A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 1 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) Marco Aurélio Tavares Caetano - [email protected] Projeto, Execução e Controle de Estruturas de Concreto e Fundações Instituto de Pós-Graduação - IPOG Goiânia, GO, 23/01/2015 Resumo Uma não conformidade está relacionada a processos que geram resultados insatisfatórios, ou seja, produtos não conformes, que não atendem determinado requisito. A especificação do concreto deve considerar principalmente as condições de agressividade ambiental do local onde a obra será executada. A verificação da estabilidade global de um edifício não é simples e nem tão intuitiva assim. Trata-se de um estudo de caso sobre a influência da não conformidade do concreto no deslocamento horizontal de um edifício, realizado através de uma avaliação de um prédio situado na cidade de Goiânia-GO. Objetiva-se avaliar o prejuízo estrutural gerado por um material entregue em não conformidade com o projeto estrutural, através da verificação da diferença de deslocamento de um edifício para os seguintes fck de 30, 28 e 25 e comparar com os indicados pela norma. Palavras-chave: Não-conformidade. Concreto. Deslocamento. 1. Introdução O artigo versa sobre a preocupação recente das construtoras, escritórios e comunidade da construção quanto à qualidade dos concretos entregues nos canteiros de obra, tendo como foco uma obra vertical na cidade de Goiânia, não obstante essa ser uma preocupação de diversos outros profissionais em outras áreas do país. Tem-se observado que o material entregue não atinge sua resistência característica (fck) estipulada nos projetos estruturais, podendo ocasionar deslocamentos excessivos e até o colapso da estrutura pelos esforços verticais (carga gerada pela própria estrutura) e horizontais (carga gerada pelos ventos) (FARIA, 2013). Segundo Faria (2009), uma não conformidade está relacionada a processos que geraram resultados insatisfatórios, ou seja, produtos não conformes, que não atendem determinado requisito. Caso seja identificada uma baixa resistência de um determinado lote de concreto, inicia-se um longo e cansativo caminho para o construtor. Se todas as partes reconhecerem a qualidade e idoneidade do laboratório responsável pelas análises, os resultados são enviados para o projetista estrutural, o qual irá analisar e dar seu veredicto. Dependendo da resistência ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 2 obtida, do tipo de elemento estrutural afetado e dos coeficientes de segurança estrutural adotados, ele poderá autorizar o prosseguimento normal da obra (FARIA, 2009) Caso ocorra lotes não conformes, ou seja com fck,est < fck, de acordo com a NBR 12655 de 2006 (Concreto - Preparo, controle e recebimento), deverá ser feita a análise do projeto para determinar se a parte da estrutura executada com esse lote pode ser considerada aceita, levando em conta os valores obtidos nos ensaios de controle. Em caso negativo, deverá ser feita uma nova análise estrutural pelo engenheiro responsável pelo projeto da estrutura, com o objetivo de verificar o atendimento dos estados limites último e de serviço das peças estruturais construídas com esse lote, levando em conta as resistências obtidas por meio de ensaio de testemunhos extraídos da estrutura de acordo com a NBR 7680:2007 (Concreto Extração, preparo e ensaio de testemunhos de concreto) (ACEBE 001, 2011). Percebidos os erros de conformidade do concreto, nova avaliação é realizada pelo projetista para saber se o material resistirá às solicitações exigidas pela estrutura e se os valores relativos a estabilidade global da edificação estão condizentes com os pré estabelecidos pela NBR 6118:2014. Logo, a relevância do estudo se dá devido a influência da não conformidade do concreto exerce no deslocamento horizontal da estrutura. 2. Objetivos 2.1 Objetivo Geral Avaliar o prejuízo estrutural gerado por um material entregue em não conformidade com o projeto estrutural e qual será o impacto dessa utilização em relação ao deslocamento horizontal. 2.2 Objetivo Específico Calcular, para o edifício em questão, considerando as resistências a compressão do concreto de 25, 28 e 30 MPa, os valores dos índices abaixo: Deslocamento horizontal; Parâmetro de instabilidade “alfa”; Coeficiente “gama” z. Comparar os valores obtidos aos limites estabelecidos pela NBR6118 e um parecer dos lotes de concretos não-conformes. 3. Metodologia Trata-se de um estudo de caso sobre a influência da não conformidade do concreto no deslocamento horizontal de um edifício. Foi realizada a avaliação de um prédio situado na cidade de Goiânia-GO. Foram levantados os valores efetivos da resistência a compressão do concreto (fck) do prédio em questão e posteriormente verificado o comportamento da estrutura mediante valores. ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 3 4. Estudo de Caso 4.1 Lançamento preliminar da estrutura A partir do projeto arquitetônico pode-se constituir a primeira fase do projeto estrutural. Nessa fase que se define as localizações das vigas, o posicionamento dos pilares e as dimensões preliminares dos diversos elementos estruturais. Essas dimensões são escolhidas a priori, levando se em conta os seguintes fatores: vão de lajes e vigas, altura do edifício, número de pilares em cada direção, etc. Essas dimensões são necessárias para o início dos cálculos. No edifício em estudo, foi adotado a estruturação convencional de lajes maciças apoiadas e vigas de seção retangular, as quais se apoiam em pilares, também de seção retangulares. O contraventamento do edifício é feito somente por pórticos. As dimensões dos elementos estruturais foram escolhidas de modo que houvesse uma maior uniformidade de dimensões possíveis, pois assim facilita o reaproveitamento de formas e a sua execução. Para todas as lajes do edifício se adotou uma espessura de 10cm. As larguras das vigas foram escolhidas com o objetivo de que elas fiquem escondidas dentro das paredes. Assim, para as vigas que ficaram embutidas nas paredes de 15cm de espessura, adotou-se a largura de 12cm, já nas paredes de 25cm, as vigas terão 20cm de largura. As vigas de 20 cm participam da subestrutura de contraventamento, sendo responsáveis pela garantia da indeslocabilidade horizontal do edifício, além de absorver os esforços devidos ao vento. Para essa vigas, adotou-se a altura de 60cm. As vigas de 12cm de largura pertence a subestrutura contraventada, devendo absorver somente uma parcela do carregamento vertical. Para essas vigas adota-se a altura de 40cm, já que os vãos máximos são da ordem de 4 a 5 metros. Somente a viga que está na porta do elevador possui seção de 12cm x 60cm, por facilidade construtiva. As vigas de amarração dos pilares, situadas no térreo, possuem altura uniforme de 30cm, com larguras predominantes de 12cm e de 20cm. O posicionamento dessas vigas serão basicamente o mesmo do pavimento tipo. Os pilares pertencentes a subestrutura de contraventamento devem possuir dimensões maiores que aquelas estimadas para o carregamento vertical. Isto é necessário para o aumento da rigidez dos pórticos de contraventamento e para não sobrecarregar os pilares, quando da consideração das ações do vento. Sendo assim, foram adotadas as dimensões 20cm x 50cm para a maioria dos pilares. Para os pilares que também vão suportar o reservatório, adotou-se a seção 20cm x 70cm. 4.1.1 Desenho de forma da estrutura No anexo A, apresenta-se o desenho de forma da estrutura do edifício com suas dimensões preliminares. 4.1.2 Aplicação ao edifício em estudo ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 4 O edifício em estudo é localizado no Setor Bueno, Goiânia, Goiás. Trata-se de um prédio residencial, que se encontra em um terreno plano. A obra possui 8 pavimentos tipo e um térreo, com altura total de 25,75 metros, podendo ser visto na Figura 4.1. Figura 4.1 – Representação dos pavimentos do edifício Conforme está indicado no anexo A (formas do pavimento tipo), a subestrutura de contraventamento é constituída apenas por pórticos, segundo as duas direções principais na planta do edifício. Segundo a direção do lado menor, doravante denominada de direção X, o contraventamento deve ser garantido pelos pórticos contendo os pilares (P1, P2, P3), (P8, P9, P10), (P11, P12, P13) e (P18, P19, P20). Os pórticos formados pelos pilares (P4, P5, P6) e (P15, P16, P17) são pórticos contraventados. A direção do lado maior, denominada de direção Y, o contraventamento é dado pelos pórticos contendo os pilares (P18, P15, P11, P8, P4, P1) e (P20, P17, P13, P10, P6, P3). O pórtico formados pelos pilares (P19, P16, P12) e (P9, P5, P2) são contraventados. ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 5 5. Revisão Bibliográfica 5.1 Parâmetros de estabilidade de um edifício 5.1.1 Importância A verificação da estabilidade global de um edifício não é simples e nem tão intuitiva assim. É necessário conhecer bem o comportamento da estrutura como um todo e criar subsídios para que se possa checar a sua real condição de equilíbrio. O comportamento da estrutura perante os efeitos globais de 2a. ordem, de forma consistente e confiável. As principais características do sistema com relação a este assunto são apresentados a seguir (ARAUJO, 2009). 5.1.2 Não-linearidade geométrica Conforme Araújo (2009), na avaliação da estabilidade global de uma estrutura, é muito importante considerar os efeitos da não-linearidade física presente em edifícios de concreto, mesmo que de forma aproximada através da simples redução de rigidezes dos pilares e das vigas. A não-linearidade geométrica está relacionada com o deslocamento horizontal dos nós da estrutura ao receber carregamentos, devendo ser analisado. Essas análises serão necessárias em razão do surgimento dos chamados efeitos de segunda ordem: deslocamento horizontal da estrutura causam excentricidades nas cargas verticais recebidas pelos pilares, sendo gerados, consequentemente, solicitações (momentos) que não existam na condição anterior às deformações. A Figura 5.1 demonstra o efeito de segunda ordem afetando a estabilidade global da estrutura. Figura 5.1 - efeitos globais de segunda ordem (CARVALHO, ET. AL. 2013) ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 6 Na Figura 5.1, a situação I mostra o acréscimo dos momentos fletores Fe2, de segunda ordem, aos momentos fletores Fe1, de primeira ordem. A situação II demonstra como os esforços de segunda ordem podem ser significativos nas estruturas altas, inclusive em riscos de colapso global da construção. Já na III podemos ver o que seria uma estrutura dotada de elementos estruturais de grande rigidez, que podem tornar desprezíveis os efeitos de segunda ordem. 5.1.3 Generalidades Segundo Araújo (2009), os processos aproximados, apresentados em 5.1.3.1 e 5.1.3.2, podem ser utilizados para verificar a possibilidade de dispensa da consideração dos esforços globais de 2ª ordem, ou seja, para indicar se a estrutura pode ser classificada como de nós fixos, sem necessidade de cálculo rigoroso. 5.1.3.1 Parâmetro de estabilidade α Uma estrutura reticulada simétrica pode ser considerada como sendo de nós fixos se seu parâmetro de instabilidade α for menor que o valor α1 , conforme a Equação 1: Fv α = htot √E cs Ic . (Equação 1) onde: α1 = 0,2+ 0,1n se: n ≤ 3 α1 = 0,6 se: n ≥ 4 onde: n = número de andares; htot = altura total da estrutura, medida do topo da fundação ou de um nível indeformável; EscIc = soma dos valores de rigidez à flexão das seções dos elementos verticais na direção considerada; FV = soma de todas as cargas verticais de serviço. Segundo a NBR 6118:2014, o limite 0,6 pode ser aumentado para 0,7 quando o contraventamento for constituído exclusivamente por pilares-parede. Esse limite deve ser reduzido para 0,5 quando o contraventamento for feito apenas por pórticos. O limite 0,6 é empregado quando o contraventamento é garantido por associações de pórticos e pilaresparede. A Equação 1 limita os efeitos globais de segunda ordem a um máximo em torno de 10% dos respectivos efeitos de primeira ordem na estrutura. Na fórmula verifica-se que, quanto maiores forem as cargas verticais e a altura do edifício, será necessário uma maior rigidez no contraventamento para garantir a indeslocabilidade. No cálculo de inércia Ic, adotam-se apenas as seções transversais de concreto sem a inclusão das armaduras. 5.1.3.2 Coeficiente 𝛄z De acordo com Carvalho (2010), também é possível determinar de forma aproximada o coeficiente γz de majoração dos esforços globais finais com relação aos de primeira ordem, assim, pode-se avaliar a importância dos esforços de segunda ordem globais. Essa avaliação, ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 7 válida para estruturas reticuladas de no mínimo quatro andares, é efetuada a partir dos resultados de uma análise linear de primeira ordem. O valor de γz para cada combinação de carregamento é dado pela equação 2: 1 γz = ΔMtot,d (Equação 2) 1− M1tot,d onde: M1tod,d é o momento de tombamento, ou seja, a soma dos momentos de todas as forças horizontais da combinação considerada, com seus valores de cálculos, em relação à base da estrutura; ΔMtot,d é a soma dos produtos de todas as forças verticais atuantes na estrutura, na combinação considerada, com seus valores de cálculo, pelos deslocamentos horizontais de seus respectivos pontos de aplicação, obtidos da análise de 1ª ordem. Considera-se que a estrutura é de nós fixos se for obedecida a condição: γz ≤ 1,1. 5.2 Ação do vento Conforme Paliga (2013), vento pode ser definido como o movimento de uma massa de ar devido às variações de temperatura e pressão. Essa massa de ar em movimento possui energia cinética e apresenta inércia às mudanças do deslocamento. Se um corpo é colocado no fluxo do vento e ocorre a alteração da sua trajetória, é porque houve uma interação de forças entre a massa de ar e a superfície do corpo. Pode-se mostrar que essa pressão de interação é função da forma e rugosidade do obstáculo e do ângulo de incidência e velocidade do vento. 5.2.1 Elementos estruturais para resistir à ação do vento Segundo Paliga (2013), normalmente, as estruturas de concreto armado são formadas de elementos prismáticos, ou seja, elementos com uma dimensão bem maior que as outras duas, e seção transversal constante. Um arranjo interessante para absorver as ações de ventos são os pórticos (neste caso, planos) que são constituídos por pilares (geralmente são verticais) e vigas (em horizontal), como mostra na Figura 5.2. ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 8 Figura 5.2 - Pórtico sob ações só verticais e verticais junto com horizontais de ventos (Paliga,2013) Caso uma estrutura seja projetada sem vigas (lajes lisas), os esforços de vento seriam absorvidos exclusivamente pelos pilares, considerando-os então ligados somente por tirantes (a função da laje), que são incapazes de transmitir momentos. Mesmo elementos de pequena podem, em seu conjunto, contribuir de maneira significativa na rigidez a ações horizontais, devendo então ser incluídos na subestrutura de contraventamento. Os elementos que não fazem parte da subestrutura de contraventamento são chamados de “elementos contraventados”.Portanto, se torna comum em estruturas mais altas usar caixas de elevadores, de escadas, pilares-paredes e, em algumas situações, até um sistema treliçado na direção da ação crítica do vento, proporcionando uma maior rigidez à estrutura. 5.2.2 Ações horizontais sobre estruturas de contraventamento A determinação dos esforços solicitantes nas estruturas de contraventamento para um carregamento dado é feita empregando-se os métodos convencionais da análise estrutural. Mesmo nas estruturas consideradas indeslocáveis, os esforços de primeira ordem, decorrentes das ações horizontais, devem ser calculados considerando-se a deslocabilidade da estrutura de contraventamento. Quando o contraventamento é feito por elementos do mesmo tipo (só pórticos; só paredes estruturais e pilares-parede), é possível fazer a repartição das forças horizontais sem levar em conta a interação ao longo da altura do edifício. Neste caso, basta analisar um pavimento tipo. Se o contraventamento é feito pela associação de pórticos e paredes e/ou pilares-paredes, é necessário considerar a interação ao longo da altura, esse é um processo rigoroso. Se for um processo mais simplificado, o problema pode ser hiperestático ou isostático. 6. Resultados 6.1 O parâmetro de instabilidade 𝛂 Foi apresentado na planta de forma do pavimento tipo a subestrutura de contraventamento que é constituída apenas por pórticos, segundo as duas direções principais do edifício em estudo, denominado de direção x o lado menor e de direção y o lado maior. O parâmetro de instabilidade α, de modo a garantir a indeslocabilidade do edifício em questão tem que ser menor que 0,5 nas duas direções. ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 9 É necessário estimar a força Fv para realizar o cálculo do parâmetro de instabilidade. Os valores utilizados para a carga total por unidade de área são: Laje de piso: 12 KN/m² Laje de forro: 10 KN/m² O prédio em estudo possui 9 lajes, sendo 8 delas laje de piso e uma laje de forro onde cada uma possui área total de 184m². Segue cálculo de Fv: Fv = (8x12 + 1x10)x184 ⇒ Fv = 19500 kN O contraventamento é feito do nível das fundações até a laje de cobertura, que corresponde a uma altura total de 25,75 m. Utilizando um concreto com resistência característica ƒck= 28MPa, resulta o módulo de deformação secante: Ecs = 0,85 x 5600 x √28 = 25188 MPa ; Ecs = 251,88x105 kN/m² Na figura 6.1 estão representados os pórticos de contraventamento segundo a direção x: Pórtico 1 (2 vezes) Pórtico 2 (2 vezes) Figura 6.1 – Pórticos de contraventamento segundo a direção x (Araújo, 2009) ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 10 Na tabela 6.1 estão apresentadas as propriedades geométricas necessárias a análise dos pórticos. Tabela 6.1 – Propriedades das seções dos pórticos da direção x Pórtico 1 Elemento Largura (cm) Altura (cm) Área (m²) Pilar P1 20 50 0,10 Inércia (m4) 0,00208 Pilar P2 Pilar P3 Vigas 20 20 20 50 50 60 0,10 0,10 0,12 0,00208 0,00208 0,00360 Pórtico 2 Elemento Pilar P1 Pilar P2 Pilar P3 Vigas Largura (cm) 70 20 70 20 Altura (cm) 20 70 20 60 Área (m²) 0,14 0,14 0,14 0,12 Inércia (m4) 0,00047 0,00572 0,00047 0,00360 Foi aplicada aos pórticos uma força horizontal FH = 100 kN, atuando no topo do edifício e uma carga horizontal uniforme p = 10 kN/m Foram encontrados resultados relativos à rigidez equivalente para os dois tipos de cargas, conforme a tabela 6.2. Os valores dos deslocamentos na direção da força (U) foram através do software ftool, desenvolvido por MARTHA (2012), disponível em <www.tecgraf.puc-rio.br/ftool>. Tabela 6.2 – Rigidez equivalente dos pórticos da direção x Pórtico 1 Pórtico 2 FH U (Ftool) Eieq FH U (Ftool) 100 3,143 1,81E+07 100 3,471 P U (Ftool) Eieq p U (Ftool) 10 3,813 1,44E+07 10 4,263 Total Eieq (FH) 6,90E+07 Eieq (p) 5,46E+07 Eieq 1,64E+07 Eieq 1,29E+07 O parâmetro de instabilidade possui valores de acordo com o tipo de carga empregado na obtenção da rigidez equivalente: ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 11 - Para a carga concentrada: Fv 19500 αx = htot √ = 25,75√ = 0,43 Ecs Ic 6,90x107 - Para a carga uniforme: Fv 19500 αx = htot √ = 25,75√ = 0,49 Ecs Ic 5,46x107 Tendo em vista o resultado αx ≤ 0,5, os quatro pórticos garantem a indeslocabilidade do edifício segundo a direção x. Na figura 6.2 estão representados os pórticos de contraventamento segundo a direção y: Pórtico da direção y (2 vezes) Figura 6.2 – Pórticos de contraventamento da direção y (Araújo, 2009) ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 12 Na tabela 6.3 estão apresentadas as propriedades geométricas necessárias a análise dos pórticos. Tabela 6.3 – Propriedades da seções dos pórticos da seção y Elemento Largura (cm) Altura (cm) Área (m²) Inércia (m4) Pilar P18 50 20 0,10 0,00033 Pilar P15 50 20 0,10 0,00033 Pilar P11 20 70 0,14 0,00572 Pilar 8 20 70 0,14 0,00572 Pilar 4 50 20 0,10 0,00033 Pilar 1 50 20 0,10 0,00033 Vigas 20 60 0,12 0,00360 Conforme realizado para a direção x, foi aplicado ao pórtico uma força horizontal FH = 100 kN, atuando no topo do edifício e uma carga horizontal uniforme p= 10 kN/m. Segue os resultados na tabela 6.4. Tabela 6.4 – Rigidez equivalente dos pórticos da direção x FH 100 p 10 U (Ftool) 1,816 U (Ftool) 2,166 Eieq 3,13E+07 Eieq 2,54E+07 Total Eieq (FH) 6,27E+07 Eieq (p) 5,07E+07 Foram obtidos os seguintes valores para o parâmetro de instabilidade segundo a direção y: - Para a carga concentrada: Fv 19500 αy = htot √ = 25,75√ = 0,45 Ecs Ic 6,27x107 - Para a carga uniforme: Fv 19500 αy = htot √ = 25,75√ = 0,50 Ecs Ic 5,07x107 Sendo constatado o resultado αy ≤ 0,5, os dois pórticos são aceitáveis para garantir a indeslocabilidade segundo a direção y. Com isso o edifício em estudo foi considerado indeslocável conforme as duas direções, fazendo com que o esforço solicitante possa ser calculado de acordo com a teoria de primeira ordem. 6.2 O coeficiente 𝛄𝐳 ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 13 Através da NBR-6123:1988 (Forças devidas ao vendo em edificações) é calculada a ação do vento no edifício, considerando os dados adicionais abaixo: - A velocidade básica do vento para o local da edificação, obtida do gráfico de isopletas da NBR-6123:1988, é V0 = 34 m/s. Segue abaixo a figura 6.3 que indica as dimensões do edifício. Figura 6.3 – Dimensões do edifício(Araújo, 2009) Fator topográfico S1: Como se trata de um terreno plano, S1 = 1,0 Fator S2: Pela descrição do local que se encontra o edifício, vimos que ele se enquadra em uma categoria de grau IV, para a rugosidade do terreno. A edificação é considerada de Classe B, pois a sua maior dimensão da superfície frontal é de 30,95m (entre 20m e 50m). Entrando na tabela 1 da NBR-6123, obtém-se os coeficientes b = 0,85, Fr = 0,98 e p = 0,125. Fator estatístico S3: Como se trata de um edifício residencial, tem-se S3= 1,00. Onde a velocidade característica do vento, Vk, é dada pela equação 3: Vk = V0 S1 S2 S3 , m/s (Equação 3) Obtida a velocidade característica do vento, Vk, calcula-se a pressão dinâmica do vento, q, dada pela expressão: q = 0,613Vk2 , N/m² A força de arrasto, Fa, é dada pela equação 4: Fa = Ca qAe (Equação 4) Sendo que: Ca é o coeficiente de arrasto (Cax = 1,33 e Cay = 1,10); Ae é a área frontal efetiva (Ae = 1,00). A partir das equações apresentadas, segue a tabela 6.5 que demonstra os resultados obtidos para as componentes da força de arrasto por unidade de área. Tabela 6.5 – Força de arrasto Nível z V0 S1 S2 S3 Vk q Cax Cay Ae Fax Fay 9 25,25 34 1,00 0,935 1,00 31,80 619,8 1,33 1,10 1,00 0,824 0,682 ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 14 8 7 6 5 4 3 2 1 22,45 19,65 16,85 14,05 11,25 8,45 5,65 2,85 34 34 34 34 34 34 34 34 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,922 0,906 0,889 0,869 0,845 0,816 0,776 0,712 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 31,33 30,82 30,23 29,55 28,74 27,73 26,37 24,21 601,8 582,1 560,2 535,3 506,4 471,4 426,3 359,2 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,33 1,10 1,10 1,10 1,10 1,10 1,10 1,10 1,10 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 0,801 0,774 0,745 0,712 0,674 0,627 0,567 0,478 0,662 0,640 0,616 0,589 0,557 0,519 0,469 0,395 Calculadas as forças de arrasto, são determinadas as forças resultantes que atuam no nível de cada laje do edifício, representadas conforme tabela 6.6: Tabela 6.6 – Forças de arrasto resultantes nos níveis das lajes Nível zi Lx Ly Fix Fiy z 9 25,25 17,15 11,23 44,10 46,33 25,75 8 22,45 17,15 11,23 38,44 20,82 22,95 7 19,65 17,15 11,23 37,18 20,14 20,15 6 16,85 17,15 11,23 35,78 19,38 17,35 5 14,05 17,15 11,23 34,19 18,52 14,55 4 11,25 17,15 11,23 32,34 17,52 11,75 3 8,45 17,15 11,23 30,11 16,31 8,95 2 5,65 17,15 11,23 27,23 14,75 6,15 1 2,85 17,15 11,23 22,95 12,43 3,35 zi = altura acima do nível do z = altura acima do nível das fundações terreno Ʃ Fixz (kNm) 1135,45 882,20 749,20 620,77 497,47 380,02 269,48 167,44 76,87 Fiyz (kNm) 1192,98 477,78 405,75 336,19 269,41 205,81 145,94 90,68 41,63 4779 3166 As localizações aproximadas dos centros dos pórticos de contraventamento do edifício estão indicadas na figura 6.4: ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 15 Figura 6.4 – Localização dos painéis de contraventamento (Araújo, 2009) Para o nível 9, segue na tabela 6.7 os valores de k1, as coordenadas x e y do centro do painel e o ângulo θ que o mesmo faz com o eixo x. Nível 9: Tabela 6.7 – Características dos painéis de contraventamento Painel Eieq L k1 x y θ 1 1,81E+07 25,75 3182 5,60 17,10 0 2 1,64E+07 25,75 2881 5,60 9,85 0 3 1,64E+07 25,75 2881 5,60 7,25 0 4 1,81E+07 25,75 3182 5,60 0,00 0 5 3,13E+07 25,75 5507 1,50 8,55 90 6 3,13E+07 25,75 5507 9,70 8,55 90 As tabelas 6.8 a 6.13 apresentam respectivamente as matrizes de rigidez do sistema de contraventamento para os painéis 1 ao 6. Tabela 6.8 – Matriz de rigidez Painel 1 N R RN 1 0 -17,10 1 0 1 0 -17,1 0 1 5,60 K1*RN (RN)T K 3182 0 -54407 ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 16 1 0 -17,1 3182 0 -54407 0 0 0 Tabela 6.9 – Matriz de rigidez Painel 2 N 1 0 -9,85 0 1 5,60 (RN)T 1 0 -9,85 K 2881 0 -28378 R 1 0 0 0 Tabela 6.10 – Matriz de rigidez Painel 3 N 1 0 -7,25 0 1 5,60 (RN)T 1 0 -7,25 K 2881 0 -20887 -54407 0 930353 0 0 K 3182 0 0 -9,85 K1*RN 2881 0 -28378 RN 1 0 -7,25 K1*RN 2881 0 -20887 -20887 0 151433 Tabela 6.11 – Matriz de rigidez Painel 4 N 1 0 0,00 0 1 5,60 (RN)T 1 0 0 0 -28378 0 279523 R 1 0 0 0 RN 1 R 1 0 0 0 0 RN 1 0 0 K1*RN 3182 0 0 0 0 0 Tabela 6.12 – Matriz de rigidez ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 17 Painel 5 N 1 0 (RN)T 0,00 1,00 1,50 0 1 R 0 -8,55 1,50 K 0 0 0 0 5507 8260 Tabela 6.13 – Matriz de rigidez Painel 6 N 1 0 -8,55 0 1 9,70 (RN)T 0,00 1,00 9,70 K 0 0 0 0 5507 53414 1 RN 0 1 1,50 K1*RN 0 5507 8260 0 8260 12390 R 0 1 RN 0 1 9,70 K1*RN 0 5507 53414 0 53414 518117 As tabelas 6.14 e 6.15 expressam as forças nos 6 pórticos de contraventamento para diferentes valores das excentricidades ex e ey . Tabela 6.14 – Força nos painéis de contraventamento Vento segundo a direção x ƩK P(7,26) 12125 0 -103672 44,10 0 11013 61674 0,00 -103672 61674 1891816 -320,13 Equação 44,10 0,00 -320,13 U0 0,004373 -0,00048 8,62E-05 P(8,55) 44,10 0,00 -377,01 Equação 44,10 0,00 -377,01 U0 0,003637 7,25E-11 -1,3E-11 P(9,84) Equação U0 ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 18 44,10 0,00 -433,90 ey (m) 7,26 8,55 9,84 Painel 1 9,2 11,6 13,9 2 10,2 10,5 10,8 3 10,8 10,5 10,2 Tabela 6.15 – Força nos painéis de contraventamento Vento Segundo a direção y ƩK P(4,76) 12125 0 -103672 0,00 0 11013 61674 46,33 -103672 61674 1891816 220,53 ex (m) 4,76 5,6 Painel 1 1,6 0,0 2 0,2 0,0 44,10 0,00 -433,90 4 13,9 11,6 9,2 5 -1,9 0,0 1,9 0,0029 0,000483 -8,6E-05 6 1,9 0,0 -1,9 Equação 0,00 46,33 220,53 U0 -0,0005 0,004537 -5,9E-05 P(5,60) 0,00 46,33 259,44 Equação 0,00 46,33 259,44 U0 5,96E-11 0,004207 6,97E-12 P(6,44) 0,00 46,33 298,36 Equação 0,00 46,33 298,36 U0 0,000504 0,003877 5,9E-05 3 -0,2 0,0 4 5 -1,6 24,5 0,0 23,2 6 21,8 23,2 ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 19 6,44 -1,6 -0,2 0,2 1,6 21,8 24,5 Repete-se o mesmo procedimento para os demais níveis do edifício. Após análise dos cálculos, têm-se as forças máximas nos painéis de contraventamento expressas na tabela 6.16. Tabela 6.16 – Forças máximas nos painéis de contraventamento Nível 9 Nível 8 Nível 7 Nível 6 Nível 5 Nível 4 Nível 3 Nível 2 Nível 1 Painéis 1 e 4 13,9 12,1 11,7 11,3 10,8 10,2 9,5 8,6 7,2 Painéis 2 e 3 10,8 9,4 9,1 8,8 8,4 7,9 7,4 6,7 5,6 Painéis 5 e 6 24,5 11,0 10,6 10,2 9,8 9,3 8,6 7,8 6,6 Para a determinação do coeficiente γz , resolve-se o pórtico adotando-se 80% do módulo de deformação secante do concreto, pois de acordo com a NBR 6118:2014, na análise dos pórticos pode-se considerar a não-linearidade física de maneira aproximada. Essa redução não altera os esforços solicitantes, apenas os deslocamentos nodais. Os deslocamentos horizontais nos diversos níveis dos pórticos de contraventamento estão indicados na tabela 6.17: Tabela 6.17 – Deslocamentos (em cm) para as forças horizontais características Direção x Direção y Nível Paineis 1 e 4 Paineis 2 e 3 Paineis 5 e 6 9 2,200 1,906 1,407 8 2,090 1,824 1,314 7 1,939 1,704 1,203 6 1,751 1,548 1,072 5 1,527 1,356 0,922 4 1,272 1,133 0,755 3 0,988 0,880 0,576 2 0,682 0,601 0,388 1 0,357 0,302 0,197 Média 1,423 1,250 0,870 Média para a direção x Média y 1,34 0,87 ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 20 Segue na tabela 6.18, o cálculo do γz , tendo como base de cálculo o momento de tombamento (M1tot,d), o deslocamento médio (U) e a resultante das forças verticais (Ptot,d). Tabela 6.18 – Cálculo do γz M1tot,d U (m) Ptot,d γz X 6690 0,0187 25355 1,08 Y 4433 0,0122 25355 1,07 Como resultou γz < 1,1, conclui-se que a estrutura pode ser considerada indeslocável segundo as duas direções. Cabe também salientar que, para resultados de γz entre 1,1 e 1,3, tem que se levar em consideração os esforços de segunda ordem. E para resultados acima de 1,3 a estrutura é considerada de nós móveis. Os cálculos feitos anteriormente para o fck de 28 Mpa foram repetidos para 25 MPa e 30 MPa e os resultados dos parâmetros α e γz para os três Fck analisados estão apresentados nas tabelas 6.19 e 6.20, comparando seus valores com os estabelecidos pela NBR-6118. Tabela 6.19 - Resultados dos parâmetro α Parâmetro α Norma 25 Mpa x (FH) 0,50 0,45 x (p) 0,50 0,50 y (FH) 0,50 0,47 y (p) 0,50 0,52 Tabela 6.20 - Resultados dos coeficiente γz Parâmetro γz Norma 25 Mpa x 1,30 1,08 y 1,30 1,08 28 MPa 0,43 0,49 0,45 0,50 28 MPa 1,08 1,07 30 Mpa 0,43 0,48 0,45 0,50 30 Mpa 1,07 1,07 7. Conclusão Para o edifício em estudo foi feita a análise de deslocabilidade, tendo como base concretos com resistência característica de 25, 28 e 30 Mpa. Esta deslocabilidade foi verificada através dos parâmetros α e γz e concluído que a queda da resistência característica do concreto (fck) diminui a rigidez dos pórticos aumentando consequentemente a deslocamento final da edificação. Observa-se também que quando o Fck utilizado for de 25 Mpa, os efeitos de segunda ordem não poderão ser desprezados, pois o αy (p) > 0,50. ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 21 Os valores do γz aumentaram e demonstram um aumento da deslocabilidade da edificação. Observa-se que a edificação analisada é de apenas 8 pavimentos e pode ser considerada “baixa” para o contexto das edificações na cidade de Goiânia. Um estudo para edificações maiores apresentaria maior discrepância para os valores de γz . Por fim, o artigo demonstra relevância no contexto científico, uma vez que propõe a discussão da influência da não-conformidade do concreto na estabilidade das edificações e uma preocupação com o monitoramento pelos profissionais em relação a entrega de concreto não-conforme, evitando maiores complicações à obra. Vale ressaltar que não foram feitas análises do comportamento específico de cada peça estrutural em virtude do decréscimo do fck. Referências ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 22 ARAÚJO, J. M. Projeto Estrutural de Edifícios de Concreto Armado. Ed. Dunas, Rio Grande, 2004 (1a edição), 2009 (2ª edição). ASSOCIAÇÃO BRASILEIRA DE ENGENHARIA E CONSULTORIA ESTRUTURAL. Recomendação ABECE 001. Análise de casos de não conformidade de concreto, 2011. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6118: Projeto de Estruturas de Concreto – Procedimento, 2014. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6123: Forças devidas ao vento em edificações, 1988. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 7680: Concreto - Extração, preparo e ensaio de testemunhos de concreto, 2007. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12655: Concreto controle, preparo e recebimento, 2006. CAPURUÇO, Flávio R. P. Dosagem e não conformidade de concreto usinado. Disponível em: <http://br.dir.groups.yahoo.com/group/comunidadeTQS/message/33703>. Acesso em: 06 de novembro de 2013. CARVALHO, R. C.; PINHEIRO, L. M. Cálculo e Detalhamento de Estruturas Usuais de Concreto Armado vol. 2. Ed. PINI, São Paulo, 2013 (2ª edição). CHAMBERLAIN, Zacarias. Ações do vento em edificações. Disponível <http://upf.br/~zacarias/acoes_vento.pdf>. Acesso em: 20 de novembro de 2013. em: FARIA, Renato. Concreto não conforme. Revista Techne. Disponível em: <http://techne.pini.com.br/engenharia-civil/152/artigo287700-1.aspx>. Acesso em: 02 de novembro de 2013. PALIGA, Aline. Ação do vento nas estruturas. Disponível em: <http://wp.ufpel.edu.br/alinepaliga/files/2013/05/Aula-1.pdf>. Acesso em: 20 de novembro de 2013. ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 23 Anexo A – Formas do pavimento tipo (Araújo, 2009) ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015 A influência da não conformidade do concreto no deslocamento horizontal de um edifício (estudo de caso) dezembro/2015 24 ISSN 2179-5568 – Revista Especialize On-line IPOG - Goiânia - Edição nº 10 Vol. 01/ 2015 dezembro/2015