análise exergética de um ciclo de refrigeração

Propaganda
ANÁLISE EXERGÉTICA DE UM CICLO DE REFRIGERAÇÃO POR ABSORÇÃO
ÁGUA-AMÔMIA
Rafael Cardoso Brandão
Projeto de Graduação apresentado ao
Curso de Engenharia Mecânica da Escola
Politécnica, Universidade Federal do Rio de
janeiro,
como
necessários
à
parte
obtenção
dos
do
requisitos
título
de
Engenheiro.
Orientador: Nísio de Carvalho Lobo
Brum
Rio de Janeiro
Agosto de 2015
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
Departamento de Engenharia Mecânica
DEM/POLI/UFRJ
ANÁLISE EXERGÉTICA DE UM CICLO DE REFRIGERAÇÃO POR ABSORÇÃO
ÁGUA-AMÔNIA
Rafael Cardoso Brandão
PROJETO FINAL SUBMETIDO AO CORPO DOCENTE DO DEPARTAMENTO DE
ENGENHARIA MECÂNICA DA ESCOLA POLITÉCNICA DA UNIVERSIDADE
FEDERAL
DO
RIO
DE
JANEIRO
COMO
PARTE
DOS
REQUISITOS
NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE ENGENHEIRO MECÂNICO.
Aprovado por:
________________________________________________
Prof. Nísio De Carvalho Lobo Brum (Orientador)
________________________________________________
Prof. Antonio MacDowell de Figueiredo
________________________________________________
Prof. Manuel Ernani de Carvalho Cruz
RIO DE JANEIRO, RJ - BRASIL
AGOSTO DE 2015
ii
Brandão, Rafael Cardoso
QQQAnálise Exergética de um Ciclo de Refrigeração por
Absorção Água-Amônia/ Rafael Cardoso Brandão. – Rio
de Janeiro: UFRJ/ Escola Politécnica, 2015.
QQQXI, 47 p.: il.; 29,7 cm.
QQQOrientador: Nísio de Carvalho Lobo Brum
QQQProjeto de Graduação – UFRJ/ Escola Politécnica/
Curso de Engenharia Mecânica, 2015.
QQQReferências Bibliográficas: p. 46.
QQQ1. Ciclo de refrigeração por absorção água-amônia.
2.Análise exergética de ciclo de refrigeração. 3. REFPROP.
4.MATLAB®. I. Brum, Nísio de Carvalho Lobo. II.
Universidade Federal do Rio de Janeiro, Escola Politécnica,
Curso de Engenharia Mecânica. III. Análise Exergética de
um Ciclo de Refrigeração por Absorção Água-Amônia.
iii
AGRADECIMENTOS
Agradeço, inicialmente, a minha rede familiar, que sempre se uniu ao meu redor,
garantindo uma vida privilegiada e me mostrando o poder do amor sobre qualquer
dificuldade. Foco minha gratidão a minha mestra, companheira e amorosa mãe, Etany
Ewelyn da Rocha Cardoso, por batalhar todos os dias pelo meu bem e possibilitar
diretamente mais essa conquista na minha vida.
Hoje me realizo, porque sempre fui apoiado, ensinado e incondicionalmente
amado por meus avós, Everton Menezes Cardoso e Edna da Rocha Cardoso. Desde meu
nascimento, junto com meu tio, Everton Menezes Cardoso Júnior, eles também formaram
minha consciência ética, meu coração, minha razão e meu equilíbrio e, por isso, os
considero meus pais. Ademais, é indiscutível a presença e a importância da minha
madrinha, Merylin Rocha Batalha, e meu primo e irmão, Allan Rocha Batalha de
Leandro, me apoiando e me dando força com amizade e carinho.
Na faculdade, percebi o motivo de destaque, que o curso de engenharia mecânica
da UFRJ possui no Brasil: seus professores. Em especial, agradeço o professor e mestre
Nísio de Carvalho Lobo Brum pela paciência, dedicação e preocupação com a minha
qualificação profissional, compartilhando todo seu conhecimento a cada aula. Com seu
auxílio tenho a certeza, que a “dureza” da vida profissional tornar-se-á mais um motivo
de comemoração.
Está no sentimento e não na matéria a verdade da existência. Está no amor e na
experiência e não em apreensões lógicas o maior aprendizado da vida. Seguindo essa
convicção, agradeço profundamente a espiritualidade e em especial aos meus inkices
Bamburussema e Gongobira, que me dão força e me guiam através do caminho da cura.
Jamais deixarei a barca virar, nunca abrirei mão desta trilha e devo este leme também ao
Marujo.
iv
Resumo do Projeto de Graduação apresentado à Escola Politécnica/UFRJ como parte dos
requisitos necessários para a obtenção do grau de Engenheiro Mecânico.
ANÁLISE EXERGÉTICA DE UM CICLO DE REFRIGERAÇÃO POR ABSORÇÃO
ÁGUA-AMÔNIA
Rafael Cardoso Brandão
Agosto/2015
Orientador: Nísio de Carvalho Lobo Brum
Curso: Engenharia Mecânica
Resumo
Este projeto objetiva desenvolver uma ferramenta do tipo solver ágil, intuitiva e
capaz de auxiliar o projeto térmico de um ciclo de refrigeração por absorção água-amônia
para as condições climáticas do Rio de Janeiro. Ele fornecerá ao usuário análises
energética e exergética do sistema calculado, a partir dos dados de entrada desejados.
O sistema de absorção é alternativo ao sistema por compressão (mais empregado),
por isso, ao longo do texto, há uma introdução ao tema refrigeração, focando neste ciclo
mais incomum e apresentando o problema originador do programa. A combustão, a
exergia e a segunda lei da termodinâmica aplicada a processos em regime permanente são
introduzidas durante o trabalho, pois tratam-se de teorias fundamentais à compreensão e
à coerência textual. Após estas elaborações, estuda-se um caso de referência para testar o
desempenho do algoritmo final.
Por fim, interpreta-se os resultados gerados, destacando a avaliação baseada na
segunda lei da termodinâmica. Ou seja, verifica-se a eficiência da queima de metano,
como insumo energético ao gerador e, visualizando as irreversibilidades, destaca-se um
equipamento, cujo performance deve ser aperfeiçoada, a fim de otimizar o ciclo.
v
Summary of the Graduation Project submitted to the Polytechnic School/UFRJ as part of
the requirements for the degree of Mechanical Engineer.
EXERGY ANALYSIS OF AQUA-AMMONIA ABSORPTION REFRIGERATION
SYSTEM
Rafael Cardoso Brandão
August/2015
Advisor: Nísio de Carvalho Lobo Brum
Course: Mechanical Engineering
Abstract
This project will develop a fast and simple solver tool, which can help an
absorption refrigeration cycle thermal design for Rio de Janeiro’s climate condition. It
will provide the user energetic and exergetic evaluations about the calculated system from
desired input data.
The absorption system is an alternative choice to mechanical vapor-compression
system (these are more employed), that’s why there is an introduction about refrigeration
topic presenting this unusual cycle and the program’s primordial case. The combustion,
the exergy and the second law of thermodynamics for a steady-state process are
introduced in this work, because they are fundamental concepts. After the formulation,
the algorithm will be applied to a reference case.
Later, the output data will be checked and finally, the second law evaluation will
be highlighted. In other words, the methane combustion efficiency will be measured and
the least efficient equipment of the thermodynamic cycle will be identified.
vi
SUMÁRIO
1. INTRODUÇÃO ......................................................................................................... 1
2. O CICLO DE REFRIGERAÇÃO POR ABSORÇÃO ............................................... 2
2.1. Aspectos básicos sobre a refrigeração ................................................................. 2
2.2. Diferenças fundamentais entre refrigeração por absorção e refrigeração por
compressão mecânica de vapor simples estágio .................................................. 3
2.3. O ciclo de refrigeração por absorção água-amônia ............................................. 5
3. FORMULAÇÕES ...................................................................................................... 7
3.1. Exemplo fundamental ......................................................................................... 7
3.2. Processos elementares ...................................................................................... 10
3.3. Alterações ao exemplo base ............................................................................. 18
3.3.1. Sistemas auxiliares ................................................................................. 19
3.3.2. Combustão ............................................................................................. 25
3.3.3. Exergia e irreversibilidade ..................................................................... 29
3.3.4. Segunda lei para processos em regime permanente .............................. 32
4. O PROGRAMA ...................................................................................................... 35
4.1. Ferramentas e interface gráfica ........................................................................ 35
4.2. Dificuldades técnicas ....................................................................................... 37
5. CASO EXEMPLO .................................................................................................. 39
5.1. Inputs originais ................................................................................................ 39
5.2. Caso adequado ................................................................................................. 40
5.3. Resultados ........................................................................................................ 42
6. CONCLUSÕES ....................................................................................................... 45
7. REFERÊCIAS BIBLIOGRÁFICAS ....................................................................... 46
8. ANEXO A ............................................................................................................... 47
vii
ÍNDICE DE FIGURAS
Figura 2.1 – Ciclo de refrigeração por compressão mecânica de vapor simples estágio 3
Figura 2.2 – Ciclo de refrigeração por absorção simplificado .......................................... 5
Figura 2.3 – Ciclo de refrigeração por absorção água-amônia ......................................... 6
Figura 3.1 – Diagrama entalpia-concentração da mistura água-amônia .......................... 9
Figura 3.2 – Mistura adiabática ..................................................................................... 12
Figura 3.3 – Mistura com troca de calor ........................................................................ 13
Figura 3.4 – Polos e linhas de operação ........................................................................ 17
Figura 3.5 – Rede de água de arrefecimento ................................................................. 19
Figura 3.6 – Combustor ................................................................................................. 19
Figura 3.7 – Sistema de água gelada ............................................................................. 20
Figura 4.1 – Interface gráfica do solver ......................................................................... 35
Figura 4.2 – Fluxograma da sub-rotina de cálculo da concentração ............................. 37
Figura 4.3 – Fluxograma do solver ................................................................................ 38
Figura 5.1 – Alerta de temperatura abaixo do ponto triplo da água .............................. 41
Figura 5.2 – Alerta de inadequação ás condições climáticas do Rio de Janeiro ........... 41
Figura 5.3 – Diagrama entalpia-concentração do ciclo de refrigeração calculado ....... 42
Figura 5.4 – Gráfico de barras das irreversibilidades de cada equipamento ................. 43
viii
ÍNDICE DE TABELAS
Tabela 3.1 – Fórmulas das exergias de cada estado ........................................................ 30
Tabela 3.2 – Fórmulas das irreversibilidades de cada equipamento .............................. 31
Tabela 3.3 – Fórmulas de geração de entropia de cada equipamento ........................... 33
Tabela 5.1 – Inputs originais do exemplo base ............................................................. 39
Tabela 5.2 – Primeiros inputs do caso de referência ..................................................... 40
Tabela 5.3 – Estados do ciclo de refrigeração ............................................................... 42
Tabela 5.4 – Valores das irreversibilidades de cada equipamento ................................ 43
Tabela 5.5 – Subprodutos do solver .............................................................................. 44
ix
LISTA DE SÍMBOLOS
𝐴
Área total de troca de calor do trocador de calor
𝐴𝑠𝑒çã𝑜,𝑡𝑟𝑎𝑛𝑠𝑣 Área da seção transversal
𝐶𝑂𝑃
Coeficiente de performance do ciclo de refrigeração
𝑐𝑃
Calor específico isobárico
𝑔
Aceleração da gravidade
ℎ
Entalpia por unidade de massa
ℎ̅
Entalpia por mol
𝐼̇
Taxa de irreversibilidade
𝑚̇
Vazão mássica
𝑛
Vazão molar
𝑃
Pressão
𝑃𝐹
Potência frigorífica
𝑞
Taxa de calor trocado por vazão mássica
𝑄̇
Taxa de calor trocado
𝑄̇𝐴
Taxa de calor cedido pelo absorvedor
𝑄̇𝐶
Taxa de calor rejeitado na condensação
𝑄̇𝐷
Taxa de calor absorvido pelo deflagmator
𝑄̇𝐸
Taxa de calor absorvido pelo evaporador
𝑄̇𝐺
Taxa de calor absorvido ao gerador
𝑅𝑎𝑛𝑔𝑒
Diferença de temperatura entre os dois terminais de um trocador de calor
𝑠
Entropia por unidade de massa
𝑠̅
Entropia por mol
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜
𝑇
𝑇𝐵𝑈
Taxa de geração de entropia
Temperatura
Temperatura de bulbo úmido de projeto
𝑈
Coeficiente de transferência de calor global do trocador de calor
𝑣
Volume específico
𝑉
Velocidade média de escoamento do fluido
𝑥
Concentração de amônia na mistura binária água-amônia
𝑊̇
Taxa de trabalho
x
𝑊̇𝑃
𝑤 𝑟𝑒𝑣
Taxa de trabalho fornecido à bomba
Trabalho reversível específico
𝑍
Cota de altura da substância
𝑍0
Cota de altura mínima da substância
Δℎ̅
Variação de entalpia por mol entre o estado padrão e um estado desejado
Δ𝑠̅
Variação de entalpia por mol entre o estado padrão e um estado desejado
𝜀
Efetividade de um trocador de calor
𝜂
Eficiência
𝜂𝑚
Eficiência mecânica da bomba
𝜌
Massa específica
Φ
Fração de ar teórico
Ψ
Exergia
xi
1. INTRODUÇÃO
Atualmente, o crescimento da consciência pública sobre a finitude dos recursos
naturais impulsionou o desenvolvimento de ferramentas, que auxiliam a manipulação
lógica e otimizada do meio-ambiente. Em especial, a exploração de fontes energéticas é
objeto frequente de discussões acerca da influência humana sobre as alterações climáticas
globais evidentes. A fim de minimizarmos nossos danos ao planeta, demanda-se definir
a utilidade e pertinência de fontes distintas de energia. O conceito de exergia (ou
disponibilidade) mede este valor, pois representa a máxima energia útil de uma fonte,
quando totalmente exaurida. Neste sentido, a análise exergética avalia a conservação da
energia primária através de uma cadeia de transformações necessárias a sua conversão
em energia útil e, portanto, atribui, racionalmente, a adequação de uma fonte natural a
determinado fim. A destruição de exergia por cada componente de um processo revela
onde deve-se focar os esforços de aperfeiçoamento da eficiência de um sistema, o que
permite decisões de projeto mais seguras.
Como sistemas de climatização são energeticamente dispendiosos, seu projeto
encontra-se no cerne das questões ambientais e, portanto, sua análise exergética torna-se
fundamental. No Brasil, país de clima tropical, climatização corresponde quase
totalmente a refrigeração e é neste âmbito que o presente trabalho reside.
Mais especificamente, este projeto visa comparar a eficiência exergética de cada
equipamento presente em um resfriador de absorção água-amônia, ressaltando quais
componentes devem ser aprimorados, auxiliando os projetos básicos térmicos e
esclarecendo o motivo de, atualmente, se empregá-los majoritariamente em cogeração
(recuperando os rejeitos térmicos de uma planta). Optou-se analisar este sistema,
principalmente devido ao recente aumento do custo da energia elétrica no Brasil. Mas,
apesar deste fator local, o desenvolvimento tecnológico contemporâneo viabilizou
econômica e ambientalmente este ciclo de refrigeração (quando confrontado com um
ciclo de refrigeração por compressão mecânica de vapor), que utiliza calor (energia de
menor qualidade) como insumo energético. A ampla diversidade de fontes térmicas (água
quente, vapor, queima do gás natural, energia solar e biomassa) e redução no consumo
elétrico, são motivos pelos quais estes chillers são amplamente adotados em indústrias de
ar condicionado. Ou seja, estes sistemas equilibram o balanço de demanda energética por
meio da redução dos picos de demanda elétrica.
1
2. O CICLO DE REFRIGERAÇÃO POR ABSORÇÃO
Este capítulo introduz gradualmente o ciclo de refrigeração por absorção e, mais
especificamente, o ciclo que utiliza a mistura binária água-amônia, sendo a água o
absorvente e a amônia o refrigerante. Para este fim, é necessário definir anteriormente
conceitos básicos, como processos de refrigeração e o sistema por compressão mecânica
simples estágio. Como este equipamento prevalece na área de climatização de ambientes,
o sistema por absorção é considerado alternativo. Logo, o ciclo por absorção é explicado
inicialmente por meio de comparações com o equipamento predominante no mercado (e
consequentemente mais familiar). Esta abordagem também visa explicitar de forma
simples os contrastes entre estes dois equipamentos e justificar a escolha do sistema
absortivo a ser modelado e em uma ferramenta do tipo solver, que será o produto final
deste projeto.
2.1. ASPECTOS BÁSICOS SOBRE A REFRIGERAÇÃO
Refrigeração significa fundamentalmente a absorção de calor, produzindo em uma
substância ou em um espaço uma temperatura inferior a temperatura natural do ambiente
circundante. Logo, qualquer método que diminui a temperatura em relação a temperatura
ambiente envolve processos de refrigeração.
Há diversos meios de se refrigerar: por compressão mecânica de vapor, por
absorção (onde o vapor é absorvido por um líquido antes de ser bombeado) e por
compressão de gás, envolvendo estrangulamento e expansão não-resistida do gás
comprimido. O segundo método é vantajoso, quando fontes de calor a baixo custo estão
disponíveis e será o método estudado neste texto. O último método é aplicado em
liquefação, armazenamento e separação de vários gases (THRELKELD et al., 1998).
Os dois primeiros métodos guardam similitude, pois servem-se de três processos
idênticos: a condensação, a evaporação e a expansão. Nota-se que estas técnicas
assemelham-se, pois utilizam a mudança de fase do refrigerante para absorver calor do
recinto e para rejeitá-lo ao ambiente. O resfriamento, em ambos os casos, é realizado
através da evaporação de um refrigerante líquido sob pressão e temperatura reduzidas. A
temperatura de saturação do vapor é, depois, elevada (por compressão mecânica através
de um compressor, na primeira situação), permitindo a condensação do vapor através de
2
rejeição de calor por água de resfriamento ou ar atmosférico. O líquido a alta pressão é
então expandido e retorna ao trocador de calor, onde a evaporação ocorre, formando assim
um ciclo termodinâmico fechado. O processo de expansão é normalmente realizado por
estrangulamento através de uma válvula. A figura 2.1 ilustra o sistema de refrigeração
por compressão mecânica de vapor simples estágio.
Figura 2.1 – Ciclo de refrigeração por compressão mecânica de vapor simples estágio
2.2. DIFERENÇAS FUNDAMENTAIS ENTRE REFRIGERAÇÃO POR
ABSORÇÃO E REFRIGERAÇÃO POR COMPRESSÃO MECÂNICA DE
VAPOR SIMPLES
É necessária uma elevada quantidade de trabalho para acionar um refrigerador de
compressão mecânica de vapor. Isto ocorre, porque o vapor sofre uma grande variação
no seu volume específico durante a compressão. Logo, é desejada uma forma de aumentar
a pressão do refrigerante, sem aumentar apreciavelmente seu volume. Este resultado é
3
obtido, empregando-se uma solução refrigerante em fase líquida nesta tarefa, devido a
sua baixa compressibilidade. Para tanto, o equipamento que anima e comprime este fluido
deve ser uma bomba e o compressor deve ser substituído por componentes capazes de:
transformar o vapor em uma solução líquida, movimentá-la e por fim destilá-la à fase
vaporizada purificada (contendo majoritariamente o refrigerante).
A Figura 2.2 mostra o desenho esquemático de um sistema de refrigeração por
absorção, cuja preeminência reside na compressão de uma solução líquida. Considerando
que apenas o refrigerante escoa pelo condensador, válvula de expansão e evaporador, e
comparando o ciclo da Figura 2.2 com o esquema ilustrado na Figura 2.1, observa-se que
estes componentes são idênticos aos presentes em um sistema por compressão mecânica.
No entanto, o vapor saindo do evaporador é absorvido por uma solução líquida no
absorvedor, ou seja, não atravessa um compressor. Ademais, o refrigerante alcança o
estágio de compressão do condensador através de uma bomba e é separado do absorvente
através de adição de calor no gerador. Esta energia recebida no gerador constitui a
principal fonte energética do ciclo, pois a potência fornecida à bomba, como mencionado
anteriormente, é reduzida. A solução líquida remanescente retorna ao absorvedor após ser
expandida em uma válvula de expansão. Em suma, nota-se, que fundamentalmente, um
ciclo de refrigeração por absorção e um ciclo de refrigeração por compressão mecânica
de vapor diferem-se por seus insumos energéticos. O primeiro é acionado através de calor,
o segundo através de trabalho (energia de alta qualidade). Este é o interesse científico no
sistema de refrigeração por absorção, pois ele consome energia de baixa qualidade em
relação ao ciclo de refrigeração por compressão mecânica de vapor.
4
Figura 2.2 – Ciclo de refrigeração por absorção simplificado
2.3. O CICLO DE REFRIGERAÇÃO POR ABSORÇÃO ÁGUA-AMÔNIA
O esquema ilustrado pela figura 2.2 conjectura a total separação entre refrigerante
e absorvente através de injeção de calor no gerador. Esta hipótese trata-se de uma
idealização não aplicável ao par binário água e amônia. Nesta circunstância, a água é o
absorvente e a amônia é o refrigerante. Como a água difunde-se amplamente na amônia,
ao empregar-se este sistema simplificado, o vapor abandonando o gerador conteria
excesso de água e consequentemente possuiria elevada temperatura de solidificação. Este
fato restringiria temperaturas no ciclo inferiores a 0 °C. Logo, este sistema reduzido deve
refinar-se para tornar-se aplicável.
Para se alcançar purificação mais eficiente de um dos componentes da mistura,
tendo em mente a exigência, fundamental em um ciclo de refrigeração por absorção, de
completa miscibilidade da mistura binária nas fases vapor e líquida (total ausência de
5
heterogeneidade para qualquer intervalo de concentração), deve-se vaporizar e condensar
esta solução sucessivamente. Isto acontece através do seu aquecimento (realizado pelo
gerador), resfriamento (realizado pelo deflagmator) e retificação (realizada pela coluna
de retificação). O aquecimento gera uma mistura vaporizada de concentração superior a
encontrada na solução e o resfriamento condensa o fluido resultante em um líquido de
concentração inferior, separando-o de um vapor mais purificado. A introdução de uma
coluna de retificação entre o deflagmator e o gerador objetiva ocasionar um contato
íntimo direto entre o vapor aquecido ascendente e o líquido resfriado descendente,
produzindo um vapor continuamente mais puro em sua ascensão e um líquido
progressivamente menos concentrado em sua descendência. Para produzir este efeito, as
colunas de retificação possuem diversos pratos que restringem o movimento dos fluidos
e obrigam-nos a interagir. A Figura 2.3 elucida o método de absorção água-amônia com
a introdução da coluna de retificação.
Figura 2.3 – Ciclo de refrigeração por absorção água-amônia
6
3. FORMULAÇÕES
Este capítulo expõe e aplica a teoria termodinâmica utilizada no desenvolvimento
da ferramenta tipo solver, produto final deste projeto. Para tanto, divide-se seu conteúdo
em três partes: apresentação do problema que inspirou o projeto, processos em regime
permanente elementares utilizados no modelo da Figura 2.3 (incluindo a retificação) e
alterações feitas ao exemplo base. Nesta última seção, encontra-se basicamente todo o
fundamento teórico do trabalho. Seus tópicos são: sistemas auxiliares, combustão, exergia
e irreversibilidade e segunda lei para processos em regime permanente.
3.1. EXEMPLO FUNDAMENTAL
Este projeto baseia-se em THRELKELD et al. (1998). O exemplo, que originou
este trabalho, introduz o leitor aos cálculos termodinâmicos de um ciclo de refrigeração
por absorção água-amônia. Ele foca especialmente em uma análise a partir da primeira
lei da termodinâmica e por isso define os estados termodinâmicos (no caso: pressão,
temperatura, concentração mássica de amônia na mistura binária e entalpia) e as vazões
mássicas do esquema ilustrado pela Figura 2.3. Nele, supõe-se: ausência de perda de
carga, escoamento em regime permanente, agitação, devido a vaporização no gerador,
suficiente para igualar sua temperatura a temperatura da solução líquida fraca presente
nele e ainda que os estados termodinâmicos (1), (3), (4), (7), (8) e (12) são saturados.
Estas hipóteses convergem com o foco principal do programa a ser desenvolvido, pois
evitam considerações aprofundadas sobre modelos de transferência de energia por
interação calor presente nos equipamentos térmicos, pouco relevantes à análise exergética
objetivada por este estudo. Este também é o motivo de optar-se especificamente em
modelar o ciclo de absorção por este exercício base. Os dados de entrada são de fácil
acesso e corroboram a afirmativa anterior. São eles: a potência frigorífica, a pressão de
condensação, a pressão de evaporação, a temperatura do gerador, a temperatura do vapor
deixando o deflagmator (estado 7), a temperatura ambiente, a temperatura do recinto, a
temperatura da solução líquida concentrada entrando na coluna (estado 3), o range de
temperatura entre os estados (9) e (8) e a eficiência mecânica da bomba.
Inicialmente, percebe-se, neste exercício, constantes citações a uma nova
propriedade termodinâmica da substância, que circula através do resfriador: a
concentração mássica de amônia na solução. Ela é frequentemente utilizada como uma
7
das propriedades independentes, que quantifica a composição da mistura e é necessária,
pois misturas binárias diferem-se de substâncias simples, já que, seu estado
termodinâmico não-saturado não é estabelecido por apenas duas propriedades
termodinâmicas independentes. Logo, os processos presentes neste ciclo também
diferem-se de processos realizados por uma substância simples, pois a temperatura de
saturação desta solução binária depende da sua concentração e durante o decurso de uma
transformação, a massa de cada componente da mistura conserva-se (não apenas a massa
total da mistura).
Portanto, em um gráfico entalpia-concentração, para uma determinada pressão, as
regiões de líquido e vapor saturados definem duas curva. A Figura 3.1 as ilustra.
8
Figura 3.1 – Diagrama entalpia-concentração da mistura água-amônia
Este diagrama é fundamental ao entendimento dos processos elementares de
escoamentos de misturas binárias, pois, nele, ilustra-se os processos elementares
presentes
no
sistema
de
refrigeração
modelado.
Consequentemente,
certos
desenvolvimentos tornar-se-ão mais intuitivos através dele, por exemplo, percebe-se, que
caso a solução seja saturada, seu estado é definido com o conhecimento da pressão e da
temperatura, ou seja, necessita-se de apenas duas propriedades independentes. Logo,
observando as linhas de saturação, nota-se que a região líquida é a parte inferior do gráfico
e a região do vapor compreende a parte superior.
9
Feitos estes comentários, identifica-se agora, por quais processos elementares os
fluidos refrigerante e absorvente transformam-se. Iniciando pelo estado (1), a solução
sofre alteração no seu estágio de compressão e alcança o estado subresfriado (2). Logo
após, ela é simplesmente aquecida até atingir a saturação (estado 3). O líquido saturado
entra na coluna de retificação, onde é purificado através da retificação e atinge o estado
(7). A parcela fraca condensada da mistura (estado 4) é simplesmente resfriada por um
trocador de calor (estado 5) e retorna ao absorvedor (estado 6), após expandir-se em uma
válvula de expansão. O vapor, deixando o deflagmator em estado saturado (7), condensase e transforma-se em líquido saturado (estado 8), pois rejeita calor. Posteriormente, ele
é simplesmente resfriado em um trocador de calor (estado 9), expande-se (estado 10) e
absorve calor do recinto (estado 11). Seguidamente, o estado misturado resultante
(mistura em equilíbrio de vapor e líquido) aquece através do líquido saindo do
condensador. Por fim, o vapor saturado derivado (estado 12) é absorvido pela solução
líquida fraca do gerador e completa um ciclo fechado. De todos os processos citados,
observa-se que existem somente cinco operações diferentes: mistura com troca de calor,
mistura adiabática (presente no estado 11, não é um processo, mas é necessário à
determinação da sua temperatura graficamente), retificação, alteração no estágio de
compressão e troca de calor simples. Estes processos serão apresentados na seção
posterior, no decorrer da solução do exercício base.
3.2. PROCESSOS ELEMENTARES
Recordando, THRELKELD et al. (1998) propôs um exemplo, que define, de
forma ágil, os estados termodinâmicos a partir de propriedades de fácil acesso ao
projetista e, por isso, foi selecionado como o modelo do ciclo de refrigeração por absorção
água-amônia desenvolvido no programa final de análise exergética. Logo, a resolução
automática deste exemplo para diferentes valores dos inputs representa o alicerce, sobre
o qual assimila-se informações mais valiosas. Neste escopo mora a relevância da
investigação dos processos elementares realizados por uma mistura homogênea binária.
Considerando as hipóteses e dados da seção anterior, prosseguem-se as operações
que determinam os estados e as vazões mássicas. Como não há perda de carga, todas as
pressões estão estabelecidas. Observando que os estados saturados fixam-se conhecendo
apenas duas propriedades independentes, encontra-se os estados (3), (4) e (7), pois as suas
temperaturas são dadas. Logo, suas concentrações e entalpias também estão
10
determinadas. Pela conservação de massa de cada componente da solução, estabelece-se
todas as concentrações de amônia restantes. Utilizando a informação de que os estados
(1), (8) e (12) são saturados, seus estados também tornam-se delimitados (pressão e
concentração conhecidas). Combinando o conhecimento da temperatura do estado (8)
com a diferença de temperatura entre os estados (8) e (9), calcula-se a temperatura do
estado (9). Neste momento, deve-se imaginar um volume de controle englobando o
trocador de calor 1, a válvula de expansão 1 e o evaporador. Portanto, neste volume de
controle, ingressa a mistura água-amônia no estado (8). A mistura no estado (12) o
abandona. O calor absorvido do recinto (potência frigorífica) também o atravessa. Então
a partir da conservação de energia para este volume de controle encontra-se a vazão
mássica de entrada e saída.
𝑚̇8 = 𝑚̇12
(3.1)
𝑚̇8 ℎ8 + 𝑃𝐹 = 𝑚̇8 ℎ12
(3.2)
Substituindo a equação (3.1) na equação (3.2):
𝑚̇8 =
𝑃𝐹
ℎ12 − ℎ8
(3.3)
A conservação de massa do absorvedor gera as seguintes equações:
𝑚̇12 + 𝑚̇6 = 𝑚̇1
(3.4)
𝑚̇12 𝑥12 + 𝑚̇6 𝑥6 = 𝑚̇1 𝑥1
(3.5)
Explicitando 𝑚̇6 na equação (3.5) e substituindo 𝑚̇1 da equação (3.4) na equação
resultante:
𝑚̇6 = 𝑚̇12
𝑥12 − 𝑥1
𝑥1 − 𝑥6
(3.6)
O processo térmico transcorrido no absorvedor é um dos processos elementares
citados anteriormente e, por isso, cabe aqui sua análise com mais atenção. Claramente,
trata-se de uma mistura com troca de calor. A conservação de energia aplicada a um
volume de controle, idealizado sobre a superfície do equipamento em questão, retorna a
seguinte fórmula:
𝑚̇12 ℎ12 + 𝑚̇6 ℎ6 = 𝑚̇1 ℎ1 + 𝑄̇𝐴
(3.7)
Utilizando esta equação juntamente com as expressões (3.4) e (3.5), encontra-se a
relação entre a entalpia específica ao final do processo (h1) e as entalpias específicas de
cada corrente:
ℎ1 = ℎ12 +
𝑚̇6
𝑄̇𝐴
(ℎ6 − ℎ12 ) −
𝑚̇1
𝑚̇1
11
(3.8)
Nota-se, que caso não houvesse troca de calor, a igualdade resultante definiria um
segmento de reta no diagrama entalpia-concentração, no qual situaram-se os três pontos,
que representam os três estados envolvidos nesta operação. Este processo é conhecido
como mistura adiabática e é exibido na Figura 3.2.
Figura 3.2 – Mistura adiabática
A localização do estado misturado depende das razões entre as vazões mássicas.
Como estado (11) (calculado mais adiante) pode ser interpretado como uma mistura
adiabática de vapor e líquido em equilíbrio, sua posição no diagrama entalpiaconcentração repousa sobre um segmento de reta, que liga o ponto do vapor ao ponto do
líquido.
Considerando, agora, a troca de calor (mais especificamente a rejeição de calor,
ocorrendo no absorvedor), o estado misturado (1) localiza-se a uma distância vertical de
𝑄̇𝐴
𝑚̇1
abaixo do ponto obtido pela mistura adiabática. Ou seja, uma troca de calor simples
(outro processo elementar) traduz-se graficamente em um deslocamento vertical de um
estado no diagrama entalpia-concentração. O ponto final desloca-se pra cima, caso calor
seja absorvido, ou desloca-se pra baixo, caso o calor seja cedido.
12
Figura 3.3 – Mistura com troca de calor
É de suma importância manter esta interpretação gráfica em mente, pois ela será
relevante para tornar a explicação do processo de retificação mais intuitiva.
Retornando ao cálculo das vazões mássicas, encontra-se 𝑚̇1 , substituindo a equação (3.6)
na equação (3.4):
𝑚̇1 = 𝑚̇12
𝑥12 − 𝑥6
𝑥1 − 𝑥6
(3.9)
Evocando novamente o princípio de conservação de massa:
𝑚̇7 = 𝑚̇8 = 𝑚̇9 = 𝑚̇10 = 𝑚̇11 = 𝑚̇12
𝑚̇4 = 𝑚̇5 = 𝑚̇6
(3.10)
𝑚̇1 = 𝑚̇2 = 𝑚̇3
Considerando o bombeamento reversível, desprezando variações das energias
cinética e potencial e variação de volume específico do líquido, segundo a primeira lei da
termodinâmica aplicada à bomba:
ℎ2 = ℎ1 + (𝑃2 − 𝑃1 )𝑣1
(3.11)
Utilizando novamente a conservação de energia, mas agora para um volume de
controle sobre o trocador de calor 2:
ℎ5 = ℎ4 −
𝑚̇2
(ℎ − ℎ2 )
𝑚̇4 3
13
(3.12)
A conservação de energia para a válvula de expansão 1 e 2 resulta em:
ℎ6 = ℎ5
(3.13)
ℎ10 = ℎ9
(3.14)
Nestas duas válvulas de expansão ocorre alteração no estágio de compressão do
fluido. Mais precisamente, ocorre expansão não-resistida. Este processo não varia a
entalpia nem a concentração da substância, por isso a posição de seu estado
termodinâmico em um gráfico entalpia-concentração permanece inalterada. Apesar disso,
a pressão termodinâmica deste estados reduzem-se. Logo, as curvas de vapor e líquidos
saturados modificam-se e passam a apresentar entalpias menores para cada concentração.
Então, para avaliar as temperaturas dos estados (6) e (10) precisa-se conhecer a região,
na qual os pontos, que representam cada estado, posicionam-se após o processo. Caso
eles passem a pertencer à região de equilíbrio (saturada), afere-se a temperatura a partir
das três propriedades conhecidas. Caso eles permaneçam na região de líquido
comprimido, continuam na mesma isotérmica, ou seja, nesta condição:
𝑇6 = 𝑇5
(3.15)
𝑇10 = 𝑇9
(3.16)
A primeira lei aplicada ao evaporador, mostra que:
ℎ11 = ℎ10
𝑚̇10 𝑃𝐹
+
𝑚̇11 𝑚̇11
(3.17)
Todos os estados estão definidos. Então, para concluir a análise de primeira lei do
ciclo é necessário definir as variações de energia causadas pelas interações calor e
trabalho. O trabalho cedido à bomba é dissipado mecanicamente e a energia restante
impele movimento ao fluido, logo a variação de entalpia, neste processo, deve igualar-se
a esta potência resultante cedida ao fluido. Então:
𝑊̇𝑃 =
𝑚̇1 (ℎ2 − ℎ1 )
𝜂𝑚
(3.18)
O calor rejeitado no condensador e absorvido no evaporador determinam-se
avaliando a conservação de energia nos respectivos equipamentos:
𝑄̇𝐶 = 𝑚̇8 (ℎ7 − ℎ8 )
(3.19)
𝑄̇𝐸 = 𝑚̇10 (ℎ11 − ℎ10 )
(3.20)
No absorvedor, ocorre uma mistura com troca de calor. Englobando o absorvedor
com um volume de controle e considerando a conservação de energia:
𝑄̇𝐴 = 𝑚̇6 ℎ6 + 𝑚12 ℎ12 − 𝑚1 ℎ1
14
(3.21)
Para calcular a injeção de calor no gerador e o calor rejeitado no deflagmator,
deve-se comentar anteriormente sobre o processo de retificação.
Assim como um processo de mistura adiabática pode ser representado, no
diagrama entalpia-concentração, através de um segmento de reta unindo os dois estados
anteriores à mistura, no processo de retificação, cada interação, ocorrida nos pratos, entre
o vapor ascendendo e o líquido descendendo a coluna também pode ser representada desta
forma. Ou seja, em uma coluna de retificação, as condições de satisfação da conservação
de massa e de energia também definem, em um diagrama entalpia-concentração,
segmentos de retas relativos a cada prato da coluna (parecidos com o caso observado
numa mistura com troca de calor e com uma mistura adiabática). Neste caso, a linha reta
liga o estado do vapor e do líquido, que estão em contato no prato e é chamada de linha
de operação.
Mais precisamente, aplicando os princípios de conservação a cada volume de
controle, cujo contorno engloba apenas o deflagmator e a coluna de retificação, incluindo
os pratos localizados acima da seção transversal, onde o fluido a ser destilado adentra a
coluna (sem o gerador), definem-se, em um gráfico entalpia-concentração, linhas de
operação para cada prato que delimita o contorno. Elas interceptam-se em um ponto
comum, referido como polo. O polo destes volumes de controle, que englobam o
deflagmator, são referidos como polo 1 e, assim como no processo elementar de troca de
calor simples, encontram-se a uma distância
𝑄̇𝐷⁄
𝑚̇7 acima do ponto referente ao estado
(7).
Agora, imagina-se outros volumes de controle, mas que englobam, justamente, as
partes da coluna de retificação não contidas nos volumes de controle anteriores e que,
adicionalmente, ao invés de abrangerem o deflagmator, incorporam o gerador. Cada um
destes volumes de controle, definem linhas de operação para cada prato, que delimita
cada contorno. Estas linhas também interceptam-se em um único ponto. Como esperado,
este ponto também é denominado polo e para estes contornos imaginários, que englobam
o gerador, este polo é chamado de polo 2. Este polo, assim como no processo elementar
de troca de calor simples, encontra-se a uma distância
𝑄̇𝐺⁄
𝑚̇4 abaixo do ponto referente
ao estado (4).
Mais informações podem ser obtidas, imaginando um novo volume de controle,
que englobe todo o sistema (gerador, deflagmator e coluna de retificação). Aplicando,
15
novamente as leis de conservação, determina-se uma linha de operação, que une o polo 1
ao polo 2 e que cruza o ponto referente ao estado termodinâmico (3). Ela é chamada de
linha de operação principal e a sua posição fixa a quantidade de calor a ser cedida no
gerador e a quantidade de calor a ser removida pelo deflagmator, pois conforme o citado,
conhecendo-se os dois polos e os estados (7) e (4), encontram-se
𝑄̇𝐺⁄
𝑄̇𝐷⁄
e
𝑚̇4
𝑚̇7 .
Segundo BOSNJAKOVIC (Apud THRELKELD et al., 1998) o menor número de
pratos presentes na coluna se faz necessário, quando o estado do vapor saturado
ascendente (aqui, considerado como estado 7’), que se encontra na altura, onde o líquido
no estado (3) entra, situa-se sobre a linha principal de operação. Ou seja, os dois polos, o
estado (7’) e o estado (3) encontram-se sobre uma mesma linha. Logo, seguindo esta
recomendação e estimando a diferença de temperatura entre o estado (3) e o estado (7’),
segundo THRELKELD et al. (1998) aproximadamente 5°C, calcula-se a posição da linha
de operação principal, pois conhece-se o estado (7’) (vapor saturado a pressão de
condensação do ciclo e temperatura determinada) e possui-se o estado (3). Relembrando
que a sua posição determina a quantidade de calor a ser cedida no gerador e a quantidade
de calor a ser removida pelo deflagmator, deve-se determinar a posição dos polos, a partir
da equação da reta, a fim de calculá-las.
𝑥7 − 𝑥3
𝑥7′ − 𝑥3
𝑥4 − 𝑥3
= ℎ4 − ℎ3 − (ℎ7′ − ℎ3 )
𝑥7′ − 𝑥3
ℎ𝑝𝑜𝑙𝑜1 = ℎ3 + (ℎ7′ − ℎ3 )
ℎ𝑝𝑜𝑙𝑜2
(3.22)
(3.23)
Possuindo esta informação e somando o dado, de que a diferença entre as
coordenadas ordenadas dos polos 1 e 2 e dos estados (7) e (4), respectivamente,
relacionam-se com as taxas de calor trocado no deflagmator e no gerador, é possível
defini-las.
𝑥4 − 𝑥3
)
𝑥7′ − 𝑥3
𝑥7 − 𝑥3
𝑄̇𝐷 = 𝑚̇7 (ℎ3 + (ℎ7′ − ℎ3 )
− ℎ7 )
𝑥7′ − 𝑥3
𝑄̇𝐺 = 𝑚̇4 (ℎ4 − ℎ3 − (ℎ7′ − ℎ3 )
A Figura 3.4 ilustra o diagrama entalpia-concentração com as linhas de operação.
16
(3.24)
(3.25)
Figura 3.4 – Polos e linhas de operação
Ressalta-se que o trocador de calor 2 (ver Figura 2.3) diminui o input de energia
necessário ao aquecimento do gerador, pois eleva a entalpia do estado (3) e
consequentemente aproxima o polo 2 do estado (4) no diagrama entalpia-concentração.
Com todos estes dados, já é possível extrair informações sobre o desempenho
global do sistema de refrigeração, sob uma ótica da primeira lei da termodinâmica. As
duas relações capazes de oferecer esta informação são o coeficiente de performance do
ciclo (COP) e a eficiência de primeira lei do ciclo.
O coeficiente de performance é a razão entre a energia útil e a principal fonte de
energia que aciona o sistema. No caso de um ciclo de refrigeração por absorção águaamônia, o principal insumo energético é térmico e a sua energia útil é a quantidade de
calor absorvida do recinto a ser refrigerado.
𝐶𝑂𝑃 =
𝑃𝐹
𝑄̇𝐺
(3.26)
Seria útil possuir um ciclo de refrigeração por absorção ideal, a partir do qual
medir-se-ia o grau de afastamento apresentado pelo ciclo real. Este afastamento é medido
a partir da relação conhecida como eficiência de primeira lei do ciclo. Este sistema de
17
refrigeração imaginário almejado, sobre o qual calcula-se o distanciamento imposto pela
realidade, foi desenvolvido por BOSNJAKOVIC (Apud THRELKELD et al., 1998) e seu
coeficiente de performance é definido a seguir.
(𝐶𝑂𝑃)𝑚á𝑥 =
(𝑇𝑔𝑒𝑟𝑎𝑑𝑜𝑟 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑒 )
𝑇𝑔𝑒𝑟𝑎𝑑𝑜𝑟
(𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡𝑒−𝑇𝑟𝑒𝑐𝑖𝑛𝑡𝑜 )
𝑇𝑟𝑒𝑐𝑖𝑛𝑡𝑜
(3.27)
Esta equação mostra, que o limite superior de performance de um ciclo de
refrigeração por absorção é igual ao coeficiente de performance de um ciclo de
refrigeração de Carnot operando entre reservatórios a temperatura do recinto e a
temperatura ambiente, multiplicado pela eficiência de um motor de Carnot trabalhando
entre dois reservatórios a temperatura do gerador e a temperatura ambiente. Portanto, o
COP de um ciclo de refrigeração por absorção não pode ser comparado com o COP de
um sistema de compressão mecânica de vapor. Então é necessária outra base de
comparação entre estes dois sistemas. Uma boa opção é a comparação entre as
quantidades de insumo energético necessárias a um ciclo por absorção e de calor cedido
ao motor que movimentará o compressor.
O grau de distanciamento entre o ciclo idealizado e o ciclo real é calculado através
da razão entre a performance real e ideal de um sistema por absorção. Este é o rendimento
de primeira lei do ciclo e segue sua expressão matemática.
𝜂1ª 𝐿𝑒𝑖 =
𝐶𝑂𝑃
(𝐶𝑂𝑃)𝑚á𝑥
(3.28)
3.3. ALTERAÇÕES AO EXEMPLO BASE
No exercício da seção anterior desconsidera-se discussões acerca da
irreversibilidade das trocas de calor no absorvedor, no evaporador, no condensador, no
deflagmator e no gerador. Como esta primeira análise foi puramente relacionada a
primeira lei da termodinâmica (conservação de energia), tais questionamentos não
entraram em pauta. Quando objetiva-se a análise exergética do ciclo, esta abordagem
torna-se insuficiente, pois não infere sobre o fluido que interage nestes processos e
portanto não contabiliza o aumento de entropia e consequente geração de irreversibilidade
ocasionado pela troca de calor a diferença finita de temperatura entre dois meios. Em
outras palavras, é necessário incluir o sistema de água gelada, a rede de água de
resfriamento e o combustor para calcular as exergias, as irreversibilidades de cada
18
equipamento e, por fim, verificar a possibilidade dos processos a partir da segunda lei da
termodinâmica.
Logo, antes de avançar para uma avaliação segundo a segunda lei da
termodinâmica, deve-se focar em descobrir os estados e as vazões relativos à rede de água
de resfriamento, ao sistema de água gelada e ao combustor. Ou seja, necessita-se repetir
o processo realizado na seção anterior.
3.3.1. SISTEMAS AUXILIARES
As Figuras 3.5, 3.6 e 3.7 facilita a compreensão destes sistemas auxiliares.
Figura 3.5 – Rede de água de arrefecimento
Figura 3.6 – Combustor
19
Figura 3.7 – Sistema de água gelada
Então, iniciam-se os cálculos através da rede de água de resfriamento. Esta rede
absorve o calor do deflagmator, do condensador e do absorvedor. Sua configuração é
paralela, ou seja, a água resfriada vinda da torre de resfriamento ramifica-se em três
tubulações, uma para cada equipamento a ser arrefecido, e encontram-se novamente antes
de atingirem a torre de resfriamento.
Esta torre de resfriamento transfere calor residual de processo para a atmosfera.
Ela utiliza a evaporação da água para remover este calor e resfriar o fluido de trabalho
para perto da temperatura de bulbo úmido. Como neste trabalho projeta-se um ciclo para
o Rio de Janeiro, concebe-se como a temperatura de bulbo úmido de projeto (TBU), o
valor de 25.4 °C do Galeão (ASHRAE Handbook of Fundamentals, 2013). Usualmente,
considera-se que ao final deste procedimento a temperatura da água aproxima-se 4 °C da
temperatura de bulbo úmido, ou seja, medirá aproximadamente 4 °C acima deste limite
de saturação. O resfriamento máximo em uma torre alcança uma variação de 19,4 °C da
água, enquanto que o mínimo mensura-se em 13,9 °C.
Dito isso, decide-se começar a apuração pelo condensador. Neste equipamento, a
solução água-amônia condensa-se, cedendo calor a água de resfriamento. Durante este
processo, a temperatura de saída da água de resfriamento deve ser suficientemente baixa
para não exceder o valor da temperatura da solução, o que violaria a segunda lei da
termodinâmica.
20
Evita-se este erro, decretando que essa temperatura seja igual a temperatura de entrada da
mistura. Ou seja:
𝑇𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 = 𝑇8
(3.29)
A temperatura de entrada da água deve ser definida a partir da primeira lei da
termodinâmica.
𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 = 𝑇𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 − 𝑚̇
𝑄̇𝑐
𝑐𝑜𝑛𝑑 𝐶𝑃 á𝑔𝑢𝑎
(3.30)
A vazão mássica de água no condensador pode ser aferida inicialmente,
recordando que a sua velocidade econômica de escoamento mede aproximadamente 2,0
m/s (DE FALCO, 1998) e somando esta informação ao conhecimento de que um diâmetro
interno usual de um trocador de calor (TABOREK et al., 1997) cota 55 mm. Logo, estimase a vazão mássica, supondo escoamento unidirecional uniforme e massa específica de
1000 kg/m³.
𝑚̇𝑐𝑜𝑛𝑑 = 𝜌á𝑔𝑢𝑎 𝐴𝑠𝑒çã𝑜,𝑡𝑟𝑎𝑛𝑠𝑣 𝑉á𝑔𝑢𝑎
(3.31)
Substituindo os valores, obtém-se uma estimativa inicial aproximada de 5 kg/s.
Este valor será utilizado posteriormente como o valor padrão de input da vazão mássica,
se o usuário não alterá-lo.
Finalmente, resta apenas encontrar uma estimativa do calor específico da água
líquida. Considerando-o igual a 4,2 J/kgK, alcança-se facilmente a temperatura exigida à
água de resfriamento que entra no condensador. Se este valor for inferior à temperatura
de bulbo úmido mais um approach de 2 °C, o usuário do solver deve, então, ser alertado
com uma mensagem de inadequação deste sistema às condições climáticas do local a ser
implantado. Esta precaução é necessária, pois em dias nos quais, o ambiente possui
temperatura de bulbo úmido de projeto, pela primeira lei da termodinâmica,
possivelmente o circuito não funcionará satisfatoriamente. Em suma, a temperatura final
da água de resfriamento deverá se aproximar, na realidade, da temperatura de bulbo
úmido, logo existe uma faixa de valores, a qual a torre de resfriamento permitirá
𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 atingir. Fora deste intervalo, 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 calculado não corresponderá a 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 real.
Então, decreta-se, que se 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 calculado superar TBU em 6 °C, deve-se utilizar
𝑇𝑒𝑛𝑡𝑟𝑎𝑑𝑎,á𝑔𝑢𝑎 igual a TBU adicionada de um approach usual de 4 °C. E deriva-se
𝑇𝑠𝑎í𝑑𝑎,á𝑔𝑢𝑎 a partir da conservação de energia:
𝑇𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 = 𝑇𝑖𝑛.𝑐𝑜𝑛𝑑 +
21
𝑄̇𝑐
𝑚̇𝑐𝑜𝑛𝑑 𝐶𝑃 á𝑔𝑢𝑎
(3.32)
Em um condensador, um fluido sofre mudança de fase (neste problema, a solução
de água e amônia), enquanto a outra substância permanece líquida (neste problema a água
de arrefecimento). Como um fluido em equilíbrio líquido-vapor possui, por definição,
calor específico tendendo a infinito e, no problema estudado, a solução água-amônia
encontra-se nesta condição, a razão entre o valor desta grandeza para a mistura águaamônia e para a água é nula. Matematicamente:
𝑐𝑃𝑠𝑜𝑙𝑢çã𝑜 = (
𝜕ℎ
)
𝜕𝑇 𝑃
(3.33)
𝛿𝑇 = 0
𝑐𝑃𝑠𝑜𝑙𝑢çã𝑜 → ∞
𝑐𝑃á𝑔𝑢𝑎
→0
𝑐𝑃𝑠𝑜𝑙𝑢çã𝑜
Ou:
𝑐𝑃á𝑔𝑢𝑎 𝑚̇𝑐𝑜𝑛𝑑
𝑐𝑃𝑠𝑜𝑙𝑢çã𝑜 𝑚̇7
→0
(3.34)
Em posse desta informação, é desejável obter uma estimativa para o produto entre
o coeficiente global de transferência de calor do condensador e a sua área total de troca
térmica (UA), pois sua derivação, a partir dos dados já disponíveis, é simples e relevante.
Este subproduto do programa final é obtido através do método da efetividade do trocador
de calor. Esta técnica evita cálculos laboriosos, definindo a efetividade de um trocador de
calor
como
a
razão
entre
a
troca
térmica
de
um
trocador
(no
caso,
𝑚̇𝑐𝑜𝑛𝑑 𝑐𝑃á𝑔𝑢𝑎 (𝑇𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 − 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 )) e o máximo calor que idealmente poderia ser trocado
(no caso, 𝑚̇𝑐𝑜𝑛𝑑 𝑐𝑃á𝑔𝑢𝑎 (𝑇7 − 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 )). Este parâmetro é definido a partir dos sentidos de
𝑐𝑃á𝑔𝑢𝑎 𝑚̇𝑐𝑜𝑛𝑑
escoamentos das correntes e da razão entre suas capacidades térmicas ( 𝑐
𝑃𝑠𝑜𝑙𝑢çã𝑜 𝑚̇7
). O
sentido adotado é contra-corrente (ou correntes opostas). Então, recordando que a razão
entre os calores específicos da água e da mistura é nula e levando em conta a determinação
anterior, para este caso (LIENHARD V et al., 2012):
𝜀 = 1 − exp −
𝑈𝐴
𝑚̇𝑐𝑜𝑛𝑑 𝑐𝑃 á𝑔𝑢𝑎
(3.35)
Logo:
𝑚̇𝑐𝑜𝑛𝑑 𝑐𝑃á𝑔𝑢𝑎 (𝑇𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 − 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 ) = (1 − exp −
22
𝑈𝐴
) 𝑚̇𝑐𝑜𝑛𝑑 𝑐𝑃á𝑔𝑢𝑎 (𝑇7 − 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 )
𝑚̇𝑐𝑜𝑛𝑑 𝑐𝑃 á𝑔𝑢𝑎
Explicitando UA:
𝑈𝐴 = 𝑚̇𝑐𝑜𝑛𝑑 𝑐𝑃á𝑔𝑢𝑎 ln (
𝑇7 − 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑
)
𝑇7 − 𝑇𝑜𝑢𝑡,𝑐𝑜𝑛𝑑
(3.36)
Relembrando, o absorvedor, o deflagmator e o condensador compartilham a
mesma temperatura de entrada da água de resfriamento, pois eles participam da mesma
rede de água de resfriamento, que possui configuração paralela.
𝑇𝑖𝑛,𝑎𝑏𝑠 = 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑
(3.37)
𝑇𝑖𝑛,𝑑𝑒𝑓𝑙 = 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑
(3.38)
A água que ingressa no absorvedor aquece a um máximo ideal igual à temperatura
de saída da mistura água-amônia que egressa este equipamento (T1). Este trabalho não
aprofunda-se no fenômeno de transferência de calor por convecção. Logo, a única forma
de garantir, que a estimativa da temperatura de saída da água de resfriamento obedeça a
realidade e, consequentemente, não exceda o limite superior mencionado, é definindo um
approach entre estas duas temperaturas mencionadas e um range mínimo entre as
temperaturas de entrada e saída de água de resfriamento. Esta diferença entre
temperaturas de entrada e saída serve para alertar o usuário sobre ranges excessivamente
pequenos, resultantes de variáveis de entrada mal definidas. O approach do absorvedor é
de 1 °C. O range mínimo vale 2 °C. Então:
𝑇𝑜𝑢𝑡,𝑎𝑏𝑠 = 𝑇1 − 1 °𝐶
(3.39)
𝑇𝑜𝑢𝑡,𝑎𝑏𝑠 − 𝑇𝑖𝑛,𝑎𝑏𝑠 ≥ 2 °𝐶
(3.40)
Antes de calcular as vazões das águas de resfriamento e as temperaturas restantes
da corrente do deflagmator é necessário comentar sobre o estado termodinâmico da
substância em cada ponto da rede. Obviamente, é exigido que a água de arrefecimento
mantenha-se líquida durante todo o processo realizado nos equipamentos. Logo, os seus
estágios de compressão devem ser suficientes para garantir a validade desta assertiva,
mesmo nas condições mais adversas. Ou seja, mesmo para a temperatura mais elevada
possível, a água não deve evaporar. Como o limite superior de temperatura foi
estabelecido em TBU mais 6 °C, determinar 2 bar para a pressão de todos os estados
(desconsiderando perda de carga) é o suficiente. Supondo que a água seja uma substância
pura simples, necessita-se de apenas duas variáveis para fixar seu estado termodinâmico.
Recordando que já obteve-se as temperaturas da rede na entrada e na saída do absorvedor
e do condensador, percebe-se que nestes pontos os estados estão determinados. Logo, a
23
partir das entalpias e da quantidades de calor trocada no absorvedor, afere-se a vazão
mássica da corrente.
𝑚̇𝑎𝑏𝑠 =
𝑄̇𝐴
ℎ𝑜𝑢𝑡,𝑎𝑏𝑠 − ℎ𝑖𝑛,𝑎𝑏𝑠
(3.41)
Como mencionado anteriormente, a faixa de ranges permitidos de uma torre de
resfriamento varia entre 13,9 °C e 19,4 °C. Ou seja, agora, junto com a temperatura de
entrada da água de resfriamento, é possível determinar seu aquecimento ao final da sua
tarefa. Este valor será útil posteriormente, pois amparará o cálculo da temperatura de saída
do deflagmator.
𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 + 13,9 °𝐶 ≤ 𝑇á𝑔𝑢𝑎,𝑓𝑖𝑛𝑎𝑙 ≤ 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 + 19,4 °𝐶
(3.42)
Optou-se, no desenvolvimento do programa, que a temperatura final da água
atingirá o limite inferior de capacidade da torre de resfriamento (𝑇á𝑔𝑢𝑎,𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑖𝑛,𝑐𝑜𝑛𝑑 +
13,9 °𝐶), pois esta restrição é menos impeditiva em relação aos inputs fornecidos e o
objetivo principal do programa é analisar exergeticamente um ciclo de refrigeração por
absorção, ou seja, as principais inconsistências relatadas ao usuário são violações à
segunda lei da termodinâmica. Enfim, após presumir a temperatura da água de entrada na
torre, estima-se a temperatura do sistema de resfriamento na saída do deflagmator para a
qual a exigência instituída valha. Pela primeira lei da termodinâmica:
ℎá𝑔𝑢𝑎,𝑓𝑖𝑛𝑎𝑙 (𝑚̇𝑎𝑏𝑠 + 𝑚̇𝑐𝑜𝑛𝑑 + 𝑚̇𝑑𝑒𝑓𝑙 ) = 𝑚̇𝑎𝑏𝑠 ℎ𝑖𝑛,𝑎𝑏𝑠 + 𝑚̇𝑐𝑜𝑛𝑑 ℎ𝑖𝑛,𝑐𝑜𝑛𝑑 + 𝑚̇𝑑𝑒𝑓𝑙 ℎ𝑖𝑛,𝑑𝑒𝑓𝑙 + 𝑄̇𝐴 + 𝑄̇𝐶 + 𝑄̇𝐷
𝑚̇𝑑𝑒𝑓𝑙 =
𝑄̇𝐷
ℎ𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 − ℎ𝑖𝑛,𝑑𝑒𝑓𝑙
(3.43)
(3.44)
Combinando estas duas expressões e explicitando ℎ𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 :
ℎ𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 =
𝑄̇𝐷 (ℎá𝑔𝑢𝑎,𝑓𝑖𝑛𝑎𝑙 − ℎ𝑖𝑛,𝑑𝑒𝑓𝑙 )
𝑚̇𝑎𝑏𝑠 (ℎ𝑖𝑛,𝑎𝑏𝑠 − ℎá𝑔𝑢𝑎,𝑓𝑖𝑛𝑎𝑙 ) + 𝑚̇𝑐𝑜𝑛𝑑 (ℎ𝑖𝑛,𝑐𝑜𝑛𝑑 − ℎá𝑔𝑢𝑎,𝑓𝑖𝑛𝑎𝑙 ) + 𝑄̇𝐴 + 𝑄̇𝐶 + 𝑄̇𝐷
(3.45)
Esta entalpia, somada a pressão já conhecida, definem o estado termodinâmico da
água na saída do deflagmator. Portanto, encontra-se também a sua temperatura e vazão
mássica (a partir da equação 3.44). Assim como no caso de um absorvedor, é determinado
um range mínimo para a corrente de água escoando no deflagmator, pois ranges
negativos violariam a segunda lei da termodinâmica e range excessivamente curtos não
possuem base na realidade. Então:
𝑅𝑎𝑛𝑔𝑒𝑑𝑒𝑓𝑙𝑎𝑔𝑚𝑎𝑡𝑜𝑟 = 𝑇𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 − 𝑇𝑖𝑛,𝑑𝑒𝑓𝑙 ≥ 2 °𝐶
(3.46)
Falta ainda aplicar a análise segundo a primeira lei da termodinâmica para o
evaporador e para o gerador. No evaporador, escoa a água gelada vinda do recinto, que
deve ser resfriada para posteriormente circular na serpentina e refrigerar o ambiente
24
desejado. Portanto, sua temperatura é reduzida, medindo frequentemente 12 °C na entrada
do evaporador. Tomando esta como uma aproximação para a temperatura de ingresso no
evaporador, adota-se o mesmo método utilizado no absorvedor para alcançar a
temperatura de saída da corrente. Em outras palavras, a partir de um approach usual
quantifica-se este aquecimento e, imediatamente após, verifica-se se a variação de
temperatura na corrente satisfaz um limite mínimo. Supondo configuração
contra-corrente no evaporador, o approach relativo à temperatura de saída da água é a
diferença entre este valor e T10 (considerado, no caso, 6 °C). Para não violar a segunda lei
da termodinâmica e executar a rejeição de calor, a temperatura de entrada da água gelada
deve ser superior à temperatura de entrada da mistura água-amônia e a temperatura de
saída desta solução deve ser inferior a temperatura de entrada da água. O range mínimo
da água gelada adotado é de 4 °C.
𝑇𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 = 𝑇10 + 6°𝐶
(3.47)
𝑇𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 − 𝑇𝑖𝑛,𝑒𝑣𝑎𝑝 ≥ 4 °𝐶
(3.48)
3.3.2. COMBUSTÃO
A quantificação dos estados termodinâmicos na entrada e na saída do combustor
exige uma prévia introdução a reações de combustão, pois este equipamento fornece calor
ao gerador queimando metano. Este meio de esquentamento foi escolhido, pois analisar
as irreversibilidades envolvidas no processo de queima direta, elucidam o majoritário
emprego de ciclos de refrigeração por absorção água-amônia em projetos de cogeração.
Combustão é uma reação química exotérmica entre combustível e comburente
(chamados de reagentes). O processo de combustão envolve a oxidação dos constituintes
do combustível e a preservação da massa de cada elemento. O oxigênio é o comburente
mais comum nestes processos e, na maioria das vezes, é fornecido pelo ar atmosférico,
ou seja, encontra-se a temperatura ambiente e geralmente outros gases também interagem
durante este fenômeno.
Então, é importante saber a composição do ar. Ele é composto fundamentalmente,
em base molar, por oxigênio (21%), nitrogênio (78%) e argônio (1%). Admite-se que
nitrogênio e argônio não participam das reações químicas, mas variam a temperatura até
o valor alcançado pelos demais produtos (mudam de estado sem alterarem-se
quimicamente). Pesando a participação de cada gás na constituição da mistura, despreza-
25
se o argônio e idealiza-se o ar como um composto binário, contendo 21% de oxigênio e
79% de nitrogênio (em base volumétrica). Utilizando a Lei de Avogadro, obtém-se a
relação molar entre nitrogênio e oxigênio de presença na combustão realizada com ar
atmosférico. Conclui-se, que para cada mol de oxigênio estão envolvidos 3,76 moles
(79/21) de nitrogênio.
Agora, surge o questionamento sobre a quantidade mínima de ar que fornece o
oxigênio suficiente para a combustão completa do carbono, hidrogênio e quaisquer outros
elementos do combustível que possam oxidar. Esta porção é constantemente referida
como ar teórico e é adquirida através do balanceamento da reação química
(estequiometria). Em outras palavras, é conquistada através do princípio de conservação
de massa aplicado a cada elemento. A queima de 1 kmol de gás metano por meio de ar
atmosférico é expressa, como:
𝐶𝐻4 + 2 𝑂2 + 2(3,76) 𝑁2 → 𝐶𝑂2 + 2 𝐻2 𝑂 + 7,52 𝑁2
Logo, a quantidade de ar teórico necessária à combustão completa de 1 kmol
metano vale 9,52 kmol (2+2.3,76). Mas nem sempre este processo ocorre à quantidade
estequiométrica, para tanto, existe uma relação usual para representar a quantidade de ar
realmente fornecida à reação em um função da porcentagem de ar teórico. Denomina-se
porcentagem de ar teórico.
Φ=
𝑛𝑎𝑟,𝑓𝑜𝑟𝑛𝑒𝑐𝑖𝑑𝑜
𝑛𝑎𝑟,𝑡𝑒ó𝑟𝑖𝑐𝑜
(3.49)
Assim, Φ ∙ (100) % de ar teórico significa que o ar é fornecido numa quantidade
Φ vezes maior do que a referente ao ar teórico. A combustão completa do metano com
Φ(100) % de ar estequiométrico é escrita da seguinte forma:
𝐶𝐻4 + Φ𝑥2 (𝑂2 + 3,76 𝑁2 ) → 𝐶𝑂2 + 2 𝐻2 𝑂 + 7,52Φ 𝑁2 + 2(Φ − 1)𝑂2
No solver, a combustão é considerada completa, ou seja, sem formação de
monóxido de carbono e hidrocarbonetos. Esta hipótese alinha-se a meta de simplicidade
e agilidade do programa, pois caso contrário seria necessário analisar a composição dos
produtos de combustão, a fim de analisar energética e exergeticamente o processo. Para
garantir combustão completa, uma boa estimativa de fração de ar teórico presente na
queima é de 1,5 (150 % de ar estequiométrico)
É necessário definir os estados termodinâmicos dos reagentes e produtos da
combustão, para posteriormente calcular suas exergias. A reação selecionada para
fornecer energia ao gerador é a queima de gás metano, modelada como completa, na
presença de uma quantidade de ar Φ vezes maior do que a referente ao ar teórico. Admite26
se que os reagentes invadem a câmara de combustão à temperatura e à pressão ambientes,
pois é utilizado ar atmosférico. As temperaturas dos produtos também são supostas iguais
e seu valor é encontrado a partir da primeira lei da termodinâmica, pois já se possui, desde
a seção anterior, a quantidade de calor 𝑄̇𝐺 a ser cedido ao gerador pelo combustor.
Considera-se a descarga dos produtos na atmosfera, logo a pressão de saída do combustor
também é a pressão ambiente. Desta forma, pretende-se igualar a variação de entalpia
entre produtos e reagentes ao calor calculado e descobrir sua temperatura, para a qual a
identidade é satisfeita. Neste método, contabiliza-se a diferença entre as duas entalpias.
Por isso, é importante que ambos valores estejam determinados a partir de um mesmo
referencial de quantificação. Como cada substância possui seu referencial mais
conveniente, suas condições de referência distinguem-se e por isso deve-se investigar,
previamente à aplicação da conservação de energia, uma base comum e consistente. Logo,
define-se o estado de referência pela temperatura de 25 °C e pressão de 0,1 MPa, no qual
a entalpia dos elementos é admitida nula. É natural indagar-se, neste momento, acerca do
valor a ser atribuído à entalpia de cada substância, quando submetida à condição de
referência. Caso todas as magnitudes igualem-se, restaria apenas a vazão de combustível
para atingir o objetivo final. Infelizmente não é essa a situação. Certos compostos
possuem uma entalpia de formação, pois liberam ou absorvem calor, quando formados a
partir de seus elementos, na condição de referência. Logo, expressa-se a entalpia total da
seguinte forma:
ℎ̅𝑇,𝑃 = (ℎ̅𝑓0 )
298 𝐾;0,1 𝑀𝑃𝑎
+ (Δℎ̅)298 𝐾; 0,1 𝑀𝑃𝑎
(3.50)
Onde o subscrito “f” refere-se à entalpia de formação e o índice “0” refere-se ao
estado padrão de 298 K e 0,1 MPa (WYLEN et al., 2009). Traduzindo, a equação acima
expõe que para todas as substâncias envolvidas no processo de combustão, a entalpia
relativa a uma determinada pressão e temperatura é igual à soma entre a sua entalpia de
formação e a diferença entre a entalpia neste estado desejado e a entalpia a 298 K e 0,1
Mpa. Por conveniência, refere-se à entalpia em base molar denotada com uma barra acima
de h. Atenta-se que, para um elemento, a entalpia de formação é nula. Seguem abaixo
todas as entalpias de formação (WYLEN et al., 2009).
(ℎ̅𝑓0 )
(ℎ̅𝑓0 )
(ℎ̅𝑓0 )
𝐶𝐻4
𝐶𝑂2
= −74873 𝑘𝐽/𝑘𝑚𝑜𝑙
= −393522 𝑘𝐽/𝑘𝑚𝑜𝑙
𝐻2 𝑂(𝑣𝑎𝑝𝑜𝑟)
= −241826 𝑘𝐽/𝑘𝑚𝑜𝑙
27
(ℎ̅𝑓0 )
𝑁2
(ℎ̅𝑓0 )
𝑂2
= 0 𝑘𝐽/𝑘𝑚𝑜𝑙
= 0 𝑘𝐽/𝑘𝑚𝑜𝑙
Como presume-se temperatura dos produtos elevada, considera-se que a água
presente ao final da reação encontra-se vaporizada.
Para aplicar a primeira lei da termodinâmica ao sistema reagente, necessita-se
anteriormente saber a vazão mássica ou molar de metano. Uma boa estimativa inicial para
esta vazão mássica, capaz de aquecer satisfatoriamente o gerador, é de 0,06 kg/s, ou,
sabendo que a massa molar de metano vale 16,043 kg/kmol, 0,0037 kmol/s (nCH4). Esta
vazão deve ser suficiente para aquecer o gerador à temperatura desejada. Caso o valor
atribuído a esta grandeza pelo usuário seja inferior ao exigido termicamente, deve haver
um alerta que informe esta impossibilidade.
Finalmente a primeira lei da termodinâmica para este sistema reagente pode ser
aplicada como segue abaixo:
𝑄̇𝐺 = ∑ 𝑛𝑒𝑛𝑡𝑟𝑎𝑑𝑎 ℎ̅𝑒𝑛𝑡𝑟𝑎𝑑𝑎 − ∑ 𝑛𝑠𝑎í𝑑𝑎 ℎ̅𝑠𝑎í𝑑𝑎
𝑅
(3.51)
𝑃
Onde:
∑ 𝑛𝑒𝑛𝑡𝑟𝑎𝑑𝑎 ℎ̅𝑒𝑛𝑡𝑟𝑎𝑑𝑎 = 𝑛𝐶𝐻4 (ℎ̅𝐶𝐻4 + 2Φℎ̅𝑂2 (𝑅) + 7,52Φℎ̅𝑁2 (𝑅) )
𝑅
∑ 𝑛𝑠𝑎í𝑑𝑎 ℎ̅𝑠𝑎í𝑑𝑎 = 𝑛𝐶𝐻4 (ℎ̅𝐶𝑂2 + 2ℎ̅𝐻2 𝑂(𝑣𝑎𝑝𝑜𝑟) + 7,52Φℎ̅𝑁2 (𝑃) + 2(Φ − 1)ℎ̅𝑂2 (𝑃) )
𝑃
E:
ℎ̅𝐶𝐻4 = (ℎ̅𝑓0 )
𝐶𝐻4
+ (Δℎ̅) 𝑇
ℎ̅𝑂2 (𝑅) = (Δℎ̅) 𝑇
𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
ℎ̅𝑁2 (𝑅) = (Δℎ̅) 𝑇
ℎ̅𝐶𝑂2 = (ℎ̅𝑓0 )
ℎ̅𝐻2 𝑂(𝑣𝑎𝑝𝑜𝑟) = (ℎ̅𝑓0 )
𝐶𝑂2
𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
+ (Δℎ̅) 𝑇
𝐻2 𝑂(𝑣𝑎𝑝𝑜𝑟)
ℎ̅𝑁2 (𝑃) = (Δℎ̅) 𝑇
ℎ̅𝑂2 (𝑃) = (Δℎ̅) 𝑇
𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
+ (Δℎ̅) 𝑇
𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
A temperatura final dos produtos é, então, a temperatura para a qual a equação
3.51 é satisfeita. Possuindo esta informação, fixa-se todos os estados das substâncias, ou
28
seja, habilita-se a calcular as exergias da câmara de combustão e consequentemente a
irreversibilidade deste equipamento.
3.3.3. EXERGIA E IRREVERSIBILIDADE
Por fim, atinge-se a meta final: o cálculo das exergias ou disponibilidades. Antes,
é importante entender precisamente, o que é esta grandeza, a fim de esclarecer a sua
relevância. Ela é a quantificação do potencial de uma fonte energética, ou seja, é o
máximo trabalho reversível, que uma massa num certo estado é capaz de gerar. Contudo,
esta medida pressupõe noção de um estado final da matéria que tornará máximo o trabalho
reversível. Esta condição é o estado em equilíbrio com o meio, pois desta forma não
ocorrerá nenhuma variação espontânea de estado e o sistema não será capaz de realizar
trabalho. Precisamente, isto significa estar em equilíbrio térmico (uniformidade de
temperatura) e (uniformidade de pressão) mecânico com o meio. Também deve estar em
equilíbrio químico com o meio, implicando na não existência de qualquer reação química.
O equilíbrio com o meio também requer que o sistema tenha velocidade zero e energia
potencial mínima. Exigências análogas podem ser estabelecidas em relação aos efeitos
magnéticos, elétricos e superficiais, se estes forem relevantes na formulação do problema
(WYLEN et al., 2009). Considera-se apenas o máximo trabalho reversível associado a
um escoamento permanente, pois supõe-se que todos os processos do ciclo de absorção e
dos sistemas auxiliares ocorrem desta maneira. Então, a equação do máximo trabalho
específico reversível para uma substância entrando em um volume de controle em um
dado estado é:
𝑤 𝑟𝑒𝑣 = (ℎ +
2
𝑉𝑒𝑛𝑡𝑟𝑎𝑑𝑎
𝑇0
+ 𝑔𝑍 − 𝑇0 𝑠𝑒𝑛𝑡𝑟𝑎𝑑𝑎 ) − (ℎ0 + 𝑔𝑍0 − 𝑇0 𝑠0 ) + 𝑞 (1 −
)
2
𝑇𝑓𝑜𝑛𝑡𝑒
(3.52)
Onde o subscrito “0” identifica uma propriedade à condição ambiente (sendo a
pressão ambiente igual à 101325 Pa). Os dois primeiros termos do lado direito da equação
são a contribuição do escoamento ao trabalho líquido reversível e o último termo é
associado a uma transferência reversível de energia por interação calor na fronteira com
um reservatório térmico a Tfonte. Ou seja, este terceiro componente contabiliza a troca
térmica ideal, gerando resultados superestimados, quando contrastados com a realidade.
Por isso foi importante definir sistemas auxiliares ao ciclo de refrigeração principal e
modelar interações térmicas mais fidedignas ao fenômeno natural.
29
Designa-se o trabalho reversível máximo da matéria em um determinado estado,
por unidade de massa que escoa em regime permanente, adiabaticamente, por
disponibilidade ou exergia por unidade de massa:
2
𝑉𝑒𝑛𝑡𝑟𝑎𝑑𝑎
Ψ = (ℎ +
+ 𝑔𝑍 − 𝑇0 𝑠𝑒𝑛𝑡𝑟𝑎𝑑𝑎 ) − (ℎ0 + 𝑔𝑍0 − 𝑇0 𝑠0 )
2
(3.53)
Abaixo encontram-se as exergias de todos os estados do ciclo de refrigeração principal,
da rede de água de resfriamento e do sistema de água gelada:
Tabela 3.1 – Fórmulas das exergias de cada estado
Ψ1
[ℎ1 − 𝑇0 𝑠1 ] − [ℎ1 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥1 ) − 𝑇0 𝑠1 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥1 )]
Ψ2
[ℎ2 − 𝑇0 𝑠2 ] − [ℎ2 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥2 ) − 𝑇0 𝑠2 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥2 )]
Ψ3
[ℎ3 − 𝑇0 𝑠3 ] − [ℎ3 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥3 ) − 𝑇0 𝑠3 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥3 )]
Ψ4
[ℎ4 − 𝑇0 𝑠4 ] − [ℎ4 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥4 ) − 𝑇0 𝑠4 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥4 )]
Ψ5
[ℎ5 − 𝑇0 𝑠5 ] − [ℎ5 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥5 ) − 𝑇0 𝑠5 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥5 )]
Ψ6
[ℎ6 − 𝑇0 𝑠6 ] − [ℎ6 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥6 ) − 𝑇0 𝑠6 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥6 )]
Ψ7
[ℎ7 − 𝑇0 𝑠7 ] − [ℎ7 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥7 ) − 𝑇0 𝑠7 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥7 )]
Ψ8
[ℎ8 − 𝑇0 𝑠8 ] − [ℎ8 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥8 ) − 𝑇0 𝑠8 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥8 )]
Ψ9
[ℎ9 − 𝑇0 𝑠9 ] − [ℎ9 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥9 ) − 𝑇0 𝑠9 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥9 )]
Ψ10
[ℎ10 − 𝑇0 𝑠10 ] − [ℎ10 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥10 ) − 𝑇0 𝑠10 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥10 )]
Ψ11
[ℎ11 − 𝑇0 𝑠11 ] − [ℎ11 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥11 ) − 𝑇0 𝑠11 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥11 )]
Ψ12
[ℎ12 − 𝑇0 𝑠12 ] − [ℎ12 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥12 ) − 𝑇0 𝑠12 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 , 𝑥12 )]
Ψ𝑖𝑛,𝑐𝑜𝑛𝑑
[ℎ𝑖𝑛,𝑐𝑜𝑛𝑑 − 𝑇0 𝑠𝑖𝑛,𝑐𝑜𝑛𝑑 ] − [ℎ𝑖𝑛,𝑐𝑜𝑛𝑑 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 ) − 𝑇0 𝑠𝑖𝑛,𝑐𝑜𝑛𝑑 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 )]
Ψ𝑜𝑢𝑡,𝑐𝑜𝑛𝑑
[ℎ𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 − 𝑇0 𝑠𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 ] − [ℎ𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 ) − 𝑇0 𝑠𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 )]
Ψ𝑖𝑛,𝑎𝑏𝑠
[ℎ𝑖𝑛,𝑎𝑏𝑠 − 𝑇0 𝑠𝑖𝑛,𝑎𝑏𝑠 ] − [ℎ𝑖𝑛,𝑎𝑏𝑠 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 ) − 𝑇0 𝑠𝑖𝑛,𝑎𝑏𝑠 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 )]
Ψ𝑜𝑢𝑡,𝑎𝑏𝑠
[ℎ𝑜𝑢𝑡,𝑎𝑏𝑠 − 𝑇0 𝑠𝑜𝑢𝑡,𝑎𝑏𝑠 ] − [ℎ𝑜𝑢𝑡,𝑎𝑏𝑠 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 ) − 𝑇0 𝑠𝑜𝑢𝑡,𝑎𝑏𝑠 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 )]
Ψ𝑖𝑛,𝑑𝑒𝑓𝑙
[ℎ𝑖𝑛,𝑑𝑒𝑓𝑙 − 𝑇0 𝑠𝑖𝑛,𝑑𝑒𝑓𝑙 ] − [ℎ𝑖𝑛,𝑑𝑒𝑓𝑙 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 ) − 𝑇0 𝑠𝑖𝑛,𝑑𝑒𝑓𝑙 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 )]
Ψ𝑜𝑢𝑡,𝑑𝑒𝑓𝑙
[ℎ𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 − 𝑇0 𝑠𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 ] − [ℎ𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 ) − 𝑇0 𝑠𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 )]
Ψ𝑖𝑛,𝑒𝑣𝑎𝑝
[ℎ𝑖𝑛,𝑒𝑣𝑎𝑝 − 𝑇0 𝑠𝑖𝑛,𝑒𝑣𝑎𝑝 ] − [ℎ𝑖𝑛,𝑒𝑣𝑎𝑝 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 ) − 𝑇0 𝑠𝑖𝑛,𝑒𝑣𝑎𝑝 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 )]
Ψ𝑜𝑢𝑡,𝑒𝑣𝑎𝑝
[ℎ𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 − 𝑇0 𝑠𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 ] − [ℎ𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 ) − 𝑇0 𝑠𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 (𝑃 = 𝑃0 , 𝑇 = 𝑇0 )]
Assim, o trabalho reversível deve ser igual à soma da variação da exergia
associada ao fluido que escoa no volume de controle. A diferença entre o trabalho
realizado no processo reversível e o trabalho realizado no processo real é uma medida da
extensão da irreversibilidade por unidade de massa que escoa no volume de controle. A
30
taxa de geração de irreversibilidade também pode ser relacionada às variações de exergia.
Imaginando diversos escoamentos não reagentes saindo e entrando do volume de
controle, a equação desta taxa, que será utilizada para análise dos equipamentos, é:
̇
𝐼𝑣𝑜𝑙.𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑒
= (∑ 𝑚̇𝑒𝑛𝑡𝑟𝑎𝑑𝑎 Ψentrada − ∑ 𝑚̇𝑠𝑎í𝑑𝑎 Ψsaída ) − 𝑊̇𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑑𝑜
(3.54)
A taxa de irreversibilidade pode ser interpretada como a taxa de destruição de
exergia e esta taxa é diretamente proporcional a de geração de entropia no volume de
controle (WYLEN et al., 2009). Por isso, compara-se as irreversibilidades de cada
equipamento de um sistema para encontrar, onde deve-se focar a otimização de um ciclo
termodinâmico. Esta é a principal informação que estará à disposição ao final deste
trabalho e as fórmulas das irreversibilidades de cada equipamento do ciclo de refrigeração
por absorção água-amônia, excluindo a coluna de retificação (pois possui o gerador),
seguem organizadas abaixo:
Tabela 3.2 – Fórmulas das irreversibilidades de cada equipamento
̇
𝐼𝑏𝑜𝑚𝑏𝑎
𝑚̇1 Ψ1 − 𝑚̇2 Ψ2 + 𝑊̇𝑃 𝜂𝑚
̇
𝐼𝑡𝑟𝑜𝑐𝑎𝑑𝑜𝑟
𝑑𝑒 𝑐𝑎𝑙𝑜𝑟 1
𝑚̇8 Ψ8 + 𝑚̇11 Ψ11 − 𝑚̇9 Ψ9 − 𝑚̇12 Ψ12
̇
𝐼𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑜𝑟
𝑚̇7 Ψ7 − 𝑚̇8 Ψ8 + 𝑚̇𝑐𝑜𝑛𝑑 (Ψ𝑖𝑛,𝑐𝑜𝑛𝑑 − Ψ𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 )
̇
𝐼𝑡𝑟𝑜𝑐𝑎𝑑𝑜𝑟
𝑑𝑒 𝑐𝑎𝑙𝑜𝑟 2
𝑚̇4 Ψ4 + 𝑚̇2 Ψ2 − 𝑚̇5 Ψ5 − 𝑚̇3 Ψ3
̇
𝐼𝑣𝑎𝑙𝑣.𝑑𝑒
𝑒𝑥𝑝.
𝑚̇9 Ψ9 − 𝑚̇10 Ψ10
1
̇
𝐼𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑑𝑜𝑟
𝑚̇10 Ψ10 − 𝑚̇11 Ψ11 + 𝑚̇𝑒𝑣𝑎𝑝 (Ψ𝑖𝑛,𝑒𝑣𝑎𝑝 − Ψ𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 )
̇
𝐼𝑎𝑏𝑠𝑜𝑟𝑣𝑒𝑑𝑜𝑟
𝑚̇6 Ψ6 + 𝑚̇12 Ψ12 − 𝑚̇1 Ψ1 + 𝑚̇𝑎𝑏𝑠 (Ψ𝑖𝑛,𝑎𝑏𝑠 − Ψ𝑜𝑢𝑡,𝑎𝑏𝑠 )
̇
𝐼𝑣𝑎𝑙𝑣.𝑑𝑒
𝑒𝑥𝑝.
𝑚̇5 Ψ5 − 𝑚̇6 Ψ6
2
A equação acima de taxa de irreversibilidade é inapropriada à aplicação em
sistemas reagentes, pois possui inconsistência de referenciais da entropia e da entalpia,
assim como já abordado ao analisar-se a conservação de energia na combustão. Neste
primeiro tratamento, solucionou-se a incoerência presente nos cálculos de variação de
entalpia. Agora, discute-se e desata-se a divergência de bases nos cálculos de variação de
entropia. A terceira lei da termodinâmica estabelece este referencial absoluto, afirmando
que a entropia de um cristal perfeito a temperatura zero absoluto é nula. Isto significa que,
de um ponto de vista estatístico, a estrutura do cristal apresenta o grau máximo de ordem
e que a energia térmica é mínima, pois a temperatura é zero absoluto. O cálculo da
entropia absoluta de uma substância em qualquer estado envolve, então, o seu valor a
25°C e a 0,1MPa somado a variação da entropia entre este estado e o outro estado
31
desejado. WYLEN et al. (2009) fornece a entropia absoluta a 25°C de temperatura e
0,1MPa de pressão, considerando que gases neste estado comportam-se como perfeitos.
(𝑠̅𝑓0 )
𝐶𝐻4
(𝑠̅𝑓0 )
(𝑠̅𝑓0 )
𝐶𝑂2
= 186,251 𝑘𝐽/𝑘𝑚𝑜𝑙𝐾
= 213,795 𝑘𝐽/𝑘𝑚𝑜𝑙𝐾
𝐻2 𝑂(𝑣𝑎𝑝𝑜𝑟)
(𝑠̅𝑓0 )
(𝑠̅𝑓0 )
𝑁2
𝑂2
= 188,834 𝑘𝐽/𝑘𝑚𝑜𝑙𝐾
= 191,609 𝑘𝐽/𝑘𝑚𝑜𝑙𝐾
= 205,148 𝑘𝐽/𝑘𝑚𝑜𝑙K
O subscrito “f” denota que a entropia é absoluta, o índice “0” mostra que a entropia
é avaliada a 25°C e 0,1MPa e a barra expõe que a base da entropia é molar. Logo, a
fórmula geral para o cálculo de qualquer componente envolvido na combustão é:
𝑠̅𝑇,𝑃 = 𝑠̅𝑓0 + Δ𝑠̅ 0→𝑇,𝑃
(3.55)
Com esta informação determina-se, enfim, a irreversibilidade na câmara de
combustão:
̇
𝐼𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑜𝑟
= ∑ 𝑛𝑠𝑎í𝑑𝑎 𝑇0 𝑠̅𝑠𝑎í𝑑𝑎 − ∑ 𝑛𝑒𝑛𝑡𝑟𝑎𝑑𝑎 𝑇0 𝑠̅𝑒𝑛𝑡𝑟𝑎𝑑𝑎 − 𝑄̇𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑜𝑟
𝑃
(3.56)
𝑅
Onde:
∑ 𝑛𝑠𝑎í𝑑𝑎 𝑇0 𝑠̅𝑠𝑎í𝑑𝑎 = 𝑛𝐶𝐻4 𝑇0 (𝑠̅̅̅̅̅̅
𝐶𝑂2
𝑃
𝑇𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
+ 2𝑠̅̅̅̅̅̅
𝐻2 𝑂
∑ 𝑛𝑒𝑛𝑡𝑟𝑎𝑑𝑎 𝑇0 𝑠̅𝑒𝑛𝑡𝑟𝑎𝑑𝑎 = 𝑛𝐶𝐻4 𝑇0 (𝑠̅̅̅̅̅̅
𝐶𝐻4
𝑅
𝑇𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
𝑇𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
+ 7,52Φ𝑠̅̅̅̅
𝑁2
+ 2Φ𝑠̅̅̅̅
𝑂2
𝑇𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
𝑇𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
+ 2(Φ − 1)𝑠̅̅̅̅
𝑂2
+ 7,52Φ𝑠̅̅̅̅
𝑁2
𝑇𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
𝑇𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
)
)
𝑄̇𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑜𝑟 = 𝑄̇𝐺
Logo, a irreversibilidade presente em um volume de controle, que engloba a
coluna de retificação, a câmara de combustão e o deflagmator é expressa na seguinte
fórmula:
̇
̇
𝐼𝑐𝑜𝑙𝑢𝑛𝑎
= 𝑚̇𝑑𝑒𝑓𝑙 (Ψin,defl − Ψout,defl ) + 𝑚̇3 Ψ3 − 𝑚̇7 Ψ7 − 𝑚̇4 Ψ4 + 𝐼𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑜𝑟
(3.57)
3.3.4. SEGUNDA LEI PARA PROCESSOS EM REGIME PERMANENTE
Uma forma análoga de analisar o grau de irreversibilidade do ciclo, que também
está presente neste trabalho é através da variação líquida de entropia no ciclo. Como a
geração de entropia é uma medida de destruição de disponibilidade e, pela segunda lei da
termodinâmica, cada processo provocar variação líquida de entropia positiva, sua
32
derivação é relevante para a análise do ciclo. A expressão que define a taxa variação de
entropia em um processo adiabático em regime permanente é:
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜
= ∑ 𝑚̇𝑠𝑎í𝑑𝑎 𝑠𝑠𝑎í𝑑𝑎 − ∑ 𝑚̇𝑒𝑛𝑡𝑟𝑎𝑑𝑎 𝑠𝑒𝑛𝑡𝑟𝑎𝑑𝑎
(3.58)
Observa-se que, neste caso, apenas os escoamentos, atravessando o volume de
controle estudado contribuem para a geração de entropia. Esta equação é considerada nos
cálculos do ciclo, pois todas as trocas térmicas foram modeladas com o auxílio de
sistemas secundários, que interagiam termicamente com o ciclo principal. Portanto, neste
trabalho não há fluxo de calor sobre qualquer equipamento.
Segue abaixo a tabela contendo as formulações de cada equipamento presente no
ciclo de refrigeração (excluído a coluna de retificação, pois possui o combustor acoplado).
Tabela 3.3 – Fórmulas de geração de entropia de cada equipamento
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑏𝑜𝑚𝑏𝑎
𝑚̇2 s2 − 𝑚̇1 s1
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑡𝑟𝑜𝑐𝑎𝑑𝑜𝑟
𝑑𝑒 𝑐𝑎𝑙𝑜𝑟 1
−𝑚̇8 s8 −𝑚̇11 s11 + 𝑚̇9 s9 + 𝑚̇12 s12
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑜𝑟
−𝑚̇7 s7 + 𝑚̇8 s8 − 𝑚̇𝑐𝑜𝑛𝑑 (s𝑖𝑛,𝑐𝑜𝑛𝑑 − s𝑜𝑢𝑡,𝑐𝑜𝑛𝑑 )
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑡𝑟𝑜𝑐𝑎𝑑𝑜𝑟
𝑑𝑒 𝑐𝑎𝑙𝑜𝑟 2
−𝑚̇4 s4 − 𝑚̇2 s2 + 𝑚̇5 s5 + 𝑚̇3 s3
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑣𝑎𝑙𝑣.𝑑𝑒
𝑒𝑥𝑝.
−𝑚̇9 s9 + 𝑚̇10 s10
1
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑑𝑜𝑟
−𝑚̇10 s10 + 𝑚̇11 s11 − 𝑚̇𝑒𝑣𝑎𝑝 (s𝑖𝑛,𝑒𝑣𝑎𝑝 − s𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 )
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑎𝑏𝑠𝑜𝑟𝑣𝑒𝑑𝑜𝑟
−𝑚̇6 s6 − 𝑚̇12 s12 + 𝑚̇1 s1 − 𝑚̇𝑎𝑏𝑠 (s𝑖𝑛,𝑎𝑏𝑠 − s𝑜𝑢𝑡,𝑎𝑏𝑠 )
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑣𝑎𝑙𝑣.𝑑𝑒
𝑒𝑥𝑝.
−𝑚̇5 s5 + 𝑚̇6 s6
2
Para a reação de combustão na câmara que fornece calor ao gerador, a seguinte
formulação é necessária:
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑐𝑜𝑚𝑏
= ∑ 𝑛𝑠𝑎í𝑑𝑎 𝑠̅𝑠𝑎í𝑑𝑎 − ∑ 𝑛𝑒𝑛𝑡𝑟𝑎𝑑𝑎 𝑠̅𝑒𝑛𝑡𝑟𝑎𝑑𝑎
𝑃
(3.59)
𝑅
Onde:
∑ 𝑛𝑠𝑎í𝑑𝑎 𝑠̅𝑠𝑎í𝑑𝑎 = 𝑛𝐶𝐻4 (𝑠̅̅̅̅̅̅
𝐶𝑂2
𝑃
𝑇𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
+ 2𝑠̅̅̅̅̅̅
𝐻2 𝑂
∑ 𝑛𝑒𝑛𝑡𝑟𝑎𝑑𝑎 𝑠̅𝑒𝑛𝑡𝑟𝑎𝑑𝑎 = 𝑛𝐶𝐻4 (𝑠̅̅̅̅̅̅
𝐶𝐻4 𝑇
𝑅
𝑇𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
+ 7,52Φ𝑠̅̅̅̅
𝑁2
+ 2Φ𝑠̅̅̅̅
𝑂2 𝑇
𝑇𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
+ 2(Φ − 1)𝑠̅̅̅̅
𝑂2
𝑇𝑓𝑖𝑛𝑎𝑙 ,𝑃𝑎𝑡𝑚
+ 7,52Φ𝑠̅̅̅̅
𝑁2 𝑇
)
𝑎𝑚𝑏 ,𝑃𝑎𝑡𝑚
)
Portanto, a entropia gerada em um volume de controle sobre a coluna de
retificação, o deflagmator e o combustor é formulada a seguir:
̇
̇
𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑐𝑜𝑙
= 𝑚̇7 𝑠7 + 𝑚̇4 𝑠4 − 𝑚̇3 𝑠3 + 𝑚̇𝑑𝑒𝑓𝑙 (𝑠𝑜𝑢𝑡,𝑑𝑒𝑓𝑙 − 𝑠𝑖𝑛,𝑑𝑒𝑓𝑙 ) + 𝑆𝑔𝑒𝑟𝑎çã𝑜,𝑐𝑜𝑚𝑏
(3.60)
A irreversibilidade é uma característica inerente a processos reais, logo
irreversibilidades negativas tratam-se de violações à segunda lei da termodinâmica e
33
devem ser alertadas ao usuário para que ele forneça novos inputs. Os únicos dois
equipamentos ainda não discutidos, que poderiam violar a segunda lei da termodinâmica
são os trocadores de calor 1 e 2 (ver Figura 2.3). Esta situação poderia ocorrer, pois não
há approaches definidos entre as temperaturas extremas de cada trocador, ou seja, não há
restrições que evitem a extrapolação das temperaturas de entrada. Então, caso isso
aconteça nestes equipamentos, as suas irreversibilidades acusarão através de valores
negativos e então, por meio desta condição, deve ser exposto um alerta relatando este
acontecimento.
Após obter todas estas informações teóricas relacionadas a irreversibilidade, já
deve ser possível derivar uma quantificação para o desempenho total de um ciclo de
refrigeração por absorção sob a ótica da segunda lei da termodinâmica. Esta grandeza
almejada denota-se eficiência de segunda lei e define-se como a razão entre a variação de
exergia no processo desejado e a variação de exergia dos insumos utilizados para a
obtenção do processo desejado. No caso estudado, a fórmula desta quantidade é:
𝜂2ª 𝐿𝑒𝑖 =
𝑚̇𝑒𝑣𝑎𝑝 (Ψ𝑜𝑢𝑡,𝑒𝑣𝑎𝑝 − Ψ𝑖𝑛,𝑒𝑣𝑎𝑝 )
̇
𝐼𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑜𝑟
34
(3.61)
4. O PROGRAMA
Neste capítulo, apresenta-se as ferramentas utilizadas no desenvolvimento do
solver, a interface gráfica final do programa e as dificuldades técnicas durante a
implementação do solver.
4.1. FERRAMENTAS E INTERFACE GRÁFICA
Finalmente, possui-se todas as ferramentas teóricas capazes de fundamentar a
análise exergética de um ciclo de refrigeração por absorção água-amônia determinado
através de quaisquer inputs desejados. Sobre este alicerce, constrói-se um solver em
MATLAB®, capaz de analisar exergeticamente o sistema mencionado e embasar decisões
alinhadas às exigências ambientais atuais. A fim de facilitar a interação com o usuário,
criou-se uma interface gráfica intuitiva dividida em seis painéis. Cada um possui no título
a informação entregue ou exigida ao usuário. A Figura 4.1 o expõe.
Figura 4.1 – Interface gráfica do solver
No painel “Valores de Entrada” estão presentes, além das variáveis de entrada,
seus valores usuais, a fim de indicar ao usuário suas ordens de grandeza. Mais
informações sobre cada input, são obtidas posicionando o ponteiro do mouse sobre a sua
respectiva caixa de texto. Um desenho esquemático do ciclo é introduzido nesta área para
auxiliar a visualização do sistema, bem como a numeração de cada estado.
35
Caso as unidades das variáveis de entrada desejadas divergirem das unidades
impostas, há, no painel “Conversor de Temperatura, Pressão e Potência para SI” um
conversor de unidades.
Os resultados são mostrados nos demais painéis. Caso os cálculos ocorram sem
qualquer alerta de erro, propriedades relativas aos estados do ciclo de refrigeração por
absorção são exibidas em “Tabela com as Propriedades Termodinâmicas de cada Estado”
e o painel “Gráficos” apresentará o diagrama entalpia-concentração do sistema. Os
valores das irreversibilidades de cada equipamento são escritos em “Tabela das
Irreversibilidades” e ilustrados em gráfico de barras no painel “Gráficos”. “Outros
resultados” referem-se a: taxas de calor indicadas no ciclo, potência cedida à bomba,
eficiências de primeira e segunda lei do ciclo, bem como seu coeficiente de performance,
a taxa de geração de entropia do ciclo e o produto entre e o UA do condensador.
Todos estes resultados foram gerados através do NIST Reference Fluid
Thermodynamic and Transport Properties Database (REFPROP), Version 9.1, pois todas
as propriedades termodinâmicas foram aferidas a partir da base de dados presente neste
software. A função “refpropm.m” torna esta base de dados automaticamente acessível a
outro programa escrito na linguagem MATLAB®. A concentração de amônia na mistura
água-amônia foi avaliada através de duas sub-rotinas, que definem esta propriedade com
tolerância significativa de 10-3, se a solução for líquido saturado ou vapor saturado. Ou
seja, esta função retorna a concentração, conhecidas somente a pressão e a temperatura
do fluido, pois na condição de equilíbrio líquido-vapor precisa-se apenas saber duas
propriedades termodinâmicas da mistura. Se a pressão e a temperatura não formam um
estado saturado, retorna-se uma mensagem de erro, cujo efeito final é um alerta ao
usuário, expondo a incoerência nos dados de entrada. O método de obtenção da
composição da solução envolve achar o zero de uma função, cujo domínio é a
concentração. Então, varia-se a propriedade e encontra-se o valor, que anula a regra. A
função é a diferença entre a temperatura de saturação da solução a pressão fixa e
concentração variável (de 0 a 1) e a temperatura fornecida pelo usuário. Portanto, igualar
estes dois valores, significa alcançar a variável independente desejada. Foi utilizado o
método da bissecção para empatar as duas temperaturas e atingir a raiz. A figura 4.2 expõe
um fluxograma, contendo a lógica de programação desta sub-rotina.
36
Figura 4.2 – Fluxograma da sub-rotina de cálculo da concentração
4.2. DIFICULDADES TÉCNICAS
A concentração de amônia, após o processo de retificação, é próxima à unidade
(aproximadamente amônia pura). Se sua magnitude ultrapassar 99%, o cálculo das
temperaturas dos estados 10 e 11 (estados misturados de líquido e vapor), a partir da base
de dados do REFPROP, divergirá. Evita-se esta discrepância, considerando, nesta
condição, que escoa amônia pura do condensador ao evaporador. Ou seja, nestes casos, a
temperatura, a pressão e a concentração (amônia pura) do estado (7) estão definidos. Este
fato determina o superaquecimento do fluido, pois o usuário escolhe sua pressão e sua
37
temperatura, mas sua concentração não compõe a condição de saturação. Resumindo, esta
dificuldade técnica, relacionada ao dimensionamento de cada componente na mistura,
resultou em outra modificação do problema final em contraste ao problema original.
Ressalta-se, que, nas duas ocasiões o estado (7) está totalmente definido e então as
elaborações anteriores, presentes na seção 3.2, permanecem válidas. A Figura 4.3
representa um fluxograma contendo a lógica de programação do solver.
Figura 4.3 – Fluxograma do solver
38
5. CASO EXEMPLO
5.1. INPUTS ORIGINAIS
O exemplo base para a construção deste trabalho foi apresentado na seção 3.2 sem
detalhar os valores dos dados. A intenção, naquela etapa, era desenvolver um método apto
a dimensionar o ciclo de refrigeração, qualquer que fosse a quantia desejada. Agora,
almeja-se fundamentar discussões posteriores acerca do caso de referência utilizado na
análise do programa produzido. Como este caso teste é uma adaptação do exercício
original às condições climáticas do Rio de Janeiro, é necessário rever a lição, revelando
a extensão de cada grandeza dada, justificando possíveis inadequações do sistema original
e, neste processo, exibindo as funcionalidades do solver desenvolvido no projeto.
Portanto, a tabela abaixo exibe os inputs convertidos para SI.
Tabela 5.1 – Inputs originais do exemplo base
Pressão de condensação [MPa]
1,4
Pressão de evaporação [MPa]
0,2
Temperatura no gerador (estado 4) [K]
388,7
Temperatura do estado (7) [K]
327,6
Temperatura ambiente [K]
299,3
Temperatura do estado (3) [K]
366,5
Range de temperatura entre os estados (9) e (8) [K]
5,6
Diferença de temperatura entre o estado (7’) e (3)
5,6
Temperatura do recinto [K]
254,3
Potência frigorífica [kW]
352
Eficiência mecânica da bomba
0,75
Percebe-se imediatamente, que adequar este exemplo à realidade do Rio de
Janeiro, traduz-se basicamente em alterar as temperaturas ambiente e do recinto e as
demais propriedades afetadas por restrições impostas pela existência, não considerada
neste problema base, de uma torre de resfriamento.
39
5.2. CASO ADEQUADO
Outras grandezas de entrada, não relevantes na análise de primeira lei do ciclo de
refrigeração, mas obrigatórias após a introdução de sistemas secundários auxiliares,
devem ser fornecidas pelo usuário. O calor absorvido pelo gerador é cedido, por meio da
queima de metano, pelo combustor, ou seja, tanto a vazão de metano, quanto a fração de
ar teórico precisam ser determinadas como dados de entrada. Outra grandeza adicional ao
problema base é a vazão mássica de água de arrefecimento no condensador. Apesar destas
três inclusões, houve também uma remoção de input. A diferença de temperatura entre o
estado (7’) e (3) é de difícil acesso ao utilizador do solver, logo, exigi-la limitaria a gama
de possíveis interessados no programa. Por fim, utilizou-se o valor usual de 5°C, retirando
esta decisão indevida.
Então, inicialmente, modifica-se basicamente apenas as temperaturas ambiente e
do recinto em relação aos inputs originais e adiciona-se as demais variáveis solicitadas e
já estimadas anteriormente. A Tabela 5.2 organiza os inputs referentes à primeira
tentativa:
Tabela 5.2 – Primeiros inputs do caso de referência
Pressão de condensação [MPa]
1,4
Pressão de evaporação [MPa]
0,2
Temperatura no gerador (estado 4) [K]
390
Temperatura do estado (7) [K]
330
Temperatura ambiente [K]
305
Temperatura do estado (3) [K]
370
Range de temperatura entre os estados (9) e (8) [K]
5
Vazão mássica de água de resfriamento no condensador [kg/s]
5
Temperatura do recinto [K]
296
Potência frigorífica [kW]
352
Eficiência mecânica da bomba
0,75
Vazão mássica de metano no combustor [kg/s]
0,06
Fração de ar teórico no combustor
1,5
A resposta obtida foi uma mensagem de alerta reportando uma temperatura de
egresso da água gelada do evaporador inferior à temperatura do ponto triplo da água.
40
Observa-se, que somente após a consideração do sistema de água gelada, encontra-se a
impossibilidade de implementação do ciclo desejado.
Figura 5.1 – Alerta de temperatura abaixo do ponto triplo da água
Como esta temperatura depende da temperatura do estado (10), deve-se elevar este
aquecimento a fim de evitar o erro. Este objetivo é alcançado, elevando a pressão de
evaporação do ciclo, pois o estado (10) é submetido a este estágio de compressão. Então,
rodando novamente o programa, mas agora considerando uma pressão de evaporação
igual a 0,37 MPa, obtém-se a seguinte resposta do programa.
Figura 5.2 – Alerta de inadequação às condições climáticas do Rio de Janeiro
Este novo aviso sinaliza, que a temperatura da água de resfriamento exigida para
arrefecer os equipamentos não pode ser alcançada pela torre de resfriamento, ou seja,
deve-se abrandar esta imposição. Como esta temperatura da água de resfriamento é
definida a partir das exigências impostas pelo condensador, altera-se uma grandeza deste
equipamento, no sentido elevar a temperatura necessária à tarefa de resfriamento deste
trocador. Para tanto, aumenta-se a vazão de água de resfriamento neste equipamento para
10,5 kg/s. Os cálculos ocorrem sem mais alertas e os resultados são exibidos na próxima
seção.
41
5.3. RESULTADOS
Como mencionado anteriormente, além de uma análise baseada na segunda lei da
termodinâmica, o programa realiza uma avaliação baseada na primeira lei da
termodinâmica, cujos principais resultados são os estados de cada ponto do ciclo principal
e o gráfico entalpia-concentração do ciclo de refrigeração por absorção água-amônia.
Figura 5.3 – Diagrama entalpia-concentração do ciclo de refrigeração calculado
Tabela 5.3 – Estados do ciclo de refrigeração
P [MPa]
T [K]
X
h [kJ/kg]
Estado 1
Estado 2
Estado 3
Estado 4
Estado 5
Estado 6
Estado 7
Estado 8
Estado 9
Estado 10
Estado 11
Estado 12
𝑚̇
[kg/s]
v [m³/kg]
Ψ [kJ/kg]
0,37
320,7
0,382
93,9
2,67
0,001
10,6
1,40
320,7
0,382
95,1
2,67
0,001
11,8
1,40
370,0
0,382
338,3
2,67
0,001
39,8
1,40
390,0
0,297
428,7
2,34
0,001
50,0
1,40
332,7
0,297
151,9
2,34
0,001
7,3
0,37
332,7
0,297
151,9
2,34
0,001
6,3
1,40
330,0
1,000
1696,1
0,32
0,103
374,1
1,40
309,4
1,000
516,6
0,32
0,002
355,3
1,40
304,4
1,000
492,3
0,32
0,002
355,2
0,37
269,2
1,000
492,3
0,32
0,045
342,0
0,37
269,2
1,000
1578,6
0,32
0,327
197,7
0,37
269,2
1,000
1602,9
0,32
0,333
194,5
As irreversibilidades de cada equipamento são também expostas pela Tabela 5.4.
42
Tabela 5.4 – Valores das irreversibilidades de cada equipamento
Bomba
Trocador de Calor 1
Coluna de Retificação / Gerador / Deflagmator
Condensador
Trocador de Calor 2
Válvula de Expansão 1
Evaporador
Absorvedor
Válvula de Expansão 2
Total
Irreversibilidade [kW]
0
1
213
6
25
4
16
39
2
307
Figura 5.4 – Gráfico de barras das irreversibilidades de cada equipamento
Nota-se claramente a irreversibilidade da coluna de retificação, deflagmator e
gerador prevalecendo sobre as demais irreversibilidades. Este fato ocorre, pois a
combustão é um processo altamente irreversível. Logo, a queima direta de combustível
deve ser repensada, visando melhorar o aproveitamento de uma fonte térmica. Concluise, então, que este método de fornecimento de calor ao gerador sacrifica insumos
energéticos. Por isso, atualmente, emprega-se este ciclo de refrigeração em projeto de
43
cogeração, recuperando rejeitos térmicos. Em suma, substitui-se desperdício por
reaproveitamento de um recurso natural. Analisando novamente os resultados, verificase que o equipamento com a segunda maior irreversibilidade é o absorvedor, portanto,
avalia-se que, após a substituição da fonte térmica do gerador, o maior foco do projetista
deve ser aprimorar termicamente esse equipamento.
Outros subprodutos do solver, que equipam o usuário com mais informações sobre
o rendimento do sistema por absorção, são gerados e estão presentes na Tabela 5.5.
Tabela 5.5 – Subprodutos do solver
Potência fornecida à bomba [kW]
4
Taxa de calor fornecida ao gerador [kW]
748
Taxa de calor extraída pelo deflagmator [kW]
97
Taxa de calor cedida ao absorvedor [kW]
625
Taxa de calor extraída pelo condensador [kW]
382
COP
0,47
Eficiência de primeira lei do ciclo
0,066
Eficiência de segunda lei do ciclo
0,017
Taxa de aumento líquido de entropia do ciclo [kW/K]
6
UA do condensador [kW/K]
15
44
6. CONCLUSÕES
Durante o trabalho, foi desenvolvida uma ferramenta tipo solver, que provou-se
polivalente, pois municia o projetista com resultados valiosos de desempenho total e de
cada equipamento do ciclo de refrigeração por absorção água-amônia e adicionalmente,
através dos alertas ao usuário, define instantaneamente as limitações de operação do
sistema. Sua simplicidade técnica provê cálculos ágeis, característica fundamental em
ambientes pedagógicos e no cotidiano de empresas.
Ademais, a interface gráfica atestou-se intuitiva, pois organiza todas as respostas
(incluindo gráficos) e inputs em uma mesma janela, sem necessidade de abas. Este layout
facilita a interpretação de dados, pois possibilita comparações de ordem de grandeza e
comparações visuais entre os valores expostos lado a lado.
No que tange possíveis futuros aperfeiçoamentos do programa, lista-se a
separação na contabilização das irreversibilidades da coluna de retificação, do
deflagmator, do gerador e do combustor, a fim de sofisticar a análise exergética. Outras
alterações desejáveis são o maior detalhamento das interações entre ciclo principal e
sistemas auxiliares e o cálculo das propriedades a partir de formulações próprias (sem
utilizar a base de dados do REFPROP).
Por fim, exalta-se o valor didático do solver, capaz de expor a um estudante de
refrigeração evidências palpáveis do prejuízo causado pelo destino equivocado dado a um
insumo energético. O contraste quantificável entre os diversos componentes do sistema
de refrigeração, possível por meio da análise baseada na segunda lei da termodinâmica,
confere ao pesquisador o auxílio racional às decisões de otimização térmica e exemplifica
a relevância desta avaliação aos olhos de um iniciante. Esta contribuição alinha-se ao
crescimento atual do pensamento ecológico e integrado em detrimento da antiga lógica
reducionista, mecanicista e imersa em preocupações a curto prazo. Esta interligação
torna-se ainda mais óbvia, quando visualiza-se as restrições na implementação de um
ciclo de refrigeração por absorção água-amônia, impostas pelas condições climáticas.
Portanto, evidencia-se que o objetivo final deste trabalho foi alcançado.
45
REFERÊNCIAS BIBLIOGRÁFICAS
ASHRAE. Fundamentals Handbook. ASHRAE, 2013.
CONDE-PETIT, M.R., 2004, Thermophysical Properties of Ammonia + Water
Solutions for the Industrial Design of Absorption Refrigeration Equipment, Zurich, M.
Conde Engineering.
DE FALCO, R., DE MATTOS, E.E., 1998, Bombas Industriais. 2 ed. Rio de
Janeiro, Interciência.
KUEHN, T.H., RAMSEY, J.W. THRELKELD, J.L., 1998, Thermal
Environmental Engineering, 3 ed. New Jersey, Prentice-Hall Inc.
LIENHARD IV, J.H., LIENHARD V, J.H., 2012, A Heat Transfer Textbook. 4
ed. Massachusetts, Phlogiston Press.
WYLEN, V.; BORGNAKKE, C.; SONNTAG, R. E. Fundamentos da
Termodinâmica. 7th ed. São Paulo: Blucher, 2009.
46
ANEXO A – RESSALVAS SOBRE A UTILIZAÇÃO DO REFPROP
A versão 9.1 do REFPROP proporciona cálculos mais ágeis de propriedades
termodinâmicas da solução água-amônia em relação à versão 9.0. No entanto, os novos
ajustes de curvas utilizados nestas apurações possuem acurácia inferior, quando
comparados com as anteriores. Por vezes, estes erros de aproximação geram avaliações,
que divergem da realidade e em certos casos impossibilitam, inclusive, a convergência
computacional dos valores das grandezas desejadas.
A fim de utilizar ajustes mais acurados e corrigir este erro, deve-se mover o
arquivo AMMONIAL.FLD para o diretório Refprop\Fluids. Esta modificação funcionará
apenas com a versão 9.1, ou seja, não pode ser realizada com a versão 9.0. O arquivo
AMMONIAL.FLD não substituirá o arquivo AMMONIA.FLD.
Após esta mudança, a substância deverá ser referida, na função “refpropm.m”,
pela denotação “ammonial” e não “ammonia”, como seria o padrão anterior. O arquivo
modificado
está
disponível
em:
<http://www.boulder.nist.gov/div838/theory/refprop/901/REFPROP.HTM>. Acesso em:
28/07/2015.
Outro arquivo necessário à execução do programa é o “rp_proto.m” (caso o
sistema seja 32 bits) ou “rp_proto64.m” (caso o sistema seja de 64 bits). O arquivo
correspondente a versão utilizada pelo usuário deve estar no mesmo diretório do
“refpropm.m” e do algoritmo de análise exergética (“Projeto_Final_Refprop_Final.fig” e
“Projeto_Final_Refprop_Final.m”). As funções referentes ao cálculo das concentrações
(“bissecTx_refprop.m” e “bissecTy_refprop.m”) e a imagem do diagrama esquemático
de um ciclo de refrigeração por absorção água-amônia (Exemplo 553.bpm) também
compõe o diretório, onde será executado o programa.
47
Download