Capacitância Objetivos: ● ● ● A natureza dos capacitores e como determinar a quantidade que mede sua habilidade de armazenar carga? Com os capacitores de comportam em circuitos? Como determinar a quantidade de energia armazenada em um capacitor? Sobre a Apresentação Todas as gravuras, senão a maioria, são dos livros: ● ● ● Sears & Zemansky, University Physics with Modern Physics – ed. Pearson, 13a edition Wolfgang Bauer and Gary D. Westfall, University Physics with Modern Physics – ed. Mc Graw Hill, Michigan State University, 1a edition Halliday & Resnick, Fundamentals of Physics, 9a edition. O Capacitor “Um capacitor é um dispositivo que armazena energia potencial elétrica e carga elétrica.” (Sears) Mecanicamente: Um capacitor consiste de dois corpos metálicos eletricamente isolados. + + + + + - - - - - - - - V + + + - O trabalho realizado para mover as cargas é armazenado na forma de Energia Potencial Elétrica. + Para armazenar energia este dispositivo deve ser conectado a uma fonte (como uma bateria) para bombear as cargas elétricas de um metal para o outro. Tipos de Capacitores Eletrolíticos, cerâmicos, tântalo, polipropileno, mica, poliestireno, …, “Super Capacitores” Super Capacitores http://br.mouser.com/Passive-Components/Capacitors/Supercapacitors-Ultracapacitors/_/N-5x76s Aplicações Capacitor de Placas Paralelas Considere um capacitor constituído de duas placas de área A, paralelas e separadas por uma distância d. Para os cálculos a seguir, efeitos de borda do campo elétrico na placa serão ignorados. Capacitor de Placas Paralelas Primeiro determine o campo elétrico no interior das placas usando uma superfície Gaussiana que contenha toda a carga da placa superior, como ilustrado abaixo. Em seguida, determine a diferença de potencial elétrico entre as duas placas pela integral do campo elétrico pelo caminho da seta azul, Tomando o potencial na placa negativo omo nulo, e na positiva como V: Capacitor de Placas Paralelas Eliminando o campo elétrico na expressão da carga encontramos que este se relaciona com o potencial pela expressão: A constante à frente da variação de potencial depende apenas de características do capacitor como área das placas e distância entre elas. Esta constante é chamada de Capacitância: A equação da carga fica: Unidade para Capacitância: Capacitor de Placas Cilíndricas A figura ao lado representa uma vista superior de um capacitor de placas cilíndricas de altura h, raios interno e externo, a e b, e carregado de uma carga q. De forma semelhante ao feito anteriormente, o campo entre as placas deve ser determinada pela Lei de Gauss, sobre a superfície Gaussiana (cilindro em vermelho), Como o campo é variável com o raio, este deve ser empregado no cálculo da diferença de potencial entre as cargas é calculado pela integral de linha, pelo caminho verde, Capacitor de Placas Cilíndricas Portanto, tomando o potencial na placa negativa como zero, para um capacitor de placas cilíndricas, ou seja, com Como no capacitor de placas paralelas, a capacitância depende das características geométricas das placas, tais como os raios e da altura do capacitor. Capacitor de Placas Esféricas A figura a baixo representa um corte de um capacitor de placas esféricas concêntricas, de raios ra e rb. A carga nas placas são ±Q. Novamente o campo é variável com o raio r, e seu valor pode ser encontrado pela Lei de Gauss sobre a superfície Gaussiana (esfera em roxo) de raio r: A diferença de potencial entre as cargas é calculado pela integral de linha, pelo caminho verde, Associação de Capacitores Paralelo: No circuito abaixo, três capacitores são associados em paralelo. Para determinar a capacitância equivalente, observe que todos os capacitores estão sobre o mesmo potencial elétrico, e portanto suas cargas serão: e a carga total armazenada nos capacitores, Para n capacitores em paralelo, Associação de Capacitores Série: No circuito abaixo, três capacitores são associados em série. Neste caso, o que se tem em comum nos capacitores é a carga elétrica. Devido a sua distribuição em série, todos os capacitores serão carregados com a mesma carga, porem potenciais diferentes: A soma dos potenciais nos capacitores deve ser igual ao potencial da fonte, Para n capacitores em série, Exemplo No circuito abaixo os capacitores C1 = C6 = 3,0µF; C3 = C5 = 2 C2 = 2 C4 = 4,0µF. Determine a capacitância equivalente e as tensões em cada capacitor. O problema consiste em encontrar padrões de associação em série e paralelo no circuito. Antes de começar a resolver o problema uma breve dissertação sobre dispositivos em série e paralelo. Série/Paralelo Série: Dispositivos em série, significa que por eles deve passar a mesma corrente, como ilustra nos 3 circuitos abaixo: Observe que nos circuitos exemplos acima, não existem nós (junção de três ou mais fios) entre os dispositivos, de forma que a corrente possui apenas um caminho para seguir, que é através dos dispositivos em série. Paralelo: Já os dispositivos em paralelo possuem o mesmo potencial elétrico sobre eles, o que significa que compartilham os mesmos nós: Como estudamos no capítulo passado, o potencial em um condutor é constante, e portanto em qualquer ponto do fio metálico o potencial é sempre o mesmo.