As plantas tem ciclos de vida haplodiplonticos con divisões mitóticas nas duas gerações: haploides e diploides Ciclo de vida haplodiplóntico: musgos Ciclo de vida haplodiplóntico: samambaia Ciclo de vida de uma angiosperma: planta de ervilhaca (Pisum) parte A Ciclo de vida de uma angiosperma: planta de ervilhaca (Pisum) (parte B) (A) Padrões de grãos de pólen (B) Grão de pólen: célula dentro de outra célula O carpelo consiste do estigma, do estilo, e do ovario com um o varios ovulos O saco embrionário é o produto de tres divisões mitóticas da megaspore haploide; tem sete células é oito núcleos haploides Saco embrionário Auto-incompatibilidade Receptor-ligand self-recognition is the key to self-incompatibility in Brassicas Pollen tube germination Arabidopsis: Lírio: Calcium and pollen tube tip growth Axis formation in the brown alga Pelvetia compressa Asymmetrical cell division in brown algae Angiosperm embryogenesis (parte A) - dicot Angiosperm embryogenesis (parrte B) - dicot Radial and axial patterning An auxin gradient specifies the shoot-root axis (eixo haste-raiz) The SUS gene (DCL1 allele) suppresses embryonic development in the suspensor wt SUS mutant Dormancy after embryo forms: Viviparous maize mutant Arabidopsis post germination stages (sporophyte development) (Boyes et al. The Plant Cell, 2001) (A) STAGE 0.1, IMBIBITION. (B) STAGE 0.5, RADICLE EMERGENCE. (C) STAGE 0.7, HYPOCOTYL AND COTYLEDONS EMERGED FROM SEED COAT. (D) STAGE 1.0, COTYLEDONS OPENED FULLY. (E) STAGE 1.02, TWO ROSETTE LEAVES >1 MM IN LENGTH. (F) STAGE 1.04, FOUR ROSETTE LEAVES >1 MM IN LENGTH. (G) STAGE 1.10, TEN ROSETTE LEAVES >1 MM IN LENGTH. (H) STAGE 5.10, FIRST FLOWER BUDS VISIBLE (INDICATED BY ARROW IN INSET). (I) STAGE 6.00, FIRST FLOWER OPEN. (J) STAGE 6.50, MIDFLOWERING. (K) STAGE 6.90, FLOWERING COMPLETE. (L) STAGE 9.70, SENESCENT AND READY FOR SEED HARVEST. Both shoots and roots develop from apical meristems, with undifferentiated cells clustered at their tips (meristema do caule) Meristem cells: Células meristemáticas (Iniciales): • • • • Fuente continua de nuevas células. Isodiametricas Núcleo Grande Stem cells SCR and SHR regulate endodermal differentiation in root radial development (Part 1) Endoderm cells express SCR SHR SCR and SHR regulate endodermal differentiation in root radial development (Part 2) SCR expression SCR expression Organization of the shoot apical meristem Quimera de tabaco (L1 y L2 no producen clorofila) WUS and STM proteins keep meristem cells in an undifferentiated state, while the products of the CLAVATA genes CLV1, CLV2, and CLV3 limit the number of undifferentiated meristem cells Polaridad e identidad en la hoja (Husbands et al. 2009 Genes & Development) Patterning of adaxial and abaxial leaf surfaces of Arabidopsis Polaridad e identidad en la hoja de Arabidopsis (Husbands et al. 2009 Genes & Development) Señal de Sussex derivada del meristemo induce lado adaxial en el primordio de las hojas (marcación oscura: PHB, PHV, REV, etc.) Polaridad e identidad en la hoja del maiz (Husbands et al. 2009 Genes & Development) wt mwp1 lbl1 (miR166) lbl1 Polaridad e identidad en la hoja (Husbands et al. 2009 Genes & Development) Leaf morphology mutants in peas Acacia (tl) Afilia (af) af/tl Simple and compound leaves KNOX is known to occur in leaf primordia in species making complex leaves (Part 1) Folha ‘simple’ de Café KNOX is known to occur in leaf primordia in species making complex leaves Folha ‘simple’ do arbusto de Amborella KNOX is known to occur in leaf primordia in species making complex leaves (Parte A) Folha ‘complexa’ de anis expresa KNOX Overexpression of Class 1 KNOX genes in tomato The vegetative-to-reproductive transition (Part 1) Morphology of a generalized angiosperm sporophyte 20.31 Floral meristem identity mutants Modelo ABC(D): https://www.youtube.com/watch?v=Gil3VOQq6k4 Prática – Desenvolvimento em plantas: meristemas http://vlab.amrita.edu/?sub=3&brch=188&sim=1102&cnt=2 1. Take the onion plant with newly sprouted roots and cut two root tips using scissors and transfer them into a plastic microfuge tube. 2. Fill 2/3 of the tube with 1N HCl using a dropper. 3. Place the tube in a 60°C water bath and incubate the tube for 12- 15 minutes. 4. Remove the tube from the water bath after the incubation. 5. Discard the HCl from the tube using a Pasture pipette to the running tap water. 6. Add some drops of distilled water into the tube and rinse the root. Then remove the water from the microfuge tube using the Pasture pipette. (Rinse the roots at least three times). 7. After the washing step add 2-3 drops of Feulgen stain into the tube with root tips and incubate the roots for 12-15 minutes. (During the incubation, the very tip of the root will begin to turn red as the DNA stains the numerous small actively dividing cells at the time). 8. After the incubation remove the stain using a Pasture pipette. 9. Again rinse the root tips with distilled water. (Rinse the roots at least three times). 10. Transfer a root from the tube to the centre of the microscopic slide and add a drop of water over it. 11. Take a razor blade and cut 12. Cover the root tip with a cover slip 13. Observe it under a compound microscope in 10x objective. Scan and narrow down to a region containing dividing cells and switch to 40x for a better view. Prática – Desenvolvimento em plantas: meristemas Prática – Desenvolvimento em plantas