando rede Echelle e detetor de estado sólido CCD. (Perkin Elmer-Optima 3000) 111 Espectrometria de Emissão Atômica com Plasma REFERÊNCIAS BIBLIOGRÁFICAS 1. SAWYER, R.A. Experimental spectroscopy. 3.ed. New York: Dover, 1963. 358p. 2. STRASHEIM, A.; MONTASER, A. Instrumentation for optical emission spectrometry. In: MONTASER, A.; GOLIGHTLY, D.W.X. Inductively coupled plasma in analytical Atomic-Spectrometry. 2.ed. New York: VCH Publishers, 1992. p. 109-135. 3. CONTI, R.A. espectrometria Determinação de impurezas substitucionais por de emissão atômica com plasma acoplado indutivamente (ICP/AES), no processamento de tântalo métalico. São Carlos, 1995. 190p. Tese (Doutorado) - Departamento de Materiais, Universidade Federal de São Carlos. 4. KELIHER, P.N.; WOHLERS, C.C. Echelle grating spectrometers in analytical spectrometry. Analytical Chemistry, v. 48, p. 333-349A, 1976. 5. FLOYDE, M.A.; FASSEL, V.A.; WINGE, R.K.; KATZENBURGER, J.M.; D’SILVA, A.P. Inductively coupled plasma-atomic esmission spectroscopy: a computer-controlled scanning monochromator ystem for the rapid sequential determination of the elements. Analytical Chemistry, v. 52, p. 431-438, 1980. 6. BROWN, P.G. Sequential ICP Spectrometer designs: influence on instrument performance and data quality. Am. Lab. November, 1989. 7. NYGAARD, D.D.; COTERA, J.J. Determinations near the detection limit: a comparison of sequential and simultaneous spectrometers, Spectroscopy, v. 3, n. 4, p. 22-24, 1988. 112 Espectrometria de Emissão Atômica com Plasma 8. STRAHEIM, A.; SCHILDHAUER, C.; BOHMER, R.G. A method to adjust and evaluate the positioning of exit slits of certain direct reading spectrometers. Spectrochimica Acta, v. 39B, p. 1037-1044, 1984. 9. SERMIN, D.F. Importance of making measurements at “line peak” positions when using a computer controlled monochromator with an ICP source. Spectrochimica Acta, v. 38B, p. 301, 1983. Supplement. 10. BURTON, L.L.; BLADES, M.W. Influence of instrumental broadening on line shaped detected by PMT and photodiode array detectors. Spectrochimica Acta, v. 42, p. 513-519, 1987. 11. BUSCH, K.W.; BUSCH, M.A. Multielement detections ystems for spectrochemical analysis. New York: John Wiley & Sons, 1990. 12. PILON, M.J.; DENTON, M.B.; SCHLEICHER, R.G.; MORAN, M.; SMITH JUNIOR, S.B. Evaluation of a new array detector atomic emission spectrometer for ICP-AES. Applied Spectroscopy, v. 44, p. 1614-1620, 1990. 13. KAYE, W. Stray radiation from ruled gratings. Analytical Chemistry, v. 55, p. 2022-2025, 1983. 14. KAYE, W. Stray radiation from holographic gratings. Analytical Chemistry, v. 55, p. 2018-2021, 1983. 15. FRANKLIN, M.L.; HORLICK, G.; MALMSTADT, H.V. Basical and practical considerations in utilizing photon counting for quantitative spectrochemical methods. Analytical Chemistry,v. 41, p. 2-10, 1969. 16. INGLE JUNIOR, J.D.; CROUCH, S.R. Critical comparison of photon counting and direct current measurements techniques for quantitative spectrometric methods. Analytical Chemistry, v. 44, p. 785-794, 1972. 113 Espectrometria de Emissão Atômica com Plasma 1. BOUMANS, P.W.J.M; VRAKKING, J.J.A. spectroscopy using an echelle spectrometer Figh resolution with predisperse Characteristics of the instrument and approach for measuring line widths in an ICP. Spectrochimica Acta, v. 39B, p. 1239-1260, 1984. 18. MCLAREN, J.W.; MERMET, J.M. Influence of the dispersive system in ICP-AES. Spectrochimica Acta, v. 39B, p. 1307-1322,1984. 114 Espectrometria de Emissão Atômica com Plasma CAPÍTULO 6. CONDIÇÕES DE OPERAÇÃO E DESEMPENHO ANALÍTICO 6.1 Efeito dos Parâmetros Instrumentais A intensidade de uma linha de emissão em ICP-AES depende do número de átomos ou íons emitindo sob as condições experimentais usadas. Os principais parâmetros possíveis de ajustar são: a potência incidente fornecida pela fonte de RF, as vazões dos gases na tocha, a pressão do gás de nebulização e o local de observação do plasma para efetuar as medidas espectroscópicas [1]. O efeito no ajuste dos parâmetros do plasma é dependente da natureza da linha a ser detectada, ou seja das energias requeridas para excitar o átomo, ionizar e excitar o íon. Estes parâmetros são interdependentes, ou seja, ao mudar um deles os demais também são afetandos. A influência destes sobre a razão de intensidades entre sinal e fundo (SBR do inglês Signal to Background ratio) para uma linha de emissão do átomo neutro ou do átomo ionizado para Mn, são mostradas nas Figs. 6.1 a 6.3. O sinal obtido com 1 mg/L de Mn detectado em 403,076 nm (Eexc 3,08 eV) corresponde à emissão do átomo neutro e aquele detectado em 257,610 nm (Eexc 12,24 eV), corresponde à emissão do átomo ionizado [1]. Estes sinais são afetados pela vazão do gás de nebulização e pela altura de observação, conforme mostra a Fig. 6.2. Este efeito ocorre de forma similar para as linhas do Pb (atômica 405,782 nm e iônica 220,35 nm) e para as do Cr (atômica 367,069 nm e iônica 267,716nm). Desta forma, conclui-se que as linhas resultantes de energias similares apresentam comportamento parecido frente à variações nos parâmetros. O efeito da vazão e pressão do gás de nebulização e da altura 115 Espectrometria de Emissão Atômica com Plasma de observação sobre a intensidade da emissão é muito mais acentuado para as linhas que requerem maior energia. Na Fig. 6.1 inferior, pode-se observar um decréscimo na razão SBR entre 15 e 20 mm, da ordem de 130. Enquánto que, na Fig. 6.1 superior o maior decréscimo do sinal entre 20 e 10 mm teve variação de SBR de 30. Figura 6.1 Efeito da vazão da amostra no nebulizador e da altura de observação sobre a Intensidade do sinal de Mn (1 mg/ L) monitorando uma linha atômica ou iônica. 116 Espectrometria de Emissão Atômica com Plasma Figura 6.2 Efeito da potência incidente sobre a intensidade total e a razão SBR. Desta forma, foram classificadas as linhas espectrais em linhas brandas (soft lines) e sólidas (hard lines) [2]. As linhas brandas são produzidas pela excitação do átomo com potencial de ionização <8eV ou linhas iônicas com baixo potencial de formação (Ba(II), La(II)). Estas últimas são excitadas ao receber energia por mecanismos colisionais e sua emissão ocorre na parte mais baixa do plasma Fig.6.3 As linhas sólidas são produzidas por átomos e íons que apresentam alta energia de excitação. Estas espécies conseguem atingir o estado excitado em regiões mais altas do plasma.[3] O processo de transferência de energia do plasma para a amostra depende da vazão do gás de nebulização. Mantendo constante a energia da fonte, observa-se na Fig.6.3 que, para uma mesma espécie, ao aumentar a 117 Espectrometria de Emissão Atômica com Plasma vazão do gás de nebulização, a emisão ocorre em regiões mais altas do plasma. Este comportamento é mais acentuado para as linhas sólidas. I I Vazão Baixa Linha espectral branda Vazão alta 10 Linha espectral sólida 20 10 Altura de observação / mm 20 Altura de observação / mm Figura 6.3 Variações de intensidades ao longo do plasma, dependendo da vazão de nebulização e do tipo de linha espectral. Na Fig. 6.4, observa-se o efeito produzido pelo aumento da potência da fonte de RF mantendo-se constante a vazão de nebulização. Ocorre um aumento da intensidade de emissão proporcionalmente ao aumento da RF para as linhas espectrais sólidas, ou seja, aquelas produzidas com altas energias de excitação. Este aumento de intensidade ocorre ao longo do plasma, apresentando a máxima intensidade de emissão em um mesma região (altura de observação). No caso das linhas brandas, com potencial de excitação e ionização < 8 eV, ao aumentar-se a RF a excitação máxima ocorre em regiões mais baixas do plasma. Observa-se um acréscimo na intensidade quando se aumenta a potência de I para II, atingindo o máximo e decaindo entre o estágio II para III, como mostra a Fig.6.4 superior. A relação entre a intensidade e a potência muda com a altura de observação. Considerando a vertical A, a intensidade aumenta 118 Espectrometria de Emissão Atômica com Plasma com a RF. Na vertical B o aumento de RF provoca aumento da intensidade até um máximo e logo declina. Na vertical C o efeito de aumentar a potência não muda a intensidade. Na prática, o ajuste da altura de observação em C leva a uma situação onde a intensidade é menos sucetível às mudanças na potência da fonte de RF para estas linhas de emissão. Figura 6.4 Efeito do aumento da potência da fonte de RF de I a III para as intensidades de linhas brandas (quadro superior) e linhas sólidas (quadro inferior) 119 Espectrometria de Emissão Atômica com Plasma Na Fig. 8.5 observa-se a variação na sensibilidade provocada por mudanças na energia incidente em diferentes linhas espectrais, com potencial de excitação EP variando de 1,85 a 15,51 eV. No caso de íons excitados (II), é considerada a soma do potencial de ionização e excitação. Nesta figura observa-se o efeito da energia fornecida pela fonte RF sobre as mudanças na sensibilidade[4]. A linha espectral mais sensível corresponde ao Zn, especificamente a uma linha do íon que para ser produzida requer energia de 15.51 eV. Quando a energia requerida para uma determinada transição encontra-se no limiar dos 16 eV disponíveis, pequenas variações na potência fornecida refletem-se em grande quantidade de espécies atingindo esse nível energético. O alinhamento da ótica do instrumento efetua-se escolhendo a linha mais sensível de um elemento, de forma a observar pequenas variações durante o ajuste dos parâmetros. Pelo contrário, em átomos de elementos alcalinos ( Na, K, Li, etc), o fornecimento de energia provoca aumento na população de íons e a emissão das linhas atômicas vê-se prejudicada. 120 Espectrometria de Emissão Atômica com Plasma Figura 6.5 Efeito de pequenas variações na potência fornecida sobre as intensidades de emissão das linhas espectrais. Para efetuar-se o ajuste dos parâmetros pode-se usar o método univariado, ou seja, varia-se um parâmetro de cada vez, mantendo-se os outros constantes ou, o método multivariado seguindo um esquema de otimização fatorial ou simplex [5-8]. 121 Espectrometria de Emissão Atômica com Plasma Figura 6.6 Perfís radiais das linhas de emissão de diferentes elementos, dependendo da altura de observação. Usando-se a técnica de inversão de Abel, Furuta e Horlick, em 1982, determinaram a distribuição radial em diferentes alturas de observação para uma linha espectral de diferentes elementos, inclusive a do Hβ, como mostrado na Fig. 6.6. Pode-se observar nos perfís da Fig. 6.6 que nas 122 Espectrometria de Emissão Atômica com Plasma proximidades da bobina de indução (4 mm acima) não há emissão das espécies na região central do volume da amostra. A 10 mm, observa-se uma boa emissão dos átomos de Ba e Ca, mas a emissão de linhas com maior requerimento energético ainda não atinge o máximo, o que pode ser confirmado para Mn, Mg e Zn. A 16 mm da bobina de indução atinge-se o máximo de intensidade da radiação emitida para todos os elementos. Nota-se que a esta altura a emissão fica mais fina do que a 10 mm. Os perfis para P, C, H e Ar não apresentam o comportamento explicado anteriormente. A região de radiação não é homogênea nem a 16 mm da tocha, exceto para o P, cujo sinal é maior no centro da amostra. 6.2 Condições de operação em aplicações Nas análises multielementares com espectrômetros simultâneos, a estratégia para ajuste de condições de operação deve ser efetuada de forma a maximizar a razão sinal/fundo para a maioria dos elementos. Na escolha das linhas de detecção para cada elemento, levam-se em consideração a matriz da amostra, a influência dos parâmetros experimentais na sensibilidade e as concentrações esperadas dos elementos [10]. Por exemplo, tratando-se de extrato vegetal, esperam-se concentrações maiores para Ca, Mg, P, S e K do que de Cu, Zn, Mn, Fe. Neste caso, as condições experimentais são otimizadas para detectar os elementos que apresentam-se em baixas concentrações. Na prática, alguns parâmetros encontram-se limitados pelos recursos instrumentais. Por exemplo, a energia fornecida pela fonte de RF pode ser ajustada entre 0,8 até 2,0 ou, no máximo, 2,5 kW. Abaixo de 0,8 kW extingue-se o plasma. No caso dos nebulizadores, a geometria de construção limita as vazões e a pressão do gás em prol da qualidade do 123 Espectrometria de Emissão Atômica com Plasma aerossol. Nos sistemas com deteção lateral, a altura de observação é um fator facilmente ajustável. A energia refletida é um parâmetro que indica a qualidade do acoplamento entre a fonte de RF e o plasma. Mudando-se a energia na fonte de RF deve ser re-sintonizado (tunning) o circuíto de acoplamento para obtenção de mínima energia refletida. Na Tabela 6.1 são listados os parâmetros de operação que descrevem as condições experimentais e as faixas de valores comumente usados. Estes parâmetros referem-se a equipamentos de ICP-AES com observação lateral das linhas de emissão; a altura de observação não faz sentido quando o plasma é observado axialmente. Tabela 6.1. Condições de operação normalmente usadas em ICP-AES. Parâmetro Valores experimentais Vazão do gás do plasma 12 - 18 L/min Vazão do gás intermediário 0,0 - 0,5 L/min Vazão do gás de nebulização 0,6 - 1,0 L/min Potência incidente 1,0 - 1,5 kW Potência refletida 5-10 W Altura de observação 10-18 mm Vazão da solução no nebulizador 0,5 - 2,0 mL/min As condições de operação indicadas na Tabela 6.1 são as comumente utilizadas para análise de soluções aquosas. No caso de amostras contendo compostos orgânicos recorre-se ao uso de oxigênio misturado ao Ar no gás de nebulização e a energia da fonte de RF pode ser aumentada para 2 kW. Assim, as melhores condições de operação estão atreladas à forma de introdução e ao tipo de amostra. 124 Espectrometria de Emissão Atômica com Plasma 6.3 Avaliação da performance do ICP-AES. O funcionamento de cada componente do instrumento pode ser avaliado individualmente e, para isto, existem testes recomendados pelos fabricantes. O desempenho geral do equipamento deve ser avaliado para cada matriz da amostra. Os principais parâmetros a considerar são: sensibilidade, limite de detecção, precisão, exatidão, estabilidade da linha de base (drift), interferências espectrais incluindo características do espectrômetro, tais como resolução, e faixa analítica. As definições a seguir são utilizadas para estabelecer o critério de avaliação: - SBR razão entre o sinal de uma linha espectral e a do fundo dela (SBR do inglês signal to background ratio. SBR = Ia /If [6.1] - LD - limite de detecção: corresponde à concentração do elemento a qual produz um sinal em intensidade de emissão, igual à média do branco, mais três vezes o desvio padrão das intensidades do mesmo, seguindo-se as recomendações da IUPAC. O desvio padrão do branco é determinado por uma sequência de 11 medidas consecutivas. Pelo fato de tratar-se da definição de concentração deve ser considerada a sensibilidade da linha de emissão escolhida. Assim, para um mesmo sinal de branco e desvios iguais (Ib + 3σ), uma linha com maior sensibilidade apresentará menores LDs do que uma com menor sensibilidade. A representação deste fato pode ser observada na Fig. 6.7. LD = C = 3σb / S [6.2] 125 Espectrometria de Emissão Atômica com Plasma onde : S sensibilidade ( dx/dc) Este limite de detecção pode ser considerado o limite de detecção instrumental, uma vez que depende de fatores instrumentais e de operação. Assim, fatores que aumentem a sensibilidade sem afetar a estabilidade do branco melhoram consideravelmente o LD. Por outro lado, se a linha escolhida sofre interferências espectrais, aumentando-se o sinal do branco deteriora-se o LD. A sensibilidade pode ser aumentada, melhorando-se a eficiência no transporte da amostra. Este aspecto é muito bem evidenciado no caso da geração de espécies voláteis como os hidretos, vaporização eletrotérmica e usando-se unidades dessolvatadoras da amostra nebulizada ( Cap. 4 ). Intensidade X + 3σ X X - 3σ 0 A B Concentração Figura 6.7 Representação mostrando o conceito de limite de detecção. X corresponde à média das intensidades do branco e σ ao desvio padrão dessas intensidades. Dependendo da sensibilidade da curva analítica temos a concentração do LD em A ou B. 126 Espectrometria de Emissão Atômica com Plasma BEC - Concentração Equivalente do BG: corresponde à quantificação, em unidades de concentração, do elemento da intensidade de emissão correspondente ao fundo naquela linha espectral que se deseja usar. Determina-se a partir da curva analítica (intensidade versus concentração) conseguida, analisando-se soluções puras. BEC = C0 / SBR [6.3] - Precisão : expressada como desvio padrão relativo (% r.s.d) ou coeficiente de variação ( % CV) de uma série de medidas. rsd % = σ / x [6.4] A variação entre a precisão das medidas e a concentração da solução, pode ser correlacionada como mostra a Fig. 6.8. Nesta figura, representase o LD para 2σ e 3σ correspondente à 50 e33 % r.s.d. A região de maior precisão é a representada no patamar inferior, no qual o r.s.d. <2%. Em ICP-AES esta região corresponde a uma faixa de concentrações de 0,1 a 1000 mg L-1 para a maioria dos elementos em soluções aquosas diluídas. Esta amplitude da faixa analítica (4 ordens de grandeza) é uma das principais vantagens do ICP-AES. Nesta região, a linearidade é muito boa, possibilitando o uso de apenas dois pontos para levantar a curva de padronização. As relações a seguir mostram a depêndencia entre LD, BEC e r.s.d. Partindo da relação LD = 3σf /S substituindo S por x0/c0 temos: 127 Espectrometria de Emissão Atômica com Plasma LD = 3σf c0 / x0 = 3σf c0 xf / x0 xf = 3σf c0 / SBR xf = 3 (rsd)f c0 / SBR ou: [6.5] LD = 3 (rsd)f BEC R S D 50 % 33 3 <2 Concentração/mg L-1 AB Figura 6.8 Correlação entre a precisão e a concentração usada para a determinação do LD. Os LDs calculados com 2σ ou 3 σ são indicados em A e B respectivamete. 6.4 Interferências 6.4.1 Efeitos de Matriz Os efeitos de matriz são interferências não espectroscópicas, associadas às etapas de nebulização, transporte e efeitos energéticos no plasma. 128 Espectrometria de Emissão Atômica com Plasma Entre os elementos que provocam maiores alterações estão os elementos facilmente ionizáveis como Na, K e Cs. Estes elementos cedem facilmente o elétron da última camada, produzindo íons e elétrons livres. Isto pode afetar as condições de equilíbrio do plasma [10,11]. De forma similar ocorre com a evolução de hidrogênio quando usa-se a geração de hidretos, afetando a estabilidade do plasma. A presença de compostos orgânicos na amostra afeta imediatamente as condições de equilíbrio térmico do plasma. Nestes casos, observa-se radiação azul da emissão de acetileno e o plasma muda de formato. Às vezes, nota-se a formação de fuligem. Para resolver estes problemas, podem-se usar diferentes estrategias. Em amostras que apresentam matriz constante, a preparação de soluções padrão contendo matriz o mais similar com a das amostras (matrix matching), é uma alternativa [12,13] Este procedimento pode ser usado apenas se os elementos de interesse encontram-se na solução da amostra em concentrações acima de 1 mg/L. Isto deve-se ao fato do aumento da radiação de fundo provocado pela matriz prejudicar os limites de detecção. Em amostras com teor de sólidos muito alto acima de 5%, deverá ser usada diluição para não provocar entupimentos em nebulizador ou tocha. No caso da determinação de baixas concentrações, é mais eficiente o uso de um mecanismo de separação da matriz. No caso de amostras contendo material orgânico recomenda-se empregar maior potência da fonte de RF e usar uma mistura de argônio e oxigênio como gás de nebulização, de forma a melhorar a combustão e evitar a formação de fuligem. Alguns autores [12-14] têm proposto a utilização de padrão interno (internal standard). Este procedimento requer a análise prévia da amostra e novamente após adição, de uma concentração conhecida do 129 Espectrometria de Emissão Atômica com Plasma padrão interno. O padrão interno deve ser um elemento que não esteja presente na amostra, e a concentração adicionada deve ser calculada de forma a duplicar o sinal inicial do elemento de interesse. Este procedimento é eficiente para um ou dois elementos. Em determinações multielementares encontra-se dificuldade para definir os padrões internos que sirvam para todos os elementos da análise. Nas determinações com padrão interno usa-se a razão de intensidades entre as linhas espectrais do elemento de interesse e a escolhida para o padrão interno. O padrão interno age como uma testemunha em todo o processamento da amostra, desde a nebulização, transporte e no plasma e na medição da razão de intensidades as possíveis flutuações ocorridas durante a análise são compensadas. O método das adições de padrão é outro recurso para compensar o efeito de matriz. Neste caso, analisa-se a amostra antes e depois da adição do elemento de interesse, em concentração conhecida, sobre a solução da amostra para determinar-se a variação de sensibilidade e estimar-se a concentração na amostra original. 6.4.2 Interferências espectrais. As interferências típicas da detecção da emissão atômica são produzidas por superposição espectral entre linhas emitidas pelos diferentes elementos da amostra, e as limitações de resolução dos espectrômetros. Os espectros de linhas do ICP são muito complexos, devido à temperatura atingida no plasma. Diferentes situações de interferências podem ocorrer [15,16]. Entre estas, temos a concidência total ou parcial de linhas, a proximidade de uma linha que afeta o fundo 130 Espectrometria de Emissão Atômica com Plasma em um dos extremos da linha de interesse, e o aumento do fundo. Estas situações são mostradas na Fig. 6.9 para casos reais. Os espectros de bandas são relativamente baixos, provavelmente devido a um remanescente pequeno de moléculas no plasma. Um dos fatores mais importantes reside na concentração dos elementos. Em geral, as interferências são significativas quando uma linha de um constituinte maior da amostra afeta uma linha sensível de algum elemento em baixa concentração na mesma solução. Foi visto anteriormente que a largura da intensidade da raia espectral depende da concentração. O primeiro ponto a considerar será a concentração relativa entre o elemento interferente e o interferido. Se a interferência afeta somente o fundo, como no caso do efeito do Al no sinal do B em 208,96 nm, utiliza-se o corretor de fundo para ressolver a interferência. Figura 6.9 Representação de Interferências espectrais. 131 Espectrometria de Emissão Atômica com Plasma Pode-se observar na Fig. 6.9 (abaixo, à direita) como se deteriora a sensibilidade e, com isso, o LD quando determina-se B na presença de 1 g L-1 de Al. As interferências espectrais produzidas pela proximidade ou coincidência de linhas de emissão dos elementos da amostra podem ser evitadas quando se escolhe a linha detectada do elemento interferido. Um dos procedimentos recomendados é o de se fazer um levantamento prévio dos coeficientes de interferências no equipamento. A matriz dos coeficientes de interferências pode ser obtido analisando-se soluções puras de cada elemento e registrando-se as intensidades em cada comprimento de onda sensoriado. Neste trabalho define-se elementos interferentes EI como aqueles presentes na amostra, independente se serão determinados, e elementos interferidos como ei. Supondo que existe uma relação linear entre a concentração do interferente EI e a resposta no sensor interferido Ri, então podemos escrever a relação: n Ri = Σ ki,j Cj + ei [6.6] j=1 onde: j = número de elementos ei = erro associado as medidas no sensor i ki,j coeficientes de sensibilidade do elemento j no sensor i em termos matriciais: R =KC [6.7] 132 Espectrometria de Emissão Atômica com Plasma onde: K = matriz dos coeficientes de sensibilidade dos diferentes elementos nos diferentes sensores. R = matriz de respostas C = matriz das concentrações. As linhas espectrais devem ser escolhidas seguindo o critério de minimizar-se os coeficientes da matriz K, exceto os da diagonal, que correspondem a sensibilidade de cada elemento no seu sensor. Os espectrômetros simultâneos são projetados com os sensores fixos, de forma a receber a radiação de um certo comprimento de onda (desvios de ca. ± 0.01 nm). No método de avaliação de interferências consideramse a não especificidade dos sensores; desta forma, apresentam sensibilidade para radiação vinda também dos elementos interferentes. Os fatores k expressam os coeficientes de sensibilidade com que os elementos são monitorados nos diferentes sensores. Em geral, os fatores são de 10-3, ou seja, 100 mg L-1 de interferente gerando interferência equivalente a 1 mg L-1 do elemento interferido. Esta interferência é significativa quando o interferente está em altas concentrações e deseja-se determinar elemento em baixas concentrações. Exemplo disto é a determinação de elementos traços em amostras de rochas e sedimentos, onde temos elementos em concentrações na ordem de %. McLaren et al, em 1981, determinaram os fatores de correção mostrados na Tabela 6.2 para análise de sedimentos marinhos por ICP-AES. Estes fatores, multiplicados pela concentração do interferente, indicam a contribuição na concentração do elemento interferido. 133 Espectrometria de Emissão Atômica com Plasma Tabela 6.2 Fatores de correção para interferências espectrais. Comprimento Interferetente F Fonte provável de onda (nm) __________________________________________________________ Al(I) 237,335 Fe 2,0 x 10-3 Zn(I) 213,856 Fe 1,35 x 10-4 Co(II) 237,862 Al 2,57 x 10-4 Fe 1,11 x 10-3 Fe? Fe(I) 213,859 Fe(II)237,853 Mn(II) 259,373 Fe 1,11 x 10-3 V(II) 292,402 Al 4,8 x 10-5 Al 292,452 Fe 2,3 x 10-5 Fe 292,435 Mg 5,4 x 10-5 Mg? Fe 1,2 x 10-5 Fe(II)324,739 Cu(I) 324,754 Fe(II)259,373 Em alguns casos, as interferências são devidas ao aumento do fundo. O levantamento destas interferências pode ser feito analisando-se soluções padrão com concentrações crescentes dos elementos, obtendo-se as intensidades nos diferentes sensores. Em geral, estas interferências são compensadas com o corretor de fundo, o qual faz leituras no centro do pico e nas regiões adjacentes. Neste caso, a intensidade das linhas interferidas apresentam uma relação linear com a concentração do elemento interferente, ou seja, o BEC sempre aumenta com a concentração do interferente. Embora esta interferência possa ser compensada com corretor de fundo, a uma degradação significativa dos LD dos elementos interferidos. Na Tabela 6.3 são mostrados os valores experimentais encontrados para o BEC em algúns sensores interferidos. 134 Espectrometria de Emissão Atômica com Plasma Tabela 6.3 Concentrações equivalentes do BG (BEC) provocadas pela adição de 1 g/L de interferente.[18] Interferente (1g/L) Ca Co Mn Ni Ti V BEC (mg/L) Sensor Interferido 36 8 1,7 10 17,3 12,6 9,0 15,0 78 22 28 9 28,5 11,0 9,4 8,8 16,3 15,5 3,1 U (378,28nm) Pb (220,30 nm) Ni (231,60 nm) Cr (298,86nm) Mg(279,07 nm) Fe(259,90 nm) V(292,46 nm) Co(228,60 nm) U(378,28 nm) Ag(328,00 nm) Cu (324,70 nm) Mo (202,00 nm) U(378,28 nm) Al (308,21 nm) Ca (317,90 nm) Cr (298,86 nm) Si(288,10 nm) U(378,28 nm) Zn(213,80 nm) 6.4.3 Compensação das Interferência pelo Método GSAM No caso de ter-se um espectrômetro simultâneo, onde cada sensor é definido para um elemento, podem ocorrer várias interferências dos elementos da solução da amostra sobre os diversos sensores. A situação mais complexa ocorre quando os componentes da amostra são mutuamente interferidos. Para correção destas interferências, sejam da matriz ou espectrais, pode ser aplicado o Método Generalizado das Adições de Padrão (GSAM, do inglês Generalized Standard Addition Method)[18-21]. O método permite calcular as concentrações iniciais dos elementos de uma 135 Espectrometria de Emissão Atômica com Plasma amostra multicomponente, a partir das concentrações das soluções de padrão adicionadas e as respostas nos diferentes sensores. A base de cálculo é a variação da resposta inicial nos diferentes sensores pela adição dos elementos de interesse e dos interferentes. As respostas iniciais dos elementos não correspondem ao verdadeiro valor delas, entretanto, permitem estimar as concentrações a serem adicionadas. Para diminuir erros no processo de efetuar as adições, é desejável efetuar adições que permitam obter incrementos da resposta da ordem de 1 ou 2, vezes a resposta inicial. Também, recomenda-se efetuar mais de uma adição para extrapolar, por ajuste linear, o coeficiente de aumento da sensibilidade. O modelo de análise multicomponente considera as respostas detectadas em um sensor (Ri), como uma combinação linear das concentrações dos elementos (Cj) na amostra, multiplicado pelos coeficientes de sensibilidade (kij). A condição de linearidade nas interferências espectrais por emissão atômica com plasma foi comprovada pelo que o modelo pode ser aplicado, as equações 6.6 e 6.7 são válidas. O método generalizado das adições de padrão propõe a adição, na amostra, de concentrações conhecidas de cada elemento interferente e interferido EI e ei de forma independente e a detecção em vários sensores. Assim, se adicionamos o elemento 1, a resposta no sensor i é descrita pela relação a seguir: R = ∑ kij Cj + ki1 C1 + εi [6.8] As respostas iniciais obtidas com a amostra em cada sensor formam um vector R0,i. Após cada adição a resposta no sensor i (Ri ) é dada pela 136 Espectrometria de Emissão Atômica com Plasma equação 6.6. Substraindo da resposta de cada sensor Ri a resposta inicial R0,i, forma-se um vector Q. Q = R - R0 [6.9] Este vetor Q mostra as variações da resposta inicial, devidas à adição de concentrações conhecidas que formam a matriz N e aos coeficientes de sensibilidade em cada sensor que formam a matriz K. Q=N K [6.10] Considerando n adições e r sensores, as matrices R e N com dimensões (n x r) não são necessariamente quadradas e portanto, não tem inverso direto. Neste caso devemos aplicar o inverso generalizado de N: t -1 t K =(N N) N Q [6.11] A propagação de erros na determinação da matriz K depende do procedimento de adições de padrão, do número de padrões adicionados e das flutuações do sinal em cada sensor. Uma vez encontrada a matriz K, deve-se calcular o seu inverso K-1 que, junto com a matriz das respostas iniciais, permite calcular as concentrações verdadeiras dos elementos na amostra. C0 = R0 K-1 [6.12] 137 Espectrometria de Emissão Atômica com Plasma Nestas equações não foram feitas considerações de variação de volume ao efetuar as adições, supondo que usou-se um sistema de adição que alterou todos os volumes por igual. O procedimento de adição empregado foi usando sistema em fluxo, seja por injeção do volume da amostra e do padrão para adicionar [21] ou através da geração das soluções a adicionar no sistema [18]. 6.4.4 Exemplos de aplicação a) Analisaram-se amostras de latão, visando a determinação dos elementos Zn, Cu e Ni, usando espectrometria de emissão atômica com plasma (ICP-AES) com e sem aplicação do GSAM. Usou um espectrômetro de plasma simultâneo (Jarrell-Ash 975). As amostras foram dissolvidas usando água-regia a quente. Foram efetuadas três adições de cada elemento em concentrações 20, 40 e 60 (mg/L) para Cu, as mesmas concentrações para Zn e 1, 2 e 3 (mg/L) para Ni. As adições foram efetuadas individualmente a cada alíquota da amostra. Este procedimento foi automatizado usando sistema de análise por injeção em fluxo FIA. Os dados usados para o cálculo do GSAM são mostrados na Tabela 6.4. 138 Espectrometria de Emissão Atômica com Plasma Tabela 6.4 Dados de entrada para calcular a matriz K pelo GSAM na análise da Liga 3. As concentrações adicionadas indicadas na matriz C são em (mg/L) e as Respostas são em intensidade I. Os valores de R0 encontram-se na primeira fila em negrito. Matriz C Matriz R Zn Cu Ni 0 20 40 60 0 0 0 0 0 0 0 0 0 0 20 40 60 0 0 0 0 0 0 0 0 0 0 1 2 3 I (213,80 nm) 24477 37901 50954 62722 23546 23762 24725 24155 24339 24514 I(324,70 nm) 15759 16242 15859 15407 23900 33072 40639 15724 15737 15805 I(231,60nm) 9299 9836 9877 9927 9096 9682 9978 13281 17385 21805 Os resultados obtidos são mostrados nas Tabelas 6.5. Tabela 6.6 Resultados da análise de três ligas por ICP-AES com (a) e sem (b) correção de interferências por GSAM. Amostra Método Cu (mg/L) Ni (mg/L) Zn (mg/L) Liga 1 a 44,1 17,1 0,09 b 48,4 18,4 0,26 a 59,0 24,5 0,12 b 62,8 24,9 0,36 a 33,0 60,3 0,08 b 32,9 61,5 0,67 Liga 2 Liga 3 b 139 Espectrometria de Emissão Atômica com Plasma b) Analisou-se minério de ferro visando à determinação de Ca, Mg, Al, Ti e Si. Neste caso o componente maior é somente o ferro, então foi aplicado o procedimento de casamento da matriz. As amostras foram fundidas em cadinho de Pt usando como fundente uma mistura de 0,8 g Na2CO3 + 0,4g Na2B4O7. A pastilha fundida foi dissolvida em HCl 6M. As soluções de padrão foram preparadas contendo o teor de Fe e de fundente similar aos solubilizados da amostra como mostra a Tabela 6.7. Tabela 6.7 Composição das soluções de padrão usadas para análise de minério de ferro. Fundente (0,8 g Na2CO3 + 0,4g Na2B4O7). Volume final de 200 mL. N0 1 2 3 4 5 % CaO 0,0 1,0 5,0 10,0 15,0 % MgO 0,00 0,05 0,10 0,20 0,30 % Al2O3 0,00 10,0 8,0 6,0 4,0 % SiO2 0,00 30,0 25,0 20,0 15,0 % TiO2 0,00 0,10 0,20 0,30 0,50 % Fe 70 70 70 70 70 funden te (g) 1,2 1,2 1,2 1,2 1,2 HCl 6M (mL) 40 40 40 40 40 Alguns cuidados devem ser observados, este tipo de solução provoca, ao longo do tempo, ataque ao quartzo da tocha. Pelo fato do fundente usar tetraborato a tocha fica contaminada com B e não pode ser usada para determinar este elemento. Após análise de 50 amostras recomenda-se lavar a tocha com água regia para retirar resíduos principalmente de ferro. No caso de minério contendo alto teor de Si recomenda-se usar como fundente meta ou tetraborato de Li, isto também é válido quando deseja-se determinar Na. 140 Espectrometria de Emissão Atômica com Plasma REFERÊNCIAS.BIBLIOGRÁFICAS 1. BERMAN, S.S.; MCLAREN, H.W. Establishment of compromise conditions for multielement analysis by inductively coupled plasma emission spectrometry. A preliminary report. Applied Spectroscopy, v. 32, n. 4, p. 372-377, 1978. 2. BLADES, M.W.; HORLICK, G. The vertical Spatial characteristics of analyte emission in the inductively coupled plasma. Spectrochimica Acta, v. 36B, p. 861-880, 1981. 3. PBOUMANS, W.J.M. Inductively coupled plasma emission spectrometry. Part I. Methodology, instrumentation and performance. New York: Wiley-Interscience, 1987. p. 100-255. 4. RAMSEY, M.H.; THOMPSON, M. simultaneous Inductively Coupled Correlated variance in Plasma Atomic Emission Spectrometry: its causes and correction by a parameter related internal standard method. Analyst, v. 110, p. 519-530, 1985. 5. DEMING, S.N.; MORGAN, S.L. Teaching the fundamentals of experimental design. Analytica Chimica Acta, v. 150, p. 183-198, 1983. 6. EBDON, L.; CAVE, M.R.; MOWTHORPE, D.J. optimization in Inductively Coupled Plasma. Simplex Analytica Chimica Acta, v. 115, p. 179-187, 1980. 7. LEARY, J.J.; BROOKES, A.E.; DORRZAPF JUNIOR, A.S.; GOLIGHTLY, D.W. An objective function for optimization techniques in simultaneous multielement analysis by Inductively Coupled Plasma Spectrometry. Applied Spectroscopy, v. 36, p. 3740, 1982. 141 Espectrometria de Emissão Atômica com Plasma 8. PARKER, L.R.; CAVE, M.R.; BARNES, R.M. Comparison of simplex algorithms. Analytica Chimica Acta, v. 175, p. 231-237, 1985. 9. FURUTA, N.; HORLICK, G. Spatial characterization of analyte emission and excitation temperature in an inductively coupled plasma. Spectrochimica Acta, v. 37B, p. 53-64, 1982. 10. GREENFIELD, S.; MCGEACHIN, H.M.; SMITH, P.S. Nebulization effects with acid solutions in ICP Spectrometry. Analytica Chimica Acta, v. 84, p. 67-78, 1976. 11. BLADES, M.W.; HORLICK, G. Interferences from easily ionizable element matrices in Inductively Coupled Plasma Emission Spectrometry - a spatial study. Spectrochimica Acta, v. 36B, p. 881900, 1981. 12. MYERS, S.A.; TRACEY, D.H. Improved performance using internal standardization in Inductively Coupled Plasma Spectroscopy. Spectrochimica Acta, v. 38B, p. 1227-1253, 1983. 13. BARRETT, W.B.; FASSEL, V.A.; KNISELEY, R.N. Theioretical principles of internal standardization in Analytical Atomic Emission Spectroscopy. Spectrochimica Acta, v. 23B, p. 643-664, 1968. 14. BELCHAMBER, R.M.; HORLICK, G. Correlation study of internal standardization in ICP Atomic Emission Spectrometry. Spectrochimica Acta, v. 37B, p. 1037-1046, 1982. 15. BOUMANS, P.W.J.M.; VRAKKING, J.J.A.M. Spectral interferences in Inductively Coupled Plasma - Atomic Emission Spectrometry. I. A theoretical and experimental study of the effect of spectral bandwidth on selectivity, limits of determination, limits of detection and detection power. Spectrochimica Acta, v. 40B, p. 1085-1125, 1985. 142 Espectrometria de Emissão Atômica com Plasma 16. BOUMANS, P.W.J.M. Line selection and spectral interferences, In ductively Coupled Plasma Emission Spectrometry. Part I. Methodology, Instrumentation and Performance. New York: WileyInterscience, 1987. p 358-465. 17. MCLAREN, J.W.; BERMAN, S.S.; BOYKO, V.J.; RUSSEL, D.S. Simultaneous determination of major, minor and trace elements in marine sediments by inductively coupled plasma atomic emission spectrometry. Analytical Chemistry, v. 53, n. 12, p. 1802-1806, 1981. 18. GINÉ, M.F. Análises de rochas por espectrometria de emissão atômica com plasma induzido, empregando sistema de injeção em fluxo e método generalizado das adições de padrão. Piracicaba, 1986. 93p. Tese (Doutorado) - Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo. 19. ZAGATTO, E.A.G.; JACINTHO, A.O.; KRUG, F.J.; REIS, B.F.; BRUNS, R.E.; ARAÚJO, M.C.U. Flow injection systems with inductively coupled argon plasma atomic emission spectrometry. Part2. The generalized standard addition method. Analytica Chimica Acta, v. 145, p. 169-178, 1983. 20. KALIVAS, J.H.; KOWALSKI, B.R. Compensation for drift and interferences in multicomponent analysis. Analytical Chemistry, v. 54, n. 3, p. 560-565, 1982. 21. JACINTHO, A.O.; ZAGATTO, E.A.G.; BERGAMIN FILHO, H.; KRUG, F.J.; REIS, B.F., BRUNS, R.E.; KOWALSKI, B.R. Flow injection systems with inductively coupled plasma atomic emission spectrometry. Part 1. Fundamental considerations. Analytica Chimica Acta, v. 130, p. 243-255, 1981. 143 Espectrometria de Emissão Atômica com Plasma 144 Dados Internacionais de Catalogação na Publicação (CIP) Seção Técnica da Biblioteca - CENA/USP Giné-Rosias, Maria Fernanda Espectrometria de emissão atômica com plasma acoplado indutivamente. (ICP-AES), / Maria Fernanda Giné-Rosias. - - Piracicaba: CENA, 1998, 148P.:il. (Série Didática, v.3) 1. Espectrometria de emissão atômica 2. Método instrumental. 3. Química Analítica I. Giné-Rosias, Maria Fernanda II. Título III. Série CDU 543.43 Editoração: CPG/CENA setembro/98 Revisão Editorial - colaboração: Lurdes Ferreira Gandra Iolanda Ruffini João Geraldo Brancalion