EXERCÍCIOS RESOLVIDOS MATEMÁTICA 2º GRAU Exercícios de Matemática 2º Grau Exercícios: Matemática - Resolvidos Assunto: Exercícios Resolvidos de Matemática EXERCÍCIOS DE MATEMÁTICA COMUNS EM CONCURSOS PÚBLICOS RESOLVIDOS E COMENTADOS 2 Exercícios: Matemática - Resolvidos 3 Exercícios: Matemática - Resolvidos EXERCÍCIOS 1. Uma torneira enche um tanque em 3 horas e uma segunda torneira pode fazê-lo em 15 horas. Qual será o tempo necessário para encher 2/3 do reservatório se as duas torneiras forem ligadas simultaneamente? SOLUÇÃO • x representa a potência dela. Outra torneira leva 15 horas, 3 x 2 representa a potência dela. Trabalho a realizar corresponde a 15 3 Uma torneira leva três horas, Cálculo; Potência 1 + Potência 2= trabalho realizado x x 2 + = 3 15 3 • multiplique tudo pelo MMC que é 15; ( x x 2 + = )*15 3 15 3 10 5 x= 6 3 observe que o tempo é dado em hora, logo já sabemos que x representa o tempo, então 5 o tempo gasto será de horas. Vamos descobrir o tempo em uma linguagem mais 3 comum, substituindo horas por minutos. 5x + x= 10 • 6x=10 x= 5 300 * 60 minutos = minutos que é equivalente a 1 hora e 40 minutos. 3 3 ======================================================================= 2. Recebi uma quantia e gastei 3/7 da mesma. Sabendo que me restam R$ 6000,00, qual foi a quantia que recebi? SOLUÇÃO Vamos representar a mesada por W. W= Mesada 4 Exercícios: Matemática - Resolvidos 3 3 3 da mesada, ou seja de W, que representamos da seguinte maneira: W. 7 7 7 3 4 • W para W, faltam W, que é o resto. 7 7 4 • Sobraram 6000, logo, W= 6000 7 Cálculo: • Ele gastou 4 6000 W= 6000 W= * 7 7 4 W= 1500 * 7 W= R$ 10.500,00 ======================================================================= 3. Com 240 litros, preenchi 5/12 de um tanque. Quantos litros são necessários para encher o tanque? SOLUÇÃO Vamos representar a capacidade do tanque pela letra Y Y= capacidade 5 • Ele colocou 240 litros e ocupou da capacidade do tanque, logo. 12 5 240 * 12 Y= 240 Y= Y= 48*12 Y= 576 12 5 • A capacidade do tanque é para 576 litros d’água. ======================================================================= 4. Três irmãos receberam uma herança. Ao mais velho coube 1/3 dessa herança. Ao mais jovem couberam ¾ do resto, ficando R$ 1200,00 para o terceiro irmão. Qual foi o valor da herança deixada? SOLUÇÃO Herança = X Mais velho = 1 X 3 Mais jovem = 3 do resto 4 5 Resto = X - 1 X 3 Exercícios: Matemática - Resolvidos Outro Irmão = 1200 Cálculo: 1 3 1 X - ( X - X) = 1200 3 4 3 X- (X - 1 3 1 X - ( X - X) = 1200)* 12 3 4 3 8X – 9X + 3X = 1200*12 • Obs. Multiplique tudo pelo MMC, que é 12 12X – 4X - 9( X - 2X= 1200*12 X= 1 X)= 1200*12 3 1200 * 12 2 X= 7200 O valor total da Herança era R$ 7.200,00. ======================================================================= 5. Maria saiu de casa para fazer compras. Gastou 2/7 do que possuía no armazém e ¼ do que restou numa butique. Sabendo que Maria chegara em casa com R$ 3000,00, com que quantia Maria saiu de casa? SOLUÇÃO O dinheiro que ela saiu de casa é K Dinheiro = K 2 1 Supermercado = K Loja de Tecidos = do resto Chegou em casa com R$ 3000,00 7 4 2 1 2 Resto = K - K Loja de Tecidos = (K - K) 7 4 7 Cálculo: K- (K - 2 1 2 K(K - K)= 3000 7 4 7 Obs. Multiplique tudo pelo MMC, para facilitar. 2 1 2 K(K - K)= 3000 )*28 7 4 7 28K – 8K – 7K + 2K = 28*3000 15K= 28*3000 K= 28 * 3000 15 K= 28 * 200 K= 5.600 • Ela saiu de casa com R$ 5.600,00. ======================================================================= 6 Exercícios: Matemática - Resolvidos 6. Carpinteiro fez num primeiro dia de trabalho, 2/9 de uma cerca; no segundo dia fez 5/8 desta mesma cerca. Sabendo que no terceiro dia ele fez 220 centímetros e completou a obra, qual é o comprimento desta cerca? SOLUÇÃO Comprimento do muro = X 2 5 1º dia = X 2º dia = X 9 8 3º dia = 220 centímetros Cálculo: 2 5 X + X + 220= X 9 8 5 2 (220= X - X - X)* 72 8 9 220= X - 5 2 X- X 8 9 Obs. Multiplique pelo MMC. 220 *72= 72X – 45X – 16X X= 72 * 220 11 • O comprimento do muro é 1440 centímetroS ou 14,40 metros. X= 20 * 72 11X= 72 * 220 X= 1440 ======================================================================= 7. Fui fazer compras com uma certa quantia de dinheiro. 1/8 desta quantia foi gasto com açougue, ¼ no armazém, a farmácia consumiu a metade do dinheiro e sobraram-me R$ 1000,00. Qual era a quantia inicial? SOLUÇÃO O dinheiro que ela levou = B 1 1 Açougue = B Armazém = B 8 4 1000 1 1 1 B - B - B= 1000 8 4 2 B- (B • Farmácia = 1 B 2 Sobrou = Obs. Multiplique pelo MMC. 1 1 1 B - B - B= 1000)* 8 8 4 2 8B - B - 2B – 4B= 8000 B= 8000 A quantia inicial era R$ 8.000,00 ======================================================================= 7 Exercícios: Matemática - Resolvidos 8. Qual é o número de alunos de uma escola sabendo-se que os homens somam 600 alunos e as mulheres representam 2/3 de todos os alunos da escola? SOLUÇÃO O total de alunos = Q • Se as mulheres são Mulheres = 2 Q 3 Homens = 600 2 1 Q, os homens só podem ser Q, pois, Q são todos os alunos e : 3 3 2 1 Q + Q= Q 3 3 Homens = 600 1 Q= 600 3 • 1Q= 600*3 1 Q= Homens, 3 substituindo teremos, Q= 1800 Na escola estudam 1800 alunos. ======================================================================= 9. Qual é o tempo gasto por duas torneiras trabalhando juntas para encher uma caixa d’água; sabendo que individualmente uma leva 5 horas e a outra 7 horas? SOLUÇÃO • Similar ao exercício 1. P . A 2ª 5 P torneira leva 7 horas para encher o mesmo reservatório sozinha, logo sua potência será . 7 Devemos colocar as duas juntas para encher o reservatório todo, ou seja, 1 reservatório, logo o trabalho a ser realizado é 1. 1ª torneira leva 5 horas para encher sozinha o reservatório, logo a potência dela será Potência 1 + Potência 2= trabalho realizado P P P P + =1 ( + = 1 )*35 7P + 5P= 35 12P= 35 5 7 5 7 • P= 35 horas 12 Multiplicando por 60 para sabermos a quantidade de minutos: 35 P= *60 P= 5*35 minutos P= 175 minutos P= 2 horas e 55 minutos 12 ======================================================================= 8 Exercícios: Matemática - Resolvidos 10. Uma torneira enche um tanque em 4 horas e outra em 6 horas. As duas torneiras ligadas simultaneamente, encherão o tanque em quanto tempo? SOLUÇÃO Similar ao anterior, mesmo raciocínio; 1 1 G + G= 1 4 6 G= 12 horas 5 ( G= 1 1 G + G= 1 )*12 4 6 12 * 60 minutos 5 3G + 2G= 12 5G= 12 G= 144 minutos G= 2 horas e 24 minutos. ======================================================================= 11. Se uma torneira encher um reservatório em 2 horas e outra o esvaziar em 3 horas. Estando as duas simultaneamente abertas, qual será o tempo necessário para encher o reservatório? SOLUÇÃO K . 2 K 2ª Torneira esvazia o tanque em 3 horas, logo sua potência será - , observe que esta faz 3 justamente o contrário da primeira, ou seja, a primeira enche e ela esvazia, logo, ela é uma potência negativa. O trabalho a ser realizado é 1, pois precisamos encher 1 tanque. 1ª torneira enche o tanque em duas horas, logo sua potência será Cálculo. Potência 1 + Potência 2= trabalho realizado K K K K + (- )= 1 =1 2 3 2 3 ( K K = 1)*6 2 3 3K - 2K= 6 K= 6 horas • O tempo necessário será de 6 horas. ======================================================================= 9 Exercícios: Matemática - Resolvidos 12. Subtraindo-se 3/8 de um número, obtermos 60. Qual é o número? SOLUÇÃO O número é X 3 3 X - X= 60 (X - X= 60)*8 8 8 60 * 8 X= X= 12*8 5 • O número é 96 8X – 3X= 60*8 5X= 60*8 X= 96 ======================================================================= 13. Comprei uma moto por R$ 6000,00, dando de entrada uma quantia equivalente a um número cuja soma entre ele e seus 5/6 é R$ 2.200,00. Se o restante for pago em prestações mensais de R$ 200,00, quanto tempo será necessário para quitar o resto da dívida? SOLUÇÃO Preço da moto = 6000 Na entrada tem uma charadinha simples. X= entrada 5 X + X= 2200 Obs. Multiplique tudo pelo MMC. 6 5 (X + X= 2200)* 6 6X + 5X= 2200*6 11X= 2200*6 6 2200 * 6 X= X= 200*6 X= 1200 11 Agora que achamos o valor da entrada, podemos calcular o restante e dividir por 200 para ver em quantas parcelas vamos pagar. Restante = 6000- entrada Restante = 6000- X Restante = 6000 - 1200 Re s tan te Quantidade de Parcelas = 200 Restante = 4800 Quantidade de parcelas = 4800 200 Quantidade de parcelas = 24 ======================================================================= 10 Exercícios: Matemática - Resolvidos 14. Somando minha idade a ¾ da idade de gêmeo, obtermos 35 anos. Há quantos anos eu nasci? SOLUÇÃO • Se for meu irmão gêmeo, logo temos a mesma idade. Idade = K 3 K= 35 4 K+ K= 140 7 (K + 3 K= 35)* 4 4 4K + 3K= 140 7K= 140 K= 20 ======================================================================= 15. A soma da idade do tio e do sobrinho é 52. Descubra a idade de cada um, sabendo que o sobrinho tem a idade correspondente a 1/3 da idade do tio? SOLUÇÃO 1 idade do filho = W 3 Idade do pai = W W+ 1 W= 52 3 (W + W= 1 1 W= *39 3 3 1 W= 13 3 • 1 W= 52)* 3 3 52 * 3 4 4W=52 * 3 (idade do pai)+(idade do filho)= 52 anos 3W + W= 52*3 W= 13 * 3 W= 39 A idade do pai é 39 anos e a idade do filho corresponde a 13 anos. ======================================================================= 16. Meu salário diminuído de 20%, corresponderá a R$ 720,00. Qual é o meu salário? SOLUÇÃO • Meu salário = X 720 X – 20%X= 720 X= 100%X 11 100%X – 20%X= Exercícios: • • Matemática - Resolvidos 80%X= 720 Se eu retirar 20% de alguma coisa, é óbvio que o que sobrar será correspondente a 80% desta mesma coisa. Cálculo. Regra de Três % Valor 80 = 720 100 X 80X= 720 * 100 X= 720 * 100 80 X = 9* 100 X= 900 • Meu salário é R$ 900,00, mixaria não é? ======================================================================= 17. Gastei 1/3 do meu dinheiro para pagamento de dívidas atrasadas, do que restou, coloquei 2/3 na poupança e ainda fiquei com R$ 400,00. Qual era o valor correspondente a meu dinheiro? SOLUÇÃO Similar ao anterior. • Salário = Z Aluguel = 1 Z 3 Poupança = 2 1 (Z - Z ) 3 3 Resto = 400 Cálculo Aluguel + poupança + resto = salário 1 2 1 Z+ (Z - Z ) + 400= Z 3 3 3 1 2 Z+ Z3 3 1 2 ( Z+ Z3 3 2 Z + 400= Z 9 3Z + 6Z – 2Z + 9 * 400= 9Z 2Z= 400 * 9 Z= 200 * 9 • 2 Z + 400= Z)* 9 9 400*9 = 9Z – 3Z - 6Z + 2Z 400 * 9 Z= 2 Z= 1800 A resposta é R$ 1.800,00 ======================================================================= 12 Exercícios: Matemática - Resolvidos 18. A soma da idade da idade do pai com a do filho é igual a 55 anos. Determine a idade de cada um sabendo que a idade do filho é 3/8 da idade do pai? SOLUÇÃO • A soma da idade dos dois é 55 • A idade do mais velho é X Cálculo; 3 X + X= 55 8 X= • (X + 3 X= 55)* 8 8 A de um corresponde a 8X + 3X= 55 * 8 3 da idade do outro 8 11X= 55*8 55 * 8 X= 5*8 X= 40 11 O mais velho tem 40 anos e o mais novo tem 15 anos. ======================================================================= 19. José recebeu o pagamento de um acerto feito com a firma onde trabalha. Gastou o dinheiro da seguinte maneira: 1/3 pagou dívidas, ¼ comprou presentes para sua esposa e sobrou-lhe R$ 500,00. Qual era o valor do acerto? SOLUÇÃO • • Similar aos anteriores, por isto vou fazer o cálculo X= o que ele recebeu Sobra = 500 Cálculo. 1 1 X - X − X = 500 3 4 5X= 500*12 • (X - X= 1 1 X − X = 500)* 12 3 4 500 *12 5 X= 100*12 12X-4X-3X= 500*12 X= 1200 A resposta é R$ 1.200,00. ======================================================================= 20. Maria percorreu numa primeira parte, um quinto da maratona, na segunda parte percorreu 2000 m e ainda ficaram faltando 2/3 da maratona a serem percorridos até o final da corrida. Quantos metros compreendia todo o percurso? 13 Exercícios: Matemática - Resolvidos SOLUÇÃO • X= comprimento da maratona • Ficaram faltando = 2000 metros Cálculo; 1 2 1 X- X - (X - X )= 2000 5 3 5 (X - (X- 1 X 5 2ª parte = 2 1 (X - X ) 3 5 1 2 1 X - (X - X )= 2000 )* 15 5 3 5 1 2 2 X = 2000 )* 15 X- X+ 5 3 15 2000 * 15 4 A resposta é 7.500 metros; 4X= 2000*15 • 1ª parte = X= 15X - 3X -10X + 2X= 2000*15 X= 500 * 15 X= 7.500 ======================================================================= 21. Dois datilógrafos estão trabalhando simultaneamente para cumprir uma determinada tarefa. Quanto tempo será necessário, se um deles sozinho a realizaria em 20 horas e o outro, trabalhando sozinho a realizaria em 12 horas? SOLUÇÃO Este é similar aos exercícios 1,9, 10, 11... • Temos duas potências: 1º datilógrafo, potência • Trabalho = 1, pois, trata-se de uma 1 tarefa. x x ; 2º datilógrafo, potência . 20 12 Potência 1 + Potência 2= trabalho realizado x x + =1 20 12 X= 60 8 X= 15*30 ( x x + = 1)* 60 20 12 X= 15 Horas 2 3x + 5x= 60 X= X= 450 8x= 60 15 * 60 minutos 2 X= 7 horas e 30 minutos ======================================================================= 14 Exercícios: 22. Matemática - Resolvidos Um fruticultor, para encher uma camioneta de melões, demora 45 minutos. Sua mulher, para vender todos os melões, estando a camioneta cheia, demora 60 minutos. Se os dois iniciarem as atividades juntos, em quanto tempo o veículo estará cheio? SOLUÇÃO Este exercício é similar ao anterior • • X 4x Fruticultor = 1X Mulher = - 3 = (negativo devido ela está trabalhando em 3 4 sentido contrário ao de seu marido) Trabalho = 1, pois, só se refere a encher uma camioneta. Potência 1 + Potência 2= trabalho realizado 4x 4x X + (- )= 1 (X + (- )= 1)*3 3x – 4x= 3 -x= 3 horas 3 3 Obs. Como não existe tempo negativo, então podemos dizer que a resposta será: x= 3 horas ======================================================================= 23. Uma torneira enche um tanque em 9 horas e outra em 12 horas. Essas duas funcionando juntas, mais uma terceira, o tanque ficará cheio em 4 horas. Quanto tempo a terceira torneira necessita para encher o mesmo tanque funcionando sozinha? SOLUÇÃO • • • Observe que neste exercício, não o tempo que estamos procurando e sim, uma das potências, portanto, a variável K, deve representar este valor. 1 1 1 1ª potência = 2ª potência = 3ª potência = Tempo = 4 9 12 K horas Trabalho 1 Potência Total = = tempo 4 Potência 1 + Potência 2 + potência 3= potência total 1 1 1 1 1 1 1 1 + + = ( + + = )* 36K 9 12 K 4 9 12 K 4 36= 9K-4K-3K 2K=36 4K+3K+36=9K K= 15 36 2 K= 18 Exercícios: • Matemática - Resolvidos Como os denominadores representam o tempo que cada torneira leva para fazer o trabalho sozinha, logo, o tempo gasto pela terceira torneira será 18 horas. ======================================================================= 24. João recebeu seu 13º salário e resolveu gastá-lo da maneira seguinte: metade guardou na caderneta de poupança; 3/5 do que sobrou, comprou presentes para a família e o restante, R$ 50,00, usou para a ceia de natal. Quanto ele recebeu de 13º salário? SOLUÇÃO Este exercício é similar ao exercício 17, portanto farei somente o cálculo. Salário =X X- 1 3 1 X − ( X − X ) = 50 2 5 2 10X – 5X – 6X + 3X= 500 1 3 1 X − ( X − X ) = 50 )*10 2 5 2 500 2X= 500 X= 2 (X - X= 250 ======================================================================= 25. Ivete usou 2/5 de seu salário em alimentação, 1/3 em aluguel e outras contas, gastando também R$ 200,00 com roupas. Quando percebeu, só tinha R$ 300,00, portanto, qual era o salário recebido por Ivete? SOLUÇÃO Este é similar ao 20. Salário = S 2 1 S − S − S − 200 = 300 5 3 2 1 ( S − S − S − 200 = 300 )*15 5 3 2 1 ( S − S − S = 300 + 200) *15 5 3 2 1 ( S − S − S = 500) * 15 5 3 15S − 6 S − 5S = 500 * 15 4 S = 15 * 500 S= 125*15 S= 1875 S= 15 * 500 4 ======================================================================= 16 Exercícios: 26. Matemática - Resolvidos Numa corrida de 5000 m, sob um calor de 38 graus, um quarto dos competidores abandonou a prova nos primeiros 2000 m, e, em seguida, aos 3500 m, um sétimo dos competidores abandonaram também a prova. Sabendo que somente 17 competidores terminaram a prova, quantos competidores iniciaram a prova? SOLUÇÃO Similar ao anterior veja o cálculo. C= número de competidores que iniciaram a corrida 1 1 1 1 C − C − C = 17 ( C − C − C = 17 )*28 4 7 4 7 28C-7C- 4C=17*28 17C=17*28 17 * 28 C= C=28 17 ======================================================================= 27. Numa indústria o número de mulheres é igual a 3/5 do número de homens. Se fossem admitidas mais 20 mulheres, o número de mulheres seria igual a metade dos funcionários. Quantos homens e quantas mulheres trabalham na indústria? SOLUÇÃO 3 H 5 No problema fala que contratando mais 20 mulheres, o número de mulheres se equipara ao número de homens, logo: M+20=H H= homens • M= mulheres M+20=H Substituindo M= 3 H + 20 = H 5 M= 3 H , termos 5 3 ( H + 20 = H ) * 5 5 3H + 100 = 5 H 100 H = 50 2 Agora que sabemos que a quantidade de homens é 50, fica fácil descobrir a quantidade de mulher. 100 = 5 H − 3H • M= 3 H 5 M= 100 = 2 H 3 *50 5 H = M= 3*10 M=30 50 homens e 30 mulheres. ======================================================================= 17 Exercícios: 28. Matemática - Resolvidos Num terreno de 490m2, a área construída é de 2/7 da metade do terreno acrescida de 68m2. Quanto mede a área livre do terreno? SOLUÇÃO • 490 m2 é a área total • Área livre = 2 245 m2 é a metade da área 490 m2 – ( 2 7 *245 + 68 m2) Área livre = 490 – ( 2 7 *245 +68) Área livre = 352 7 é da metade da área Área livre = 490 – 138 m2 ======================================================================= 29. O triplo da quantia que Rui tem, menos R$ 100,00 é igual a R$ 500,00. Qual é a quantia que Rui possui? SOLUÇÃO Muito elementar • X= valor 3 X − 100 = 500 600 X = 3 3 X = 500 + 100 3 X = 600 X = 200 O valor é R$ 200,00. ======================================================================= 30. Cristina e Karina possuem juntas R$ 280,00. Cristina têm R$ 60,00 a mais que Karina. Qual é a quantia que cada uma possui? SOLUÇÃO Cristina = C Karina = K C + K = 280 K + K + 60 = 280 C = K + 60 agora vamos substituir C por (K+60) 2 K = 280 − 60 2 K = 220 18 Exercícios: Matemática - Resolvidos 220 K = 110 2 Karina = R$ 110,00 Cristina = Karina +60 Cristina = R$ 170,00 K= Cristina = 110 + 60 ======================================================================= 31. Uma TV e uma geladeira custam, juntas, R$ 1800,00. A geladeira custa R$ 400,00 a mais que a TV. Qual é o preço de cada objeto? SOLUÇÃO Objeto = X Objeto = K X + K = 1.800 X = K + 400 K + K + 400 = 1.800 2 K = 1.800 − 400 2 K = 1400 K = 700 X = 700 + 400 X = 1100 • K= 1.400 2 Um custa R$ 700,00 e o outro R$ 1100,00. ======================================================================= 32. Num torneio internacional, Luiz Fabiano e Ronaldo marcaram juntos 12 gols. Como Ronaldo marcou dois gols a mais que o companheiro Luiz Fabiano, quantos gols marcaram cada um? SOLUÇÃO L + R = 12 L=5 R = L+2 R=7 L + L + 2 = 12 2 L = 10 ======================================================================= Pedro tem um terreno de 540m2. Pedro realizou uma construção nesse terreno. Sabe-se que a área construída é de 2/9 da propriedade. Sabendo-se que 20% da área construída consumiu 38 sacos de cimento e que, o saco de cimento custa R$ 15,00. Quanto foi gasto com cimento na obra? SOLUÇÃO 33. 19 Exercícios: • • • • • • • • Matemática - Resolvidos 2 * 540 = 120 m2 9 20% da área construída consumiram 38 sacos de cimentos Um saco de cimento = R$ 15,00 20% da área construída = 38*15= R$ 570,00 1 20% da área construída = da área construída 5 1 Área construída total = 5 * 5 Custo total em cimentos = 5 * 38 * 15 Custo total em cimentos = R$ 2850,00 Área do terreno = 540 m2 Área construída = ======================================================================= 34. A soma de dois números consecutivos é 41. Quais são estes números? SOLUÇÃO • Lembre-se: o sucessor de X e ( X + 1) • X + ( X + 1) = 41 2 X = 40 • • A+B=41 B= 21 A=X 40 2 B= X+1 X = X = 20 A=20 ======================================================================= 35. A soma de dois números pares consecutivos, é equivalente a 86. Calcule estes dois números. SOLUÇÃO • Lembre-se: o sucessor X, qdo. ele é par; é (X+2) e, (X+2) também será par. A= X 2 X = 84 84 X = 2 A=42 B= X+2 X + ( X + 2) = 86 A+B=86 X = 42 B=44 ======================================================================= 20 Exercícios: Matemática - Resolvidos 36. 51 bolinhas devem ser repartidas entre 3 crianças, de modo que, a segunda tenha 3 bolinhas a mais que a primeira e a terceira tenha o dobro de bolinhas da primeira. Quantas bolinhas devem ser entregues a cada criança? SOLUÇÃO • • AS caixas são respectivamente A, B e C. B = A+3 C = 2A A + B + C = 51 4 A = 48 A = 12 A + ( A + 3) + 2 A = 51 48 A= 4 B = 15 A + A + 2 A = 51 − 3 A = 12 C = 24 ======================================================================= 37. Roberto, Cíntia e Raquel têm, juntos, 38 anos. Roberto tem o dobro da idade de Raquel e Cíntia tem 6 anos a mais que Raquel. Qual a idade de Raquel? SOLUÇÃO • ROBERTO + CÍNTIA + RAQUEL = 38 CÍNTIA = RAQUEL + 6 2 RAQUEL + RAQUEL + RAQUEL + 6 = 38 • 4 RAQUEL = 32 • RAQUEL = 8 ANOS • • ROBERTO = 2 RAQUEL 4 RAQUEL = 38 − 6 32 RAQUEL = 4 ======================================================================= 38. Quantos anos têm Rogério, sabendo-se que o dobro da idade somado a sexta parte desta mesma idade, é igual a 26? SOLUÇÃO • • 1 ROGÉRIO = 26 6 12 ROGÉRIO + ROGÉRIO = 26 * 6 2 ROGÉRIO + 1 ROGÉRIO = 26) * 6 6 13ROGÉRIO = 26 * 6 (2 ROGÉRIO + 21 Exercícios: • • Matemática - Resolvidos 26 * 6 13 ROGÉRIO = 12 ANOS ROGÉRIO = ROGÉRIO = 2 * 6 ======================================================================= 39. Subtraindo 18 do triplo de um número, obtém-se ¾ desse número. Descubra o número? SOLUÇÃO 3 X 4 • 3 X − 18 = (3 X − 18 = • 12 X − 3 X = 18 * 4 9 X = 18 * 4 • X = 2*4 X =8 3 X)*4 4 12 X − 4 *18 = 3 X X = 18 * 4 9 ======================================================================= 40. A medida da altura de um retângulo é equivalente a 2/3 da medida da base. Determine as dimensões sabendo que o perímetro é 60 m. SOLUÇÃO Lado A Base B • A figura acima é um retângulo; • Segundo dados do problema, A = • • • 2 B 3 O perímetro é a soma de todos o lados = Perímetro = 60 m 2 2 * B + 2 B = 60 2 A + 2 B = 60 3 • 4 B + 6 B = 60 * 3 • Base = 18 meros 2 A + 2B 2 (2 * B + 2 B = 60) * 3 3 180 B= 10 10 B = 180 Altura = 12 metros ======================================================================= 22 Exercícios: Matemática - Resolvidos 41. Sabendo que o comprimento da base retângulo é equivalente ao triplo do comprimento da altura e que o perímetro é 80 metros. Qual é o valor correspondente a base e a altura deste retângulo? SOLUÇÃO • • Similar ao anterior, então veja só o cálculo; B = 3A B= base A= altura 2B + 2 A • 2 B + 2 A =80 2 * 3 A + 2 A = 80 • A = 10 B = 30 perímetro=80 8 A = 80 perímetro = A= 80 8 ======================================================================= 42. As idades de dois irmãos são correspondentes a dois números pares consecutivos cuja soma resulta 38. Quais são as idades dos dois? SOLUÇÃO • • Similar ao 35, então veja somente o cálculo; A + B = 38 A= X B = X +2 • 2 X + 2 = 38 2 X = 38 − 2 2 X = 36 • X = 18 A = 18 B = 20 X + ( X + 2) = 38 36 X = 2 ======================================================================= 43. Determine dois números ímpares consecutivos sabendo que a soma deles corresponde a 44. SOLUÇÃO • • • • Sempre que o problema falar em número pares ou ímpares consecutivos, você vai usa X e ( X+2), caso sejam apenas números consecutivos, x e ( x+1). X + ( X + 2) = 44 A= X B = X +2 A + B = 44 42 X = 2 X = 44 − 2 X = 21 2 B = 23 A = 21 ======================================================================= 23 Exercícios: Matemática - Resolvidos 44. A medida da base e da altura de retângulo são correspondente a dois números ímpares e consecutivos. Sabendo que o perímetro deste retângulo é 64 metros, determine a medida da base e da altura. SOLUÇÃO • • • • • Já fizemos um exercício envolvendo perímetro Perímetro = 2A+2B=64 Somados da base com a altura = A+B=32 A= X B= X+2 30 X = X + X + 2 = 32 2 X = 30 X = 30 2 A= 15m B= 17m ======================================================================= 45. A soma da idade do pai e do filho é 55 anos, e que a idade do filho corresponde a 3 da 8 idade do pai. Qual a idade de cada um? SOLUÇÃO • • • • • Este exercício já foi resolvido anteriormente; 3 Pai =X filho = X 8 3 3 X + X = 55 ( X + X = 55) * 8 8 X + 3 X = 55 * 8 11X = 55 * 8 8 8 55 * 8 X = X = 5*8 X = 40 11 3 3 Pai = 40 anos Filho = X Filho = * 40 Filho = 15 anos 8 8 ======================================================================= 46. A idade do filho é igual a quinta parte da idade de seu pai acrescida de 2. Qual a idade de cada um se a idade dos dois juntas somariam 50? SOLUÇÃO • Similar ao anterior • Pai = X Filho = 1 X +2 5 Pai + Filho = 50 24 Exercícios: 1 X + 2 = 50 5 • X+ • 6 X = 250 − 10 • Pai = 40 anos (X + Matemática - Resolvidos 1 X + 2 = 50 )* 5 5 X = 6 X = 240 Filho = 5 X + X + 10 = 250 240 6 1 * 40 + 2 5 X = 40 Filho = 10 anos ======================================================================= 47. Um aluno perguntou ao professor de matemática qual era sua idade. O professor 2 respondeu:_ de minha idade adicionado a 3 é igual à metade de minha idade. Qual era 5 a idade do professor? SOLUÇÃO • Similar ao 39. • Idade = X • • 2 1 X +3 = X 5 2 3= 1 2 X − X ) * 10 30 = 5 X − 4 X 2 5 A idade do professor é 30 anos. (3 = 1 2 X− X 2 5 X = 30 ======================================================================= 48. Numa escola os alunos da 5ª série estão agrupados em turmas de 40 alunos, distribuídas em 2 andares com 3 turmas cada um. Quantos alunos da 5ª série existem nessa escola? SOLUÇÃO • Este é uma simples multiplicação; andares * turmas * alunos = quantidade de alunos da 5ª série • 2 * 3 * 40 = 240alunos ======================================================================= 25 Exercícios: 49. Matemática - Resolvidos A família A, de 5 pessoas e a família B, de 4 pessoas, combinaram de passar as férias em uma casa de campo, com as despesas comum, distribuída conforme o número de pessoas de cada família. Terminadas as férias, verificou-se que a família A gastara R$ 842,40 e família B gastara R$ 934,20; razão pela qual tiveram que fazer uns ajustes nas contas. Que quantia a família A teve que dar à família B, já que as despesas eram comuns? SOLUÇÃO • • • • • • • • • • • Família A = 5 pessoas Família B = 4 pessoas Família A gastou R$ 842,40 Família B gastou R$ 934,20 Gasto total = R$ 1776,60 Lembre-se, as despesas são comuns, divididas conformes o número de integrantes de cada família. O gasto total será dividido em 9 cotas iguais, sendo que 4 destas cotas serão pagas pela família B e as outras 5 cotas serão pagas pela família A. FamíliaA + famíliaB 842,4 + 934,2 1776,6 cot a = cot a = cot a = 9 9 9 cot a = 197,4 FamíliaA = 5 *197,6 FamíliaB = 4 * 197,4 FamíliaA = R$987,00 FamíliaB = R$790,40 Observe que a Família A gastou bem menos do que teve que pagar, visto que as despesas eram comuns; observe também, que a Família B, gastou bem mais que o que deveria pagar, este excesso, fora pago pela família A. Calculemos esta diferença: (Família A teve de pagar) – (Família A gastou) = (Gasto da Família B, pago pela Família A) 987,00 − 842,40 = excesso excesso = 144,60 A Família A, pagou R$ 144,60 dos gastos feito pela família B. ======================================================================= 50. A quantidade de selos que tenho, mais a sua metade, mais a quinta parte, mais sua terça parte menos 200 somam um total de 410 selos. Quanto representa 30% de selos que possuo? SOLUÇÃO • • • • • Vários exercícios similares a este já foram solucionados, então veja somente o cálculo; X= quantidade de selos 1 1 1 X + X + X + X − 200 = 410 2 3 5 1 1 1 ( X + X + X + X = 610) * 30 2 3 5 30 X + 15 X + 10 X + 6 X = 610 * 30 26 Exercícios: Matemática - Resolvidos X = 61 * 300 61 • 61X = 61 * 300 • • X = 300 A quantidade de selos do camarada é 300, mas ele está solicitando somente uma informação referente à 30% destes selos; 30 3 3 * 300 Re sposta = 30% * 300 = * 300 = * 300 = = 3 * 30 = 90 100 10 10 • ======================================================================= 51. A idade do filho é igual a ¼ da idade do pai. Qual a idade do filho, sabendo que a soma das duas é 50? SOLUÇÃO • • • • • Já foram resolvidos vários exercícios similares a este, então veja o cálculo 1 Pai = B Filho = B Pai + Filho = 50 4 1 5B 4 B + B = 50 = 50 B = 50 * 4 4 5 B = 40 Pai = 40 anos Filho = 10 anos ======================================================================= 52. Pedro, funcionário de uma empresa, recebeu o salário do mês e o gastou da seguinte 1 maneira: comprou roupas; 20% do que sobrou, comprou alimentação. Sobraram R$ 5 160,00. Quanto Pedro gastou com alimentação? SOLUÇÃO • • • 1 A lim entação = 20% * ( S − S ) 5 1 A lim entação = * (250 − 50) 5 A lim entação = R$40,00 1 a lim entação = 20% * (250 − * 250) 5 1 A lim entação = * 200 5 ======================================================================= 27 Exercícios: 53. Matemática - Resolvidos Carlos recebeu o salário e o gastou da seguinte maneira: 40% do salário comprou 2 roupas; comprou sapatos; metade do que sobrou comprou presentes para a namorada. 5 Sobraram R$ 50,00. Qual o salário de Carlos? SOLUÇÃO • • • • • • • • Este é similar ao anterior, inclusive, mais fácil, pois, pede apenas o salário. 2 Salário = X Roupas = 40% de X Sapatos = X 5 40 2 2 40% = = Re sto = X − (40% * X + X ) 100 5 5 40 2 1 40 2 X− X − X − (X − X − X ) = 50 100 5 2 100 5 2 2 1 2 2 X − X − X − ( X − X − X ) = 50 5 5 2 5 5 2 2 1 4 X − X − X − ( X − X ) = 50 5 5 2 5 4 1 1 4 1 X − X − ( X ) = 50 ( X − X − X = 50) *10 5 2 5 5 10 10 X − 8 X − X = 500 X = 500 O salário corresponde a R$ 500,00 ======================================================================= 54. Uma senhora comprou 10 dúzias de ovos e 3 galinhas por R$ 1.500,00 ( que diabo de galinha cara é esta). Quanto custou cada ovo e cada galinha sabendo que uma galinha custa o mesmo que 10 ovos? SOLUÇÃO • • • • • Para resolver este problema, temos de desenvolver um sistema de equações do primeiro grau, onde uma das equações será referente ao preço e outra à igualdade entre ovos e galinhas. 120OVOS + 3GALINHAS = 1500 1GALINHA = 10OVOS 120OVOS + 3 * 10OVOS = 1500 120OVOS + 30OVOS = 1500 1500 OVOS = 150OVOS = 1500 OVOS = 10 150 GALINHA = 10 * 10 = 100 ======================================================================= 28 Exercícios: Matemática - Resolvidos 55. Um operário ganha R$ 120,00 por dia trabalhado e paga multa de R$ 50,00 por falta injustificada. Depois de 60 dias, este operário recebeu proventos na ordem de R$ 6.350,00. Quantos dias ele efetivamente trabalhou? SOLUÇÃO • • • • • Dia trabalhado =R$ 120,00 Falta não justificada = R$ 50,00 T é dia trabalhado F é falta não justificada Somando os dias trabalhados e as faltas, resultará em 60 dias, O dinheiro que ele recebeu pelos dias trabalhados, é equivalente a 120T, onde T representa o número de dias trabalhados; O dinheiro pago pelas faltas não justificadas, é 50F, onde F representa o número de faltas. A quantidade que ele recebeu é equivalente ao dinheiro recebido pelos dias trabalhados, subtraindo o valor pago palas faltas, Observando as informações acima, procedamos ao cálculo; T + F = 60 120T − 50 F = 6350 Somando as duas equações acima, teremos uma solução. • T + F = 60 120T − 50 F = 6350 , para somarmos este sistema com maior facilidade, vamos multiplicar a • primeira parcela por (50), isto não é necessário, só estou fazendo para facilitar o cálculo, podes somar da maneira em que o sistema está posto acima, mas o cálculo ficará bem mais complexo. Veja que ao multiplicar a primeira parcela por (50), a variável F, desaparecerá. (T + F = 60) * 50 50T + 50 F = 3000 120T − 50 F = 6350 120T − 50 F = 6350 • • • • • 50T = 3000 120T = 6350 170T = 9350 • • T = 55 Agora sabemos que ele trabalhou somente 55 dias, e faltou 5 dias. 170T = 9350 T = 9350 170 ======================================================================= 29 Exercícios: Matemática - Resolvidos 56. Cláudia comprou 25 metros de cambraia e 12 metros de seda por R$ 4.800,00. Perguntase, quanto custou o metro de cada fazenda, já que o metro de cambraia custa R$ 30,00 menos que o metro de seda? SOLUÇÃO • • • • • • • • Este exercício se resolve com sistemas de equações, igual aos 2 anteriores. C = cambraia S = seda C = 25 metros S = 12 metros Como esta mercadoria é vendida por metros, então procedamos; C = S – 30 25C +12S= 4.800 substituindo, teremos; 25( S − 30) + 12 S = 4.800 25S − 750 + 12 S = 4.800 37 S = 5550 37 S = 4800 + 750 5550 S= S = 150 C = 120 37 A seda custa R$ 150,00 o metro, e a cambraia custa R$ 120,00. ======================================================================= 57. Numa festa filantrópica, o convite para homens custava R$ 15,00 e para mulheres, R$ 10,00 ( a graça de uma festa são as mulheres, não tem nem lógica se os convites custassem o mesmo preço para homens e mulheres, as mulheres deveriam entrar de graça). Sabendo que o número de mulheres excede o número de homens em 5 e que o valor arrecadado com os convites corresponde a R$ 550,00. Quantas mulheres foram a festa? SOLUÇÃO • • • • • • • Mulheres = R$10,00 Arrecadação = R$550,00 Mulheres = Homens + 5 Homens = R$15,00 Sabemos que a arrecadação é a soma do dinheiro dos ingressos de homens e mulheres. Vamos armar as relações demos: 10mulheres + 15 hom ens = 550 Mulheres − hom ens = 5 10(hom ens + 5) + 15 hom ens = 550 10 Homens + 50 + 15 Homnes = 550 25 Homens = 550 − 50 25 Homens = 500 500 Homens = 20 25 Na festa havia 20 homens e 25 mulheres. Homens = ======================================================================= 30 Exercícios: Matemática - Resolvidos 58. Numa granja ha 870 aves, entre galinhas e frangos. Cada galinha abatida vale R$ 3,00 e o frango abatido vale R$ 5,00. Considerando que o total apurado com o abate foi de R$ 3.150,00, quantos frangos foram abatidos? SOLUÇÃO • • galinhas + frangos = 870 3 galinhas + 5 frangos = 3.150,00 galinhas = R$3,00 frangos = R$5,00 ( galinhas + frangos = 870) * ( −3) 3 galinhas + 5 frangos = 3.150 Multiplicando por (-3), facilita. − 3 galinhas − 3 frangos = −2610 3 galinhas + 5 frangos = 3.150 2 frangos = 540 • • 2 frangos = 540 540 frangos = 2 frangos = 270 ======================================================================= 59. Num edifício ha apartamentos de 2 e 4 quartos para alugar. Ao todo são 58 apartamentos. O aluguel de um apartamento de 2 quartos custa R$ 400,00. Se todos os apartamentos fossem alugados, a receita seria de R$ 30.600,00. Acontece que somente apartamentos de 2 quartos foram alugados, resultando assim, num prejuízo de R$ 22.200,00. Perguntase quantos apartamentos não foram alugados e qual o valor do aluguel de cada um deles? SOLUÇÃO • X = 2q Y = 4q X representa os apartamentos de 2 quantos e Y os de 4 quartos • X + Y = 58 X = R$400,00 Y =? receita = R$30.600,00 Pr ejuízo = R$22.200,00 AlugueisX = receita − prejuízo 31 Exercícios: • Matemática - Resolvidos Todos os apartamento de 2 quartos foram alugados, o prejuízo corresponde ao aluguel dos apartamentos de 4 quartos. Basta-nos, descobrir agora quantos são os apartamentos de 2 quantos? • AluguéisX = R$8.400,00 R$8.400,00 X = R$400,00 X = 21 • Y = 37 apartamentos Y = 22200 37 Y = R$600,00 ======================================================================= 60. Num estacionamento há 76 veículos entre carros e motos. Sabendo que o total de rodas no estacionamento é de 212, pergunta-se, quantos carros e quantas motos há neste estacionamento? SOLUÇÃO • carros + motos = 76 carros = 4rodas motos = 2rodas rodas = 212 carros + motos = 76 4carros + 2motos = 212 • • (carros + motos = 76) * (−2) 4carros + 2motos = 212 2carros = 30 60 carros = 2 Vamos armar o sistema Vamos multiplicar por (-2) para facilitar − 2carros − 2motos = −152 4carros + 2motos = 212 2carros = 60 carros = 30 motos = 46 =============================== F I M ================================== 32