1 Macroeconomia II Ficha 6 Solução

Propaganda
1
Macroeconomia II - Ficha 6 - Solução
Nota: Dado que grande parte destes exercícios são desde há muito familiares ao aluno, apenas se apresenta parte da solução da …cha.
Como indicação, os problemas com 1 asterisco * são considerados fáceis;
com 2 asteriscos ** menos fáceis e com 3 asteriscos *** de di…culdade
acrescida.
Solution 1 (Revisões; *) Qual o signi…cado da curva IS? Que factores in‡uenciam o declive da curva IS? Como (explicação em termos económicos e intuitivos)? Que factores fazem deslocar a curva IS? Caracterize os pontos fora
da curva IS como ou de excesso de procura ou de excesso de oferta. Resposta:
DF.
Solution 2 (Revisões; *) Qual o signi…cado da curva LM? Que factores in‡uenciam o declive da curva ILM? Como (explicação em termos económicos
e intuitivos)? Que factores fazem deslocar a curva LM? Caracterize os pontos fora da curva LM como ou de excesso de procura ou de excesso de oferta.
Resposta: DF.
Solution 3 (Revisões; *) Tendo em consideração o seguinte modelo:
Y
C
T
G
I
X
M
L
=
=
=
=
=
=
=
=
C +I +G+X
a + cY d
T + tY
G
I bi
X
mY
kY hi
M
calcule o rendimento de equilíbrio e a taxa de juro de equilíbrio. Resposta:
Y
=
MS
P
Ye
=
ie
=
1
1
= kY
1
c(1
c(1
t) + m
[A
bi]
hi
b MS
1
]
[A +
k
h P
t) + m + b h
1 MS
k
+ Ye
h P
h
Solution 4 (Revisões; *) Se G aumentar, o que acontecerá a: Y, C, I e M ?
""#" Que parâmetros determinam a severidade do fenómeno do crowding out?
b hk
1
Solution 5 (Revisões; *) Se os gastos dependerem negativamente de Y (estabilizadores automáticos; exemplo: transferências de subsídio de desemprego), o
que acontece ao multiplicador das exportações?
G=G
@Y e
=
1
@X
gY
1
;#
t) + m + g + b hk
c(1
Solution 6 (Revisões; *) Suponha que parte de uma situação com um saldo
orçamental de SO0 . Se aumentar G e T em 10 simultaneamente, conseguirá
estimular a economia?
Ye
=
Ye
=
@Y e
@Y e
G+
T
@G
@T
@Y e @A
@Y e @A
G+
T
@A @G
@A @T
G=
Hip :
Ye
=
=
=
T
@Y e @A
@Y e @A
G+
T
@A @G
@A @T
@A @A @Y e
G
(
)
@G @T @A
1
(1 c)
1 c(1 t) + m + g + b hk
G>0
O que acontecerá ao saldo orçamental?
SO
=
T +t Ye
= t(1
c)
1
c(1
G
1
t) + m + g + b hk
G>0
Solution 7 (Revisões; *) De…na Variância e Coe…ciente de Correlação. Escreva as fórmulas de cálculo.
V ar(x)
rxy
= E(x
E(x
=
Ex)2
Ex)(y
Ey)
x y
Solution 8 (Revisões; *) Suponha que conhece var(x) e que y = a+bx. Calcule
var(y).
var(y) = var(a + bx) = b2 var(x)
Solution 9 (Revisões; *) Considere a seguinte função consumo keynesiana:
Ct = a + c(1
2
t)Yt
De acordo com esta função, classi…que o consumo em termos: da sua volatilidade relativa (alta/média/baixa); direcção de movimento (procíclico/acíclico/contracíclico)
e timing de movimento (leading/coincident/lagging). Tendo em conta a sua
resposta e as regularidades empíricas que conhece sobre os ciclos, comente o
sucesso da função consumo keynesiana em replicar estas regularidades empíricas.
var(C)
C
= (c(1
t))2 var(Y ) ()
= c(1
t) < 1; vol. baixa
Y
rCY
=
E(C
EC)(Y
C
=
=
=
=
=
=
=
E(a + c(1
EY )
Y
E(a + c(1 t)Y )(Y
c(1 t) 2Y
E(a + c(1 t)Y a c(1 t)EY )(Y
c(1 t) 2Y
E(c(1 t)Y c(1 t)EY )(Y EY )
c(1 t) 2Y
E(c(1 t)(Y EY ))(Y EY )
c(1 t) 2Y
c(1 t)E(Y EY )(Y EY )
c(1 t) 2Y
c(1
c(1
1
t)
t)
t)Y
EY )
EY )
2
Y
2
Y
Como o C é função linear de Y o coe…ciente de correção é +1. Assim, o
modelo consumo keynesiano implica que o consumo apresenta volatilidade baixa
e é coincidente, tal como observamos na realidade.
Solution 10 (Revisões; *) Partindo de uma situação de equilíbrio de longo
prazo (cruzamento das curvas IS-LM-FE), descreva a trajectória de ajustamento
da economia perante os seguintes choques económicos: (i) aumento de G; (ii)
aumento de M; (iii) aumento de A (produtividade de todos os factores). Comente a importância dos salários e dos preços no processo de ajustamento do
equilíbrio de curto prazo para o equilíbrio de longo prazo. Resposta: Ver
Aula.
Solution 11 (Revisões; **) (Modelo IS-LM e volatilidade do produto) Suponha
que os principais choques na economia advêm da esfera monetária (e, por conseguinte, traduzem-se em deslocações da curva LM). Quais seriam as implicações na volatilidade do produto das seguintes alterações na economia: a) Aumento da taxa marginal de imposto; b) Aumento da propensão marginal a importar; c) Aumento da sensibilidade do investimento em relação à taxa de juro.
3
Justi…que a sua resposta recorrenda a análise grá…ca e/ou analítica. Resposta:
Por hipótese a LM ‡uctua causando ‡uctuações no produto. Quando a LM ‡uctua, o equilíbrio na economia desloca-se ao longo de uma dada IS, pelo que se a
IS for mais vertical, as ‡uctuações do produto serão menores, sendo o produto,
por conseguinte, menos volátil. Importa então analisar como estas alterações
na economia se traduzem em alterações no declive da IS. a) Aumento da taxa
marginal de imposto!IS mais vertical!Produto menos volátil; b) Aumento da
propensão marginal a importar!IS mais vertical!Produto menos volátil; c)
Aumento da sensibilidade do investimento em relação à taxa de juro!IS menos
vertical!Produto mais volátil.
Solution 12 (Revisões; **) No modelo IS-LM apresentado temos, tipicamente,
que L = kY hi. Considere a seguinte alteração à procura real de moeda:
L = kY d hi
Yd = Y T
T = T + tY
Agora a procura real de moeda depende da taxa de juro e do rendimento disponível
s
(e não do rendimento bruto). Assim, a expressão da LM passa de MP = kY hi
s
para MP = kY d hi. Com esta alteração na procura real de moeda, qual o efeito
no produto (aumenta/diminui/ambíguo) de uma diminuição em T ? Justi…que
a sua resposta recorrenda a análise grá…ca e/ou analítica. Resposta: Como
se sabe, quando T diminui a IS desloca-se para a direita, na sequência desta
política …scal expansionista. Como T agora entra na expressão da LM quando
T diminui a LM desloca-se. Analisemos em detalhe o que acontece à LM (já
conhecemos o que acontece com a IS). Desenhe uma curva LM e chame-a de
LM0 e escolha, arbitrariamente, um ponto sobre a LM0 . Chame a este ponto de
A. Quando T diminui, para um dado Y , o Y d aumenta pelo que a procura de
moeda aumenta. Assim, para um dado Y criamos um excesso de procura, ou
seja, o ponto A deixa de ser de equilíbrio, pelo que a curva LM já não passa por A
ou, por outras palavras deslocou-se. Para baixo/direita ou para cima/esquerda?
Mantendo o Y constante, o que tem que acontecer à taxa de juro para eliminar
este excesso de procura? Tem que aumentar, pelo que concluimos que a LM
desloca-se para cima/esquerda. Então se a IS desloca-se para a direita e a LM
para a esquerda, na sequência de uma diminuição dos impostos autónomos, não
sabemos, a priori, o que acontece ao rendimento de equilíbrio. Para dar uma
informação mais precisa é preciso estudar a força relativa dos parâmetros do
modelo (qual das deslocações é maior).
Solution 13 (*) Considere o modelo IS-LM-FE descrito nas aulas teóricas.
Suponha que inicialmente a economia encontra-se num equilíbrio de longo prazo
(intersecção entre a IS-LM-FE). Descreva, de forma grá…ca, o ajustamento da
economia (isto é, a passagem do equilíbrio inicial de longo prazo para um equilíbrio de curto prazo intermédio e deste para o equilíbrio …nal de longo prazo)
em relação aos seguintes choques: a) Melhoria das Expectativas dos Investidores
4
e b) Aumento da Produtividade do Capital. Resposta: Aula 16. (Pistas: a)
Melhoria das Expectativas dos Investidores, I ") ISdireita ) :::(tal como
aumento de G descrito nos diapositivos das aulas teóricas). b) Aumento da
Produtividade do Capital) F Edireita ) :::(tal como aumento de A descrito
nos diapositivos das aulas teóricas))
Solution 14 (*) No modelo Real Business Cycles, de inspiração Clássica e
Walrasiana, os mercados dos factores são ‡exíveis e competitivos. Como são
determinados, então, os salários e a taxa de juro? Resposta: Pelas produtividades marginais dos factores.
Solution 15 (*) No modelo Keynesiano predominam os choques reais sobre a
Despesa Agregada. Demonstre gra…camente que a in‡ação será um indicador
lagging. Resposta: Aula 16.
Solution 16 (*) Dê exemplos de indicadores leading. Que utilidade atribui a
estes indicadores? Resposta: Antecipação de turning points; maior e…cácia de
políticas de estabilização: # lag identi…cação.
Solution 17 (**) (Efeito Pigou) Considere o modelo IS-LM-FE em que o ajustamento para o equilíbrio de longo prazo dá-se através de um ajustamento dos
preços. Suponha que o consumo (C) depende da riqueza real acumulada, que inclui, por sua vez, a quantidade real de moeda na economia ( M
P ). Temos, então,
a seguinte formulação do modelo IS-LM-FE:
Y
C
= C +I +G+X
= a + cY d + dW
M f
W =
+W
P
T = T + tY
G = G
I = I bi
X = X
IM = mY
L = kY hi
M
= kY hi
P
IM
em que d é a propensão marginal a consumir a partir da riqueza real acumulada W , que é dada pela soma da quantidade real de moeda na economia ( M
P )
f ). Qual a importância desta alteração ao comportamento
e outros activos (W
dos consumidores: a) no modo como a economia se ajusta a choques monetários
(aumento de M ) e b) no modo como a economia se ajusta a choques nos gastos
(aumento de G)? Resposta: Com esta alteração, temos que uma alteração em
MS
S
P fará deslocar ambas as curvas IS e LM. a) Aumento de M : O consumo aumentará para um mesmo nível de rendimento pelo que a curva IS desloca-se para
5
a direita, tal como a curva LM. Assim, e supondo que inicialmente a economia
encontrava-se num equilíbrio de longo prazo, o novo equilíbrio (intermédio) de
curto prazo terá um nível do produto superior ao nível de pleno emprego, originando, por conseguinte, pressões in‡acionistas. O processo de ajustamento via
aumento dos preços implica agora deslocações para a esquerda de ambas curvas
IS e LM. b) Aumento de G: A curva IS desloca-se para a direita. O processo
de ajustamento via aumento dos preços implica agora que ambas as curvas IS
e LM se desloquem para a esquerda, até atingirmos a intersecção entres as três
curvas IS-LM-FE.
Solution 18 (***) Considere o seguinte modelo:
Ct
Kt
It
Gt
Yt
=
=
=
=
=
a + bYt 1
cYt 1
K t Kt 1
G
Ct + It + Gt
em que Kt é o stock desejado do stock de capital (que é uma função do rendimento do período anterior) e o investimento depende da diferença entre o stock
de capital desejado do período e o stock de capital realizado do período anterior.
(1) Escreva Yt em termos de Yt 1 e Yt 2 e dos parâmetros do modelo. (2)
Suponha que b = 0:9 e c = 0:5. Suponha que há um choque temporário unitário
em G, isto é, suponha que G é igual a G + 1 no período t e igual a G em todos
os outros períodos. Qual o efeito deste choque no produto ao longo do tempo
(isto é, qual a evolução do Y em t, t + 1, t + 2, ...)
Yt
Yt
Yt
Yt
Yt
=
=
=
=
=
Ct + It + Gt
(a + bYt 1 ) + (Kt Kt 1 ) + Gt
(a + bYt 1 ) + (cYt 1 Kt 1 ) + Gt
(a + bYt 1 ) + (cYt 1 cYt 2 ) + Gt
a + (c + b)Yt 1 cYt 2 + Gt
(Nota: Assumimos que não existe depreciação, por simplicidade):
Kt
Kt
Kt
= Kt
= Kt
= Kt
+ It
1 + (Kt
1
Kt
1)
assim,
Kt
Kt
1
1
= Kt
= cYt
1
2
Com base em:
Yt = a + (c + b)Yt
6
1
cYt
2
+ Gt
podemos estudar a evolução do Yt para diferentes tipos de política orçamental
(a discutir na aula prática).
7
Download