ExerciciosMovimento Uniformemente VariadoUnesp

Propaganda
Movimento Uniformemente Variado
Parte I
1. (Uel 2014) O desrespeito às leis de trânsito,
principalmente àquelas relacionadas à velocidade permitida
nas vias públicas, levou os órgãos regulamentares a
utilizarem meios eletrônicos de fiscalização: os radares
capazes de aferir a velocidade de um veículo e capturar sua
imagem, comprovando a infração ao Código de Trânsito
Brasileiro.
Suponha que um motorista trafegue com seu carro à
velocidade constante de 30 m/s em uma avenida cuja
velocidade regulamentar seja de 60 km/h. A uma distância
de 50 m, o motorista percebe a existência de um radar
fotográfico e, bruscamente, inicia a frenagem com uma
2
desaceleração de 5 m/s .
Sobre a ação do condutor, é correto afirmar que o veículo
a) não terá sua imagem capturada, pois passa pelo radar
com velocidade de 50 km/h.
b) não terá sua imagem capturada, pois passa pelo radar
com velocidade de 60 km/h.
c) terá sua imagem capturada, pois passa pelo radar com
velocidade de 64 km/h.
d) terá sua imagem capturada, pois passa pelo radar com
velocidade de 66 km/h.
e) terá sua imagem capturada, pois passa pelo radar com
velocidade de 72 km/h.
2. (Ime 2013) Um automóvel percorre uma estrada reta de
um ponto A para um ponto B. Um radar detecta que o
automóvel passou pelo ponto A a 72 km/h. Se esta
velocidade fosse mantida constante, o automóvel chegaria
ao ponto B em 10 min. Entretanto, devido a uma
eventualidade ocorrida na metade do caminho entre A e B,
o motorista foi obrigado a reduzir uniformemente a
velocidade até 36 km/h, levando para isso, 20 s. Restando 1
min. para alcançar o tempo total inicialmente previsto para
o percurso, o veículo é acelerado uniformemente até 108
km/h, levando para isso, 22 s, permanecendo nesta
velocidade até chegar ao ponto B. O tempo de atraso, em
segundos, em relação à previsão inicial, é:
a) 46,3
b) 60,0
c) 63,0
d) 64,0
e) 66,7
3. (Fuvest 2013) Um DJ, ao preparar seu equipamento,
esquece uma caixa de fósforos sobre o disco de vinil, em
um toca-discos desligado. A caixa se encontra a 10 cm do
centro do disco. Quando o toca-discos é ligado, no instante
t = 0, ele passa a girar com aceleração angular constante
α = 1,1rad/s2 , até que o disco atinja a frequência final
f = 33 rpm que permanece constante. O coeficiente de
atrito estático entre a caixa de fósforos e o disco é
μ e = 0,09. Determine
www.soexatas.com
a) a velocidade angular final do disco, ωf , em rad/s;
b) o instante tf em que o disco atinge a velocidade angular
ωf ;
c) a velocidade angular ωc do disco no instante tc em que a
caixa de fósforos passa a se deslocar em relação ao
mesmo;
d) o ângulo total ∆θ percorrido pela caixa de fósforos
desde o instante t = 0 até o instante t = t c .
Note e adote: Aceleração da gravidade local g = 10 m/s2 ;
π = 3.
4. (Ufpe 2013) Uma partícula se move ao longo do eixo x
de modo que sua posição é descrita por
x ( t ) = −10,0 + 2,0t + 3,0t 2 , onde o tempo está em
segundos e a posição, em metros. Calcule o módulo da
velocidade média, em metros por segundo, no intervalo
entre t = 1,0 s e t = 2,0 s.
5. (Unesp 2013) Um garçom deve levar um copo com água
apoiado em uma bandeja plana e mantida na horizontal,
sem deixar que o copo escorregue em relação à bandeja e
sem que a água transborde do copo.
O copo, com massa total de 0,4 kg, parte do repouso e
descreve um movimento retilíneo e acelerado em relação
ao solo, em um plano horizontal e com aceleração
constante.
Em um intervalo de tempo de 0,8 s, o garçom move o copo
por uma distância de 1,6 m. Desprezando a resistência do
ar, o módulo da força de atrito devido à interação com a
bandeja, em newtons, que atua sobre o copo nesse
intervalo de tempo é igual a
a) 2.
b) 3.
c) 5.
d) 1.
e) 4.
6. (Epcar (Afa) 2013) Duas partículas, a e b, que se
movimentam ao longo de um mesmo trecho retilíneo tem
as suas posições (S) dadas em função do tempo (t),
conforme o gráfico abaixo.
Página 1
A figura abaixo apresenta cinco gráficos de distância (d) ×
tempo (t). Em cada um deles, está assinalado o intervalo de
tempo ( Δt ) em que houve variação de velocidade.
Escolha qual dos gráficos melhor reproduz a situação
descrita acima.
O arco de parábola que representa o movimento da
partícula b e o segmento de reta que representa o
movimento de a tangenciam-se em t = 3 s. Sendo a
velocidade inicial da partícula b de 8 m s, o espaço
percorrido pela partícula a do instante t = 0 até o instante
t = 4 s, em metros, vale
a) 3,0
b) 4,0
c) 6,0
d) 8,0
7. (Espcex (Aman) 2013) Um carro está desenvolvendo
uma velocidade constante de 72 km h em uma rodovia
federal. Ele passa por um trecho da rodovia que está em
obras, onde a velocidade máxima permitida é de 60 km h.
Após 5 s da passagem do carro, uma viatura policial inicia
uma perseguição, partindo do repouso e desenvolvendo
uma aceleração constante. A viatura se desloca 2,1 km até
alcançar o carro do infrator. Nesse momento, a viatura
policial atinge a velocidade de
a) 20 m/s
b) 24 m/s
c) 30 m/s
d) 38 m/s
e) 42 m/s
a)
b)
c)
d)
e)
TEXTO PARA AS PRÓXIMAS 2 QUESTÕES:
Um automóvel desloca-se por uma estrada retilínea plana e
horizontal, com velocidade constante de módulo v.
8. (Ufrgs 2013) Após algum tempo, os freios são acionados
e o automóvel percorre uma distância d com as rodas
travadas até parar. Desconsiderando o atrito com o ar,
podemos afirmar corretamente que, se a velocidade inicial
do automóvel fosse duas vezes maior, a distância
percorrida seria
a) d/4.
b) d/2.
c) d.
d) 2d.
e) 4d.
10. (Uerj 2012) Galileu Galilei, estudando a queda dos
corpos no vácuo a partir do repouso, observou que as
distâncias percorridas a cada segundo de queda
correspondem a uma sequência múltipla dos primeiros
números ímpares, como mostra o gráfico abaixo.
9. (Ufrgs 2013) Em certo momento, o automóvel alcança
um longo caminhão. A oportunidade de ultrapassagem
surge e o automóvel é acelerado uniformemente até que
fique completamente à frente do caminhão. Nesse
instante, o motorista "alivia o pé" e o automóvel reduz a
velocidade uniformemente até voltar à velocidade inicial v.
www.soexatas.com
Página 2
Determine a distância total percorrida após 4 segundos de
queda de um dado corpo. Em seguida, calcule a velocidade
desse corpo em t = 4 s.
11. (G1 - ifce 2012) Na tabela a seguir, estão representados
os espaços [ ∆s] percorridos, em função do tempo [t], por
um móvel que parte com velocidade inicial de 10 cm/s, do
marco zero de uma trajetória retilínea e horizontal.
∆s (cm)
t(s)
0
0
9
1
16
2
21
3
24
4
25
5
Está totalmente correto sobre esse movimento:
a) é uniforme com velocidade constante.
b) o móvel tem velocidade nula no instante t = 5 s.
c) é uniformemente acelerado, com aceleração escalar
2
constante de 4 cm/s .
d) possui velocidade escalar de 25 cm/s no instante t = 5 s.
e) no instante t = 10 s, o móvel se encontra a 100 m da
origem.
12. (Uftm 2012) No resgate dos mineiros do Chile, em
2010, foi utilizada uma cápsula para o transporte vertical de
cada um dos enclausurados na mina de 700 metros de
profundidade. Considere um resgate semelhante ao feito
naquele país, porém a 60 metros de profundidade, tendo a
cápsula e cada resgatado um peso total de 5 × 104 N. O
cabo que sustenta a cápsula não pode suportar uma força
que exceda 7,5 × 104 N. Adote g = 10 m s2 para o local
do resgate. Esse movimento tem aceleração máxima no
primeiro trecho e, a seguir, movimento retardado, com o
motor desligado, até o final de cada ascensão.
Considerando a mesma situação (pista seca e molhada) e
agora a velocidade do veículo de módulo 108 km h
( 30 m s ) , a alternativa correta que indica a distância a
mais para parar, em metros, com a pista molhada em
relação a pista seca é:
a) 6
b) 2
c) 1,5
d) 9
14. (Pucrj 2012) Duas crianças disputam um saco de balas
que se situa exatamente na metade da distância entre elas,
ou seja, d/2, onde d = 20 m. A criança (P) corre com uma
velocidade constante de 4,0 m/s. A criança (Q) começa do
2
repouso com uma aceleração constante a = 2,0 m/s .
Qual a afirmação verdadeira?
a) (P) chega primeiro ao saco de balas, mas a velocidade de
(Q) nesse instante é maior.
b) (Q) chega primeiro ao saco de balas, mas a velocidade de
(P) nesse instante é maior.
c) (P) chega primeiro ao saco de balas, mas a velocidade de
(Q) é igual à de (P), nesse instante.
d) (Q) chega primeiro ao saco de balas, mas a velocidade de
(Q) é igual à de (P), nesse instante.
e) (P) e (Q) chegam ao mesmo tempo ao saco de balas, e a
velocidade de (Q) é igual à de (P).
TEXTO PARA A PRÓXIMA QUESTÃO:
Dados:
Aceleração da gravidade: 10 m/s2 .
Densidade do mercúrio: 13,6 g/cm3 .
Pressão atmosférica: 1,0 ⋅ 105 N/m2 .
Constante eletrostática:
k0 = 1 4 πε0 = 9,0 ⋅ 109 N ⋅ m2 /C2 .
a) Qual deve ter sido o menor tempo para cada ascensão
do elevador?
b) Calcule a potência máxima que o motor deve ter
desenvolvido em cada resgate.
13. (Acafe 2012) Para garantir a segurança no trânsito,
deve-se reduzir a velocidade de um veículo em dias de
chuva, senão vejamos: um veículo em uma pista reta,
asfaltada e seca, movendo-se com velocidade de módulo
36 km h (10 m s ) é freado e desloca-se 5,0 m até parar.
Nas mesmas circunstâncias, só que com a pista molhada
sob chuva, necessita de 1,0 m a mais para parar.
www.soexatas.com
15. (Ufpe 2012) Dois veículos partem simultaneamente do
repouso e se movem ao longo da mesma reta, um ao
encontro do outro, em sentidos opostos. O veículo A parte
com aceleração constante igual a aA = 2,0 m/s2 . O veículo
B, distando d = 19,2 km do veículo A, parte com aceleração
constante igual a aB = 4,0 m/s2 . Calcule o intervalo de
tempo até o encontro dos veículos, em segundos.
16. (Ifsp 2011) Numa determinada avenida onde a
velocidade máxima permitida é de 60 km/h, um motorista
dirigindo a 54 km/h vê que o semáforo, distante a 63
metros, fica amarelo e decide não parar. Sabendo-se que o
sinal amarelo permanece aceso durante 3 segundos
aproximadamente, esse motorista, se não quiser passar no
sinal vermelho, deverá imprimir ao veículo uma aceleração
2
mínima de ______ m/s .
O resultado é que esse motorista ______ multado, pois
______ a velocidade máxima.
Página 3
Assinale a alternativa que preenche as lacunas, correta e
respectivamente.
a) 1,4 – não será – não ultrapassará.
b) 4,0 – não será – não ultrapassará.
c) 10 – não será – não ultrapassará.
d) 4,0 – será – ultrapassará.
e) 10 – será – ultrapassará.
17. (Ufrj 2011) Um avião vai decolar em uma pista
retilínea. Ele inicia seu movimento na cabeceira da pista
com velocidade nula e corre por ela com aceleração média
2
de 2,0 m/s até o instante em que levanta voo, com uma
velocidade de 80 m/s, antes de terminar a pista.
a) Calcule quanto tempo o avião permanece na pista desde
o início do movimento até o instante em que levanta
voo.
b) Determine o menor comprimento possível dessa pista.
18. (Ufsm 2011) Um carro se desloca com velocidade
constante num referencial fixo no solo. O motorista
percebe que o sinal está vermelho e faz o carro parar. O
tempo de reação do motorista é de frações de segundo.
Tempo de reação é o tempo decorrido entre o instante em
que o motorista vê o sinal vermelho e o instante em que ele
aplica os freios. Está associado ao tempo que o cérebro leva
para processar as informações e ao tempo que levam os
impulsos nervosos para percorrer as células nervosas que
conectam o cérebro aos membros do corpo. Considere que
o carro adquire uma aceleração negativa constante até
parar. O gráfico que pode representar o módulo da
velocidade do carro (v) em função do tempo (t), desde o
instante em que o motorista percebe que o sinal está
vermelho até o instante em que o carro atinge o repouso, é
19. (Uesc 2011) Um veículo automotivo, munido de freios
que reduzem a velocidade de 5,0m/s, em cada segundo,
realiza movimento retilíneo uniforme com velocidade de
módulo igual a 10,0m/s. Em determinado instante, o
motorista avista um obstáculo e os freios são acionados.
Considerando-se que o tempo de reação do motorista é de
0,5s, a distância que o veículo percorre, até parar, é igual,
em m, a
a) 17,0
b) 15,0
c) 10,0
d) 7,0
e) 5,0
20. (Epcar (Afa) 2011) Duas partículas, A e B, que executam
movimentos retilíneos uniformemente variados, se
encontram em t = 0 na mesma posição. Suas velocidades, a
partir desse instante, são representadas pelo gráfico
abaixo.
a)
As acelerações experimentadas por A e B têm o mesmo
módulo de 0,2m s2 . Com base nesses dados, é correto
afirmar que essas partículas se encontrarão novamente no
instante
a) 10 s
b) 50 s
c) 100 s
d) 500 s
b)
21. (Uel 2011) No circuito automobilístico de Spa
Francorchamps, na Bélgica, um carro de Fórmula 1 sai da
curva Raidillion e, depois de uma longa reta, chega à curva
Les Combes.
c)
d)
A telemetria da velocidade versus tempo do carro foi
registrada e é apresentada no gráfico a seguir.
e)
www.soexatas.com
Página 4
e)
Qual das alternativas a seguir contém o gráfico que melhor
representa a aceleração do carro de F-1 em função deste
mesmo intervalo de tempo?
22. (Unicamp 2010) A Copa do Mundo é o segundo maior
evento desportivo do mundo, ficando atrás apenas dos
Jogos Olímpicos. Uma das regras do futebol que gera
polêmica com certa frequência é a do impedimento. Para
que o atacante A não esteja em impedimento, deve haver
ao menos dois jogadores adversários a sua frente, G e Z, no
exato instante em que o jogador L lança a bola para A (ver
figura). Considere que somente os jogadores G e Z estejam
à frente de A e que somente A e Z se deslocam nas
situações descritas a seguir.
a)
b)
a) Suponha que a distância entre A e Z seja de 12 m. Se A
parte do repouso em direção ao gol com aceleração de
2
3,0 m/s e Z também parte do repouso com a mesma
aceleração no sentido oposto, quanto tempo o jogador L
tem para lançar a bola depois da partida de A antes que
A encontre Z?
c)
d)
www.soexatas.com
b) O árbitro demora 0,1 s entre o momento em que vê o
lançamento de L e o momento em que determina as
posições dos jogadores A e Z. Considere agora que A e Z
movem-se a velocidades constantes de 6,0 m/s, como
indica a figura. Qual é a distância mínima entre A e Z no
momento do lançamento para que o árbitro decida de
forma inequívoca que A não está impedido?
23. (Mackenzie 2010) Dois automóveis A e B se
movimentam sobre uma mesma trajetória retilínea, com
suas velocidades variando com o tempo de acordo com o
gráfico a seguir. Sabe-se que esses móveis se encontram no
instante 10 s. A distância entre eles, no instante inicial (t = 0
s), era de
Página 5
b) 2.
c) 3.
d) 4.
26. (Unemat 2010) O gráfico em função do tempo mostra
dois carros A e B em movimento retilíneo.
Em t = 0 s os carros estão na mesma posição.
a) 575 m
b) 425 m
c) 375 m
d) 275 m
e) 200 m
24. (Ufpe 2010) Um motorista dirige um carro com
velocidade constante de 80 km/h, em linha reta, quando
percebe uma “lombada” eletrônica indicando a velocidade
máxima permitida de 40 km/h. O motorista aciona os
freios, imprimindo uma desaceleração constante, para
obedecer à sinalização e passar pela “lombada” com a
velocidade máxima permitida. Observando-se a velocidade
do carro em função do tempo, desde o instante em que os
freios foram acionados até o instante de passagem pela
“lombada”, podemos traçar o gráfico a seguir.
Determine a distância percorrida entre o instante t = 0, em
que os freios foram acionados, e o instante t = 3,0 s, em
que o carro ultrapassa a “lombada”. Dê sua resposta em
metros.
Com base na análise do gráfico, é correto afirmar.
a) Os carros vão estar na mesma posição nos instantes t = 0
s e t = 4,0
b) Os carros não vão se encontrar após t = 0, porque a
velocidade de A é maior que a do carro B
c) Os carros vão se encontrar novamente na posição S = 10
m
d) Os carros não vão se encontrar, porque estão em
sentidos contrários.
e) Os instantes em que os carros vão estar na mesma
posição é t = 0 s e t = 8,0 s
27. (Pucrj 2010) Um corredor olímpico de 100 metros rasos
acelera desde a largada, com aceleração constante, até
atingir a linha de chegada, por onde ele passará com
velocidade instantânea de 12 m/s no instante final. Qual a
sua aceleração constante?
2
a) 10,0 m/s
2
b) 1,0 m/s
2
c) 1,66 m/s
2
d) 0,72 m/s
2
e) 2,0 m/s
28. (Ufpr 2010) Um motorista conduz seu automóvel pela
BR-277 a uma velocidade de 108 km/h quando avista uma
barreira na estrada, sendo obrigado a frear (desaceleração
2
de 5 m/s ) e parar o veículo após certo tempo. Pode-se
afirmar que o tempo e a distância de frenagem serão,
respectivamente:
a) 6 s e 90 m.
b) 10 s e 120 m.
c) 6 s e 80 m.
d) 10 s e 200 m.
e) 6 s e 120 m.
25. (G1 - cftmg 2010) Um corpo de massa 2,0 kg parte do
repouso e desce um plano inclinado sem atrito, a partir de
seu topo. O ângulo dessa inclinação com a horizontal é 30°
e seu comprimento é 10 m. O tempo, em segundos, para
esse corpo chegar à base do plano é
a) 1.
www.soexatas.com
29. (Pucrj 2010) Os vencedores da prova de 100 m rasos
são chamados de homem/mulher mais rápidos do mundo.
Em geral, após o disparo e acelerando de maneira
constante, um bom corredor atinge a velocidade máxima
de 12,0 m/s a 36,0 m do ponto de partida. Esta velocidade
Página 6
é mantida por 3,0 s. A partir deste ponto, o corredor
desacelera, também de maneira constante, com a = − 0,5
2
m/s , completando a prova em, aproximadamente, 10 s. É
correto afirmar que a aceleração nos primeiros 36,0 m, a
distância percorrida nos 3,0 s seguintes e a velocidade final
do corredor ao cruzar a linha de chegada são,
respectivamente:
2
a) 2,0 m/s ; 36,0 m; 10,8 m/s.
2
b) 2,0 m/s ; 38,0 m; 21,6 m/s.
2
c) 2,0 m/s ; 72,0 m; 32,4 m/s.
2
d) 4,0 m/s ; 36,0 m; 10,8 m/s.
2
e) 4,0 m/s ; 38,0 m; 21,6 m/s.
30. (Uepg 2010) Sobre o movimento de um corpo que se
desloca de acordo com a equação e = eo + vot +
1 2
at ,
2
assinale o que for correto.
01) A velocidade inicial varia em função do tempo.
02) O deslocamento do corpo é nulo quando o tempo for
zero.
04) Sobre o corpo existe a atuação de uma força constante.
08) Se o espaço inicial for negativo e a aceleração positiva,
haverá um instante em que o corpo passará sobre o
referencial e a sua velocidade será maior que zero.
16) O corpo se desloca numa trajetória retilínea com
velocidade constante.
31. (Uftm 2010) Indique a alternativa que representa
corretamente a tabela com os dados da posição, em
metros, em função do tempo, em segundos, de um móvel,
em movimento progressivo e uniformemente retardado,
com velocidade inicial de valor absoluto 4 m/s e aceleração
2
constante de valor absoluto 2 m/s .
a)
0
1
2
3
s(m)
7
8
7
4
b)
s(m)
0
4
1
7
2
8
3
7
c)
s(m)
0
-4
1
-2
2
-4
3
-10
d)
s(m)
0
0
1
-3
2
-4
3
-3
e)
s(m)
0
0
1
4
2
7
3
8
Em relação ao intervalo de tempo entre os instantes 0 e t’,
é CORRETO afirmar que:
01) a velocidade média entre os instantes 0 e t’, das curvas
representadas nos gráficos, é numericamente igual ao
coeficiente angular da reta que passa pelos pontos que
indicam as posições nestes dois instantes.
02) o movimento do corpo representado no diagrama D, no
intervalo entre 0 e t’, é retilíneo uniformemente
retardado.
04) no instante , o corpo, cujo movimento é representado
no diagrama C, está na origem do referencial. t0 = 0
08) no movimento representado no diagrama B, no
intervalo de tempo entre 0 e t’, o corpo vai se
aproximando da origem do referencial.
16) no movimento representado no diagrama A, a
velocidade inicial do corpo é nula.
32) o movimento do corpo representado no diagrama B, no
intervalo de tempo entre 0 e t’, é retilíneo
uniformemente acelerado.
64) o movimento representado no diagrama B poderia ser o
de um corpo lançado verticalmente para cima.
33. (Fuvest 2010) Na Cidade Universitária (USP), um jovem,
em um carrinho de rolimã, desce a rua do Matão, cujo perfil
está representado na figura a seguir, em um sistema de
coordenadas em que o eixo Ox tem a direção horizontal.
No instante t = 0, o carrinho passa em movimento pela
posição y = y0 e x = 0.
Dentre os gráficos das figuras a seguir, os que melhor
poderiam descrever a posição x e a velocidade v do
carrinho em função do tempo t são, respectivamente,
32. (Ufsc 2010) Os diagramas de posição versus tempo, χ x
t, mostrados a seguir, representam os movimentos
retilíneos de quatro corpos.
a) I e II.
b) I e III.
www.soexatas.com
Página 7
c) II e IV.
d) III e II.
e) IV e III.
34. (Ufpr 2010) Em uma prova internacional de ciclismo,
dois dos ciclistas, um francês e, separado por uma distância
de 15 m à sua frente, um inglês, se movimentam com
velocidades iguais e constantes de módulo 22 m/s.
Considere agora que o representante brasileiro na prova,
ao ultrapassar o ciclista francês, possui uma velocidade
constante de módulo 24 m/s e inicia uma aceleração
2
constante de módulo 0,4 m/s , com o objetivo de
ultrapassar o ciclista inglês e ganhar a prova. No instante
em que ele ultrapassa o ciclista francês, faltam ainda 200 m
para a linha de chegada. Com base nesses dados e
admitindo que o ciclista inglês, ao ser ultrapassado pelo
brasileiro, mantenha constantes as características do seu
movimento, assinale a alternativa correta para o tempo
gasto pelo ciclista brasileiro para ultrapassar o ciclista inglês
e ganhar a corrida.
a) 1 s.
b) 2 s.
c) 3 s.
d) 4 s.
e) 5 s.
TEXTO PARA A PRÓXIMA QUESTÃO:
36. (Ufmg 2009) Numa corrida, Rubens Barrichelo segue
atrás de Felipe Massa, em um trecho da pista reto e plano.
Inicialmente, os dois carros movem-se com velocidade
constante, de mesmos módulos, direção e sentido. No
instante t1 , Felipe aumenta a velocidade de seu carro com
aceleração constante; e, no instante t 2 , Barrichelo
também aumenta a velocidade do seu carro com a mesma
aceleração.
Considerando essas informações, assinale a alternativa cujo
gráfico melhor descreve o módulo da velocidade relativa
entre os dois veículos, em função do tempo
a)
b)
Em uma região plana, delimitou-se o triângulo ABC, cujos
lados AB e BC medem, respectivamente, 300,00 m e 500,00
m. Duas crianças, de 39,20 kg cada uma, partem,
simultaneamente, do repouso, do ponto A, e devem chegar
juntas ao ponto C, descrevendo movimentos retilíneos
uniformemente acelerados.
c)
35. (Mackenzie 2010) Para que logrem êxito, é necessário
que a razão entre as acelerações escalares, a1 e a2, das
respectivas crianças, seja
a)
b)
c)
d)
e)
a1
a2
a1
a2
a1
a2
a1
a2
a1
a2
7
8
8
=
7
7
=
5
5
=
7
583
=
800
=
www.soexatas.com
d)
37. (Ufu 2005) Um carro trafega por uma avenida, com
velocidade constante de 54 km/h. A figura a seguir ilustra
essa situação.
Página 8
Quando o carro encontra-se
se a uma distância de 38 m do
semáforo, o sinal muda de verde para amarelo,
permanecendo assim por 2,5 s. Sabendo que o tempo de
reação do motorista é de 0,5 s e que a máxima aceleração
2
(em módulo) que o carro consegue ter é de 3 m/s
m ,
responda:
a) verifique se o motorista conseguirá parar o carro
(utilizando a desaceleração máxima) antes de chegar ao
semáforo. A que distância do semáforo ele conseguirá
parar?
b) considere que, ao ver o sinal mudar de verde para
amarelo, o motoristaa decide acelerar, passando pelo sinal
amarelo. Determine se ele conseguirá atravessar o
cruzamento de 5 m antes que o sinal fique vermelho.
38. (Ufms 2005) Um móvel tem sua velocidade registrada
conforme gráfico a seguir. É correto afirmar que
01) entre 0 e 10s, o movimento é uniforme com velocidade
de 43,2 km/h.
02) entre 10s e 25s, o movimento é uniformemente variado
2
com aceleração de 8,0m/s .
04) entre 10s e 25s, o deslocamento do móvel foi de 240m.
08) entre 0s e 10s, o deslocamento do móvel (em metros)
pode ser dado por ∆S = 10t onde t é dado em
segundos.
16) entre 10s e 25s a trajetória do móvel é retilínea.
39. (Unirio 1998) Caçador nato, o guepardo é uma espécie
de mamífero que reforça a tese de que os animais
predadores estão entre os bichos mais velozes da natureza.
Afinal, a velocidade é essencial para os que caçam outras
espécies em busca de alimentação. O guepardo é capaz de,
saindo do repouso e correndo em linha reta, chegar à
velocidade de 72km/h em apenas 2,0 segundos, o que nos
permite concluir, em tal situação, ser o módulo de sua
2
aceleração média, em m/s , igual a:
a) 10
b) 15
c) 18
d) 36
e) 50
40. (Mackenzie 1998) Um automóvel parte do repouso
com M.R.U.V. e, após percorrer a distância d, sua
www.soexatas.com
velocidade é v. A distância que esse automóvel deverá
ainda percorrer para que sua velocidade seja 2v será:
a) d/2
b) d
c) 2d
d) 3d
e) 4d
41. (Udesc 1997) Um bloco parte do repouso no ponto A
da figura e percorre o trajeto entre os pontos A e B, sobre
um plano horizontal situado a 0,45 metros de altura do
2
solo, obedecendo à equação horária d = 2 t (d em metros e
t em segundos). Depois de passar pelo ponto B,
B o bloco
segue em queda livre, indo atingir o solo no ponto D.
Despreze atritos e considere a distância entre os pontos A e
B igual a 2 metros.
RESPONDA ao solicitado pelo bloco no mostrando o
raciocínio envolvido.
a) DÊ a trajetória descrita pelo bloco no
n movimento entre B
e D.
b) CALCULE a aceleração constante do bloco no trecho AB.
c) CALCULE a velocidade do bloco no ponto B.
d) CALCULE a distância entre os pontos C e D.
Parte II
1. (Unifesp 2009) Um avião a jato, para transporte de
passageiros, precisa atingir a velocidade de 252 km/h para
decolar em uma pista plana e reta. Para uma decolagem
segura, o avião, partindo do repouso, deve percorrer uma
distância máxima de 1 960 m até atingir aquela velocidade.
vel
Para tanto, os propulsores devem imprimir ao avião uma
aceleração mínima e constante de:
2
a) 1,25 m/s .
2
b) 1,40 m/s .
2
c) 1,50 m/s .
2
d) 1,75 m/s .
2
e) 2,00 m/s .
2. (Unifesp 2008) A função da velocidade em relação ao
tempo de um ponto material em trajetória retilínea, no SI, é
v = 5,0 - 2,0 t. Por meio dela pode-se
pode afirmar que, no
instante t = 4,0 s, a velocidade desse ponto material tem
módulo
a) 13 m/s e o mesmo sentido da velocidade
veloci
inicial.
b) 3,0 m/s e o mesmo sentido da velocidade inicial.
Página 9
c) zero, pois o ponto material já parou e não se movimenta
mais.
d) 3,0 m/s e sentido oposto ao da velocidade inicial.
e) 13 m/s e sentido oposto ao da velocidade inicial.
3. (Unifesp 2005) A velocidade em função do tempo de um
ponto material em movimento retilíneo uniformemente
variado, expressa em unidades do SI, é v = 50 - 10t. Pode-se
afirmar que, no instante t = 5,0 s, esse ponto material tem
a) velocidade e aceleração nulas.
b) velocidade nula e daí em diante não se movimenta mais.
2
c) velocidade nula e aceleração a = - 10 m/s .
d) velocidade nula e a sua aceleração muda de sentido.
e) aceleração nula e a sua velocidade muda de sentido.
Parte III: como cai na UNESP
1. (Unesp 2013) Um garçom deve levar um copo com água
apoiado em uma bandeja plana e mantida na horizontal,
sem deixar que o copo escorregue em relação à bandeja e
sem que a água transborde do copo.
O copo, com massa total de 0,4 kg, parte do repouso e
descreve um movimento retilíneo e acelerado em relação
ao solo, em um plano horizontal e com aceleração
constante.
4. (Unifesp 2004)
Em um teste, um automóvel é colocado em movimento
retilíneo uniformemente acelerado a partir do repouso até
atingir a velocidade máxima. Um técnico constrói o gráfico
onde se registra a posição x do veículo em função de sua
velocidade v. Através desse gráfico, pode-se afirmar que a
aceleração do veículo é
2
a) 1,5 m/s .
2
b) 2,0 m/s .
2
c) 2,5 m/s .
2
d) 3,0 m/s .
2
e) 3,5 m/s .
5. (Unifesp 2003) Uma ambulância desloca-se a 108 km/h
num trecho plano de uma rodovia quando um carro, a 72
km/h, no mesmo sentido da ambulância, entra na sua
frente a 100 m de distância, mantendo sua velocidade
2
constante. A mínima aceleração, em m/s , que a
ambulância deve imprimir para não se chocar com o carro
é, em módulo, pouco maior que
a) 0,5.
b) 1,0.
c) 2,5.
d) 4,5.
e) 6,0.
www.soexatas.com
Em um intervalo de tempo de 0,8 s, o garçom move o copo
por uma distância de 1,6 m. Desprezando a resistência do
ar, o módulo da força de atrito devido à interação com a
bandeja, em newtons, que atua sobre o copo nesse
intervalo de tempo é igual a
a) 2.
b) 3.
c) 5.
d) 1.
e) 4.
2. (Unesp 2006) Uma composição de metrô deslocava-se
com a velocidade máxima permitida de 72 km/h, para que
fosse cumprido o horário estabelecido para a chegada à
estação A. Por questão de conforto e segurança dos
passageiros, a aceleração (e desaceleração) máxima
2
permitida, em módulo, é 0,8 m/s . Experiente, o condutor
começou a desaceleração constante no momento exato e
conseguiu parar a composição corretamente na estação A,
no horário esperado. Depois de esperar o desembarque e o
embarque dos passageiros, partiu em direção à estação B, a
próxima parada, distante 800 m da estação A. Para
percorrer esse trecho em tempo mínimo, impôs à
composição a aceleração e desaceleração máximas
permitidas, mas obedeceu a velocidade máxima permitida.
Utilizando as informações apresentadas, e considerando
que a aceleração e a desaceleração em todos os casos
foram constantes, calcule
a) a distância que separava o trem da estação A, no
momento em que o condutor começou a desacelerar a
composição.
b) o tempo gasto para ir da estação A até a B.
Página 10
3. (Unesp 2005) Um corpo parte do repouso em
movimento uniformemente acelerado. Sua posição em
função do tempo é registrada em uma fita a cada segundo,
a partir do primeiro ponto à esquerda, que corresponde ao
instante do início do movimento. A fita que melhor
representa esse movimento é:
b) Qual deve ser a aceleração média da coruja, a partir do
ponto P, para que ela consiga capturar o rato no momento
em que ele atinge a entrada de sua toca?
6. (Unesp 2001) Uma norma de segurança sugerida pela
concessionária de uma autoestrada recomenda que os
motoristas que nela trafegam mantenham seus veículos
separados por uma "distância" de 2,0 segundos.
a) Qual é essa distância, expressa adequadamente em
metros para veículos que percorrem a estrada com a
velocidade constante de 90km/h?
b) Suponha que, nessas condições, um motorista freie
bruscamente seu veículo até parar, com aceleração
2
constante de módulo 5,0m/s , e o motorista de trás só
reaja, freando seu veículo, depois de 0,50s. Qual deve ser a
aceleração mínima do veículo de trás para não colidir com o
da frente?
4. (Unesp 2004) Um veículo está rodando à velocidade de
36 km/h numa estrada reta e horizontal, quando o
motorista aciona o freio. Supondo que a velocidade do
veículo se reduz uniformemente à razão de 4 m/s em cada
segundo a partir do momento em que o freio foi acionado,
determine
a) o tempo decorrido entre o instante do acionamento do
freio e o instante em que o veículo para.
b) a distância percorrida pelo veículo nesse intervalo de
tempo.
5. (Unesp 2003) Um rato, em sua ronda à procura de
alimento, está parado em um ponto P, quando vê uma
coruja espreitando-o. Instintivamente, ele corre em direção
à sua toca T, localizada a 42 m dali, em movimento retilíneo
uniforme e com velocidade v = 7 m/s. Ao ver o rato, a
coruja dá início à sua caçada, em um mergulho típico, como
o mostrado na figura.
Ela passa pelo ponto P, 4 s após a partida do rato e a uma
velocidade de 20 m/s.
a) Considerando a hipótese de sucesso do rato, em quanto
tempo ele atinge a sua toca?
www.soexatas.com
7. (Unesp 2000) Ao executar um salto de abertura
retardada, um para-quedista abre seu para-quedas depois
de ter atingido a velocidade, com direção vertical, de
55m/s. Após 2s, sua velocidade cai para 5m/s.
a) Calcule o módulo da aceleração média do para-quedista
nesses 2s.
b) Sabendo que a massa do para-quedista é 80kg, calcule o
módulo da força de tração média resultante nas cordas que
sustentam o para-quedista durante esses 2s.
(Despreze o atrito do ar sobre o para-quedista e considere
2
g=10m/s .)
8. (Unesp 1998) Uma bola desloca-se em trajetória
retilínea, com velocidade constante, sobre um plano
horizontal transparente. Com o sol a pino, a sombra da bola
é projetada verticalmente sobre um plano inclinado, como
mostra a figura a seguir.
Nessas condições, a sombra desloca-se sobre o plano
inclinado em
Página 11
a) movimento retilíneo uniforme, com velocidade de
módulo igual ao da velocidade da bola.
b) movimento retilíneo uniforme, com velocidade de
módulo menor que o da velocidade da bola.
c) movimento retilíneo uniforme, com velocidade de
módulo maior que o da velocidade da bola.
d) movimento retilíneo uniformemente variado, com
velocidade de módulo crescente.
e) movimento retilíneo uniformemente variado, com
velocidade de módulo decrescente.
O movimento representado pelo gráfico pode ser o de uma
a) esfera que desce por um plano inclinado e continua
rolando por um plano horizontal.
b) criança deslizando num escorregador de um parque
infantil.
c) fruta que cai de uma árvore.
d) composição de metrô, que se aproxima de uma estação
e para.
e) bala no interior de um cano de arma, logo após o
disparo.
9. (Unesp 1996) Um jovem afoito parte com seu carro, do
repouso, numa avenida horizontal e retilínea, com uma
2
aceleração constante de 3 m/s . Mas, 10 segundos depois
da partida, ele percebe a presença da fiscalização logo
adiante. Nesse instante ele freia, parando junto ao posto
onde se encontram os guardas.
a) Se a velocidade máxima permitida nessa avenida é 80
km/h, ele deve ser multado? Justifique.
b) Se a freagem durou 5 segundos com aceleração
constante, qual a distância total percorrida pelo jovem,
desde o ponto de partida ao posto de fiscalização?
10. (Unesp 1996) A figura representa o gráfico velocidade ×
tempo do movimento retilíneo de um móvel.
a) Qual o deslocamento total desse móvel?
b) Esboce o gráfico posição × tempo correspondente,
supondo que o móvel partiu da origem.
11. (Unesp 1995) O gráfico adiante mostra como varia a
velocidade de um móvel, em função do tempo, durante
parte de seu movimento.
www.soexatas.com
Página 12
Download