Professora FLORENCE 1. Um ponto material desloca-se sobre uma reta e sua velocidade em função do tempo é dada pelo gráfico. Pedem-se: a) a equação horária da velocidade (função de v = f(t)) v(m/s) b) o deslocamento do ponto material entre os instantes 0 e 2 s. c) a velocidade escalar média entre 0 e 2 s. d) a classificação do movimento em acelerado ou retardado. 9 Resposta: a) v = 5 + 2t b) 14 m c) v = 7 m/s d) acelerado 5 0 2 Resolução: a) v = f(t) A velocidade inicial é determinada quando t = 0, portanto v0 = 5 m/s. A aceleração pode ser calculada pelo gráfico através da tangente do ângulo α. a = tg α a = Δv/Δt a = (v – v0)/(t - t0) a = (9 – 5)/(2 – 0) a = 4/2 a = 2 m/s2 Assim a função horária da velocidade fica: v = v0 + at v = 5 + 2t b) Em um gráfico de v x t podemos calcular o deslocamento pela área do gráfico abaixo da curva. Este gráfico forma uma área que é um trapézio, assim temos: Área S (BaseMaior basemenor ).altura 2 Área S (9 5).2 2 c) v ΔS = 14 m S 14 v v = 7 m/s t 2 d) Como a aceleração é positiva a = 2 m/s 2 e v > 0 durante todo o movimento, temos: a>0 v>0 movimento acelerado Página 1 de 23 t(s) Professora FLORENCE 2. O gráfico representa a velocidade de dois carros A e B que percorrem uma trajetória retilínea. a) Os carros A e B realizam um movimento uniformemente variado? Justifique sua resposta v b) Qual dos carros tem maior aceleração? Por quê? A B t 0 Resolução: a) sim, ambos apresentam a velocidade variando linearmente com o tempo. b) O carro A está mais acelerado, a reta que indica a velocidade tem maior inclinação que a reta que indica a velocidade do carro B. 3. As funções horárias das velocidades de dois corpos em movimento são vA = 4t e vB = 30 – 5t (no SI). Construa, num mesmo sistema de dois eixos, os gráficos dessas funções. Resolução: Para construir o gráfico do movimento dos dois carros deve-se fazer a tabela abaixo usando as funções dos carros. Assim: v(m/s) t(s) vA= 0 + 4t VB =30 – 5t 0 0 30 1 4 25 2 8 20 3 12 15 4 16 10 30 20 A 10 B t(s) 0 1 2 3 4 Página 2 de 23 Professora FLORENCE 4. Os gráficos indicados representam a velocidade de um móvel em função do tempo. Determine, para cada caso, a função v = f(t). a) v(m/s) b) c) v(m/s) 10 8 6 0 v(m/s) 6 1 t(s) 0 2 t(s) 0 4 t(s) Resolução: Para todos os gráficos vale a seguinte metodologia: Primeiro calcula-se o valor da aceleração, em seguida verifica-se onde a velocidade inicia, ou seja, quando t = 0. a)a v 8 6 2m / s 2 Para t = 0, v0 = 6 m/s v 6 2t (S.I .) t 1 b) a v 6 0 3m / s 2 Para t = 0, v0 = 0 v 3t (S.I .) t 2 c)a v 0 10 2,5m / s 2 Para t = 0, v0 = 10 m/s v 10 2,5t (S.I .) t 4 5. O gráfico seguinte representa a velocidade de um ponto material sobre uma trajetória retilínea. Em que trechos o movimento é acelerado? E retardado? v B C A t 0 Página 3 de 23 Professora FLORENCE Resolução: Entre os trechos A e B o movimento é acelerado, pois o gráfico indica uma reta crescente, assim sabe-se que a aceleração é positiva (a > 0). Entre os trechos C e D o movimento é retardado, pois o gráfico indica uma reta decrescente, assim sabe-se que a aceleração é negativa (a < 0). 6. (Unicamp – SP) A tabela mostra os valores da velocidade de um atleta da São Silvestre em função do tempo, nos segundos iniciais da corrida. t(s) 0,0 v(m/s) 0,0 1,0 1,8 2,0 3,6 3,0 5,4 4,0 7,2 5,0 9,0 a) Esboce o gráfico da velocidade do atleta em função do tempo. b) Calcule a aceleração do atleta nos primeiros 5 s da corrida. Resposta: a) fazer gráfico de v x t b) 1,8 m/s Resolução: a) Da tabela retiramos os dados para o gráfico. Três pontos é o suficiente para esboçar um gráfico. v(m/s) 9 5,4 1,8 α t(s) 0 1 3 5 b) O cálculo da aceleração pode ser feito pelo gráfico, através da tangente do ângulo α. Também pode ser realizado utilizando os dados da tabela. tg v v 90 tg tg a a = 1,8 m/s2 t t 50 Página 4 de 23 Professora FLORENCE 7. (Efoa – MG) A figura mostra o gráfico da velocidade em função do tempo para o movimento de um barco que está deixando um ancoradouro. a) Qual é a velocidade do barco após o inicio do movimento? b) Qual é a sua aceleração? v (m/s) 0,8 0,6 0,4 0,2 0 1 2 3 4 t(s) Resposta: a) 0,6 m/s b) 0,2 m/s Resolução: a) Pelo gráfico localizamos a velocidade quando o tempo é igual a 3 s. A velocidade é 0,6 m/s. b) Também pelo gráfico podemos calcular a velocidade. tg v v 0,8 0 a a = 0,2 m/s2 t t 40 8. (Fuvest – SP) Um trem de metrô parte de uma estação com aceleração uniforme até atingir, após 10 s, a velocidade escalar de 90 km/h, que é mantida durante 30 s para então desacelerar uniformemente durante 10 s até parar na estação seguinte. a) Represente graficamente a velocidade escalar em função do tempo. b) Calcule a distância entre as duas estações. Resposta: a) fazer gráfico b) 1,0 km/h Página 5 de 23 Professora FLORENCE Resolução: a) Na primeira parte o trem vai aumentando a velocidade até atingir a velocidade de 90 km/h = 25 m/s, para isso ele leva o tempo de 10 s. 90km / h 25m / s 3,6 Após isso, o trem mantém a velocidade de 25 m/s durante 30 s, portanto a velocidade é constante entre os tempos 40 s e 10 s (40 – 10 = 30 s). Depois ocorre a desaceleração em 10 s, portanto tempo total do percurso 50 s, até que a velocidade atinja o valor 0. v(m/s) 25 t(s) 0 10 40 50 b) Em um gráfico de v x t podemos calcular a distância através da área do gráfico abaixo da curva. Este gráfico forma uma área que é um trapézio, assim temos: Área S (BaseMaior basemenor ).altura 2 Área S (50 30).25 2 ΔS = 1000 m ΔS = 1 km 9. (FUFPI) O gráfico abaixo representa a velocidade escalar, em função do tempo, para o movimento de um corpo que se desloca em linha reta. a) Qual a aceleração escalar no instante t = 5,0 s? b) Em que instante a velocidade escalar vale 8,0 m/s? Página 6 de 23 Professora FLORENCE v(m/s) Resposta: a) 4 m/s b) 3s 20 6 0 t(s) 5 -4 Resolução: a) O cálculo da aceleração pode ser feito pelo gráfico, através da tangente do ângulo α. tg v v 0 20 tg tg a a = – 4 m/s2 t t 50 Obs: deveríamos esperar uma aceleração negativa, pois a reta do gráfico é decrescente e sua inclinação já nos mostrava esse fato. b) para determinarmos a velocidade de um móvel em qualquer tempo, escrevemos sua equação horária v = v0 + at. Para esse movimento temos a seguinte equação: v0 = 20 m/s a aceleração foi calculada no item acima a= – 4 m/s2 v = 20 – 4t. Para determinar o tempo quando a velocidade for igual a 8 m/s, fazemos: v = 20 – 4t 8 = 20 – 4t 8 – 20 = – 4t – 12 = – 4t t 12 t=3s 4 10. A velocidade escalar de um móvel sobre uma trajetória retilínea varia com o tempo de acordo com o gráfico. a) Qual a distância percorrida pelo móvel no intervalo de 0 a 20 s? b) Qual a velocidade escalar média de 0 a 20 s? c) Em quais intervalos de tempo o movimento é acelerado? Página 7 de 23 Professora FLORENCE v(m/s) 10 12 0 4 16 20 t(s) 8 -10 Resposta: a) 120 m b) 6 m/s c) 0 a 4 s e entre 16 e 20 s Resolução: a) Em um gráfico de v x t a distância percorrida é calculada pela área do gráfico abaixo da curva. Para esse gráfico temos duas áreas para calcular, área do triângulo e a área do trapézio. Após o cálculo somaremos as áreas: Áreas D Cálculo da área do triângulo: Área d1 (Base. Altura ) 2 Área d1 (10.8) d1 = 40 m 2 Cálculo da área do trapézio: Área d 2 (BaseMaior basemenor ).altura 2 Área d 2 (12 4).(10) 2 |d2| = 80 m Distância total = d1 + |d2| = 40 + 80 D = 120 m b) Para determinar a velocidade utilizamos a distância calculada no item acima e o tempo total que o móvel levou para percorrê-la, pelo gráfico o tempo é de 20 s. v S 120 v v = 6 m/s t 20 c) Pelo gráfico observamos que o movimento é acelerado de 0 a 4 s e entre 16 s a 20 s. Página 8 de 23 Professora FLORENCE 11. (Uff 2012) Policiais rodoviários são avisados de que um carro B vem trafegando em alta velocidade numa estrada. No instante t 0 em que o carro B passa, os policiais saem em sua perseguição. A figura ilustra as velocidades do carro B e do carro dos policiais (P) em função do tempo. Assinale a alternativa que especifica o instante de tempo em que o carro P alcança o carro B. a) t1 b) t 2 c) t 3 d) t 4 e) t 5 Resposta: [D] Considerando que os carros B e P iniciem seus movimentos no mesmo espaço e no mesmo instante t 0 (instante em que o carro B passa pelos policiais e a perseguição se inicia), eles irão se encontrar novamente quando percorrerem o mesmo deslocamento no mesmo intervalo de tempo, ou seja: SB SP e tB tP . Conseguiremos encontrar o deslocamento de cada carro através da área do gráfico, já que o gráfico dado é de velocidade em função do tempo. Analisando o gráfico dado, concluímos que as áreas serão iguais em t 4: Página 9 de 23 Professora FLORENCE 12. (Enem 2011) Para medir o tempo de reação de uma pessoa, pode-se realizar a seguinte experiência: I. Mantenha uma régua (com cerca de 30 cm) suspensa verticalmente, segurando-a pela extremidade superior, de modo que o zero da régua esteja situado na extremidade inferior. II. A pessoa deve colocar os dedos de sua mão, em forma de pinça, próximos do zero da régua, sem tocá-la. III. Sem aviso prévio, a pessoa que estiver segurando a régua deve soltá-la. A outra pessoa deve procurar segurá-la o mais rapidamente possível e observar a posição onde conseguiu segurar a régua, isto é, a distância que ela percorre durante a queda. O quadro seguinte mostra a posição em que três pessoas conseguiram segurar a régua e os respectivos tempos de reação. Distância percorrida pela régua durante a queda (metro) 0,30 0,15 0,10 Tempo de reação (segundo) 0,24 0,17 0,14 Disponível em: http://br.geocities.com. Acesso em: 1 fev. 2009. A distância percorrida pela régua aumenta mais rapidamente que o tempo de reação porque a a) energia mecânica da régua aumenta, o que a faz cair mais rápido. b) resistência do ar aumenta, o que faz a régua cair com menor velocidade. c) aceleração de queda da régua varia, o que provoca um movimento acelerado. d) força peso da régua tem valor constante, o que gera um movimento acelerado. e) velocidade da régua é constante, o que provoca uma passagem linear de tempo. Página 10 de 23 Professora FLORENCE Resposta: [D] O peso da régua é constante (P = mg). Desprezando a resistência do ar, trata-se de uma queda livre, que é um movimento uniformemente acelerado, com aceleração de módulo a = g. A distância percorrida na queda (h) varia com o tempo conforme a expressão: h 1 2 gt . 2 Dessa expressão, conclui-se que a distância percorrida é diretamente proporcional ao quadrado do tempo de queda, por isso ela aumenta mais rapidamente que o tempo de reação. 13. (Espcex (Aman) 2011) O gráfico abaixo indica a posição (S) em função do tempo (t) para um automóvel em movimento num trecho horizontal e retilíneo de uma rodovia. Da análise do gráfico, pode-se afirmar que o automóvel a) está em repouso, no instante 1 min. b) possui velocidade escalar nula, entre os instantes 3 min e 8 min. c) sofreu deslocamento de 4 km, entre os instantes 0 min e 3 min. d) descreve movimento progressivo, entre os instantes 1 min e 10 min. e) tem a sua posição inicial coincidente com a origem da trajetória. Resposta: [B] Note que entre 3 e 8 min a posição não varia. Portanto, o carro está parado. TEXTO PARA A PRÓXIMA QUESTÃO: Um objeto que não pode ser considerado uma partícula é solto de uma dada altura sobre um lago. O gráfico ao lado apresenta a velocidade desse objeto em função do tempo. No tempo t = 1, 0s, o objeto toca a superfície da água. Despreze somente a resistência no ar. Página 11 de 23 Professora FLORENCE 14. (Uel 2011) De qual altura o objeto é solto acima da superfície da água? a) 1 m b) 5 m c) 10 m d) 100 m e) 1000 m Resposta: [B] Pela leitura do gráfico, conclui-se que o objeto atinge a superfície do lago no instante t = 1 s com velocidade de 10 m/s, pois a partir desse instante sua velocidade começa a diminuir. A altura da queda (h1) pode ser calculada pela “área” (A1) do triângulo abaixo da linha do gráfico de t = 0 a t = 1 s. h1 " A1 " 1 10 2 h1 5 m. Página 12 de 23 Professora FLORENCE TEXTO PARA A PRÓXIMA QUESTÃO: Formulário de Física d vt d v0 t F m a 1 a t2 2 m v2 2 P mg v v0 a t T F d sen θ v 2 v 02 2 a d EPG m g h 1m / s 3,6km / h EC EPE a 1 2 kx 2 Δv Δt Texto Paraquedista Ao saltar de um avião a 4 km de altura, um paraquedista tem, no início, a mesma sensação de frio na barriga que você sente quando desce a primeira rampa de uma montanha-russa. Essa impressão se deve à atração gravitacional, que imprime uma aceleração uniforme ao corpo do paraquedista. Mas, ao contrário do que se imagina, no salto, o frio na barriga acaba antes que o paraquedas seja aberto. É que, em um determinado instante, a força de atração gravitacional é contrabalançada pela força de resistência do ar, e o corpo adquire uma velocidade constante de, aproximadamente, 200 km/h. A partir desse momento, o paraquedista não tem mais sensação de queda, mas, sim, de flutuação. No entanto, para chegar ao solo com segurança, é preciso reduzir ainda mais a velocidade. Ao abrir o velame, a resistência ao ar fica maior e a velocidade cai para cerca de 20 km/h. Toda essa emoção da queda livre e da flutuação não é privilégio de quem pratica o paraquedismo como esporte. Esta é também uma especialidade dos profissionais militares de carreira. Os paraquedistas do Exército, da Marinha e da Aeronáutica são oficiais que passam por quatro anos de formação para depois receber treinamento nessa especialização, que será empregada em situações de combate e resgate. Adaptado de: ALVARENGA, Beatriz; MÁXIMO, Antônio. Física. São Paulo: Scipione. 2004. p. 33. Imagem disponível em: www.fotosearch.com.br. Acesso em: 04 jul. 2010. 15. (G1 - ifsc 2011) De acordo com o texto, 4 quilômetros é a distância do chão até a altura do avião. Se um objeto pequeno for solto dessa altura, quanto tempo em segundos Página 13 de 23 Professora FLORENCE levaria para chegar ao solo? (Despreze a resistência do ar e considere a aceleração gravitacional do local de 10m / s2 ). a) 800 s . b) 2065 s c) 2865 s d) 4443 s e) 9998 s Resposta: [A] Dados: h = 4 km = 4.000 m; g = 10 m/s2. Da equação da queda livre: h 1 2 gt 2 t 2h g 2 4.000 10 t 800 s. 16. (Fuvest 2010) Na Cidade Universitária (USP), um jovem, em um carrinho de rolimã, desce a rua do Matão, cujo perfil está representado na figura a seguir, em um sistema de coordenadas em que o eixo Ox tem a direção horizontal. No instante t = 0, o carrinho passa em movimento pela posição y = y0 e x = 0. Dentre os gráficos das figuras a seguir, os que melhor poderiam descrever a posição x e a velocidade v do carrinho em função do tempo t são, respectivamente, a) I e II. b) I e III. c) II e IV. Página 14 de 23 Professora FLORENCE d) III e II. e) IV e III. Resposta: [A] A situação proposta sugere que consideremos, no início, movimento acelerado e, a seguir, movimento uniforme. Por isso os gráficos I e II são os que melhor representam as variações espaço tempo e velocidade tempo, respectivamente. 17. (Mackenzie 2010) Ao parar em um cruzamento entre duas avenidas, devido ao semáforo ter mudado para vermelho, o motorista de um automóvel vê um menino malabarista jogando 3 bolas verticalmente para cima, com uma das mãos. As bolas são lançadas uma de cada vez, de uma mesma altura em relação ao solo, com a mesma velocidade inicial e, imediatamente após lançar a 3ª bola, o menino pega de volta a 1ª bola. O tempo entre os lançamentos das bolas é sempre igual a 0,6 s. A altura máxima atingida pelas bolas é de Dado: Aceleração da gravidade = 10 m/s2 a) 90 cm b) 180 cm c) 240 cm d) 300 cm e) 360 cm Resposta: [B] No instante t = 0, ele lança a 1ª bola; em t = 0,6 s, ele lança a 2ª bola e, no instante, t = 1,2 s, ela lança a 3ª bola e recebe a 1ª. Então, cada bola permanece no ar por 1,2 s, sendo 0,6 s para a subida e 0,6 s para a descida. Equacionando a descida: 1 g t2 2 h 180 cm. h h 1 3,6 2 m 10 0,6 2 2 18. (Ufjf 2010) Através de uma experiência famosa, Galileu concluiu que corpos de massas diferentes, soltos do repouso de uma mesma altura, no vácuo, chegam ao solo no mesmo instante de tempo. Baseado na afirmativa feita por Galileu, é correto afirmar que: Página 15 de 23 Professora FLORENCE a) ela contraria a segunda lei de Newton, pois, no corpo de menor massa, atua menor força. b) ela está correta porque a razão entre o peso e a massa é a mesma para todos os corpos. c) ela está correta porque o peso de um corpo não depende da massa. d) ela não está correta, pois a Terra exerce forças iguais em todos os corpos. e) ela está correta porque, no vácuo, os corpos não sofrem influência do campo gravitacional da Terra. Resposta: [B] Os experimentos de Galileu foram realizados próximos à superfície da Terra, onde o campo gravitacional tem intensidade constante: Pm g P g (cons tan te). m 19. (Ufpr 2010) Cecília e Rita querem descobrir a altura de um mirante em relação ao nível do mar. Para isso, lembram-se de suas aulas de física básica e resolvem soltar uma moeda do alto do mirante e cronometrar o tempo de queda até a água do mar. Cecília solta a moeda e Rita lá embaixo cronometra 6 s. Considerando-se g = 10 m/s2, é correto afirmar que a altura desse mirante será de aproximadamente: a) 180 m. b) 150 m. c) 30 m. d) 80 m. e) 100 m. Resposta: [A] Dados: g = 10 m/s2 ; t = 6 s. Para a queda livre: h 1 2 1 g t (10)(6)2 5 (36) h = 180 m. 2 2 20. (G1 - cftsc 2010) O gráfico abaixo representa a variação da velocidade em função do tempo de uma partícula em movimento uniformemente variado. Página 16 de 23 Professora FLORENCE Em relação à área abaixo da reta do gráfico, é correto afirmar que ela representa a: a) aceleração média. b) velocidade média. c) variação da velocidade. d) distância percorrida pela partícula. e) velocidade instantânea. Resposta: [D] Propriedade do gráfico v = f(t): a área entre a linha do gráfico e o eixo t representa o espaço percorrido pelo móvel (S). Como não há mudança de sentido, o espaço percorrido é igual à distância percorrida. 21. (G1 - cftmg 2010) O gráfico da velocidade em função do tempo representa o movimento de uma partícula. Esse movimento pode ser classificado como ____________ no intervalo de tempo compreendido entre __________. A opção que completa, corretamente, as lacunas acima é a) acelerado, zero e 1 h. b) acelerado, zero e 2 h. c) desacelerado, zero e 1 h. d) desacelerado, 1 h e 2 h. Página 17 de 23 Professora FLORENCE Resposta: [C] No intervalo de 0 a 1 h, a velocidade escalar é positiva e tem módulo decrescente. Então, o movimento é progressivo e desacelerado. No intervalo de 1 h a 2 h, a velocidade escalar é negativa e tem módulo crescente. Então, o movimento é regressivo (ou retrógrado) e acelerado. 22. (Enem 2ª aplicação 2010) Rua da Passagem Os automóveis atrapalham o trânsito. Gentileza é fundamental. Não adianta esquentar a cabeça. Menos peso do pé no pedal. O trecho da música, de Lenine e Arnaldo Antunes (1999), ilustra a preocupação com o trânsito nas cidades, motivo de uma campanha publicitária de uma seguradora brasileira. Considere dois automóveis, A e B, respectivamente conduzidos por um motorista imprudente e por um motorista consciente e adepto da campanha citada. Ambos se encontram lado a lado no instante inicial t = 0 s, quando avistam um semáforo amarelo (que indica atenção, parada obrigatória ao se tornar vermelho). O movimento de A e B pode ser analisado por meio do gráfico, que representa a velocidade de cada automóvel em função do tempo. As velocidades dos veículos variam com o tempo em dois intervalos: (I) entre os instantes 10s e 20s; (II) entre os instantes 30s e 40s. De acordo com o gráfico, quais são os módulos das taxas de variação da velocidade do veículo conduzido pelo motorista imprudente, em m/s2, nos intervalos (I) e (II), respectivamente? a) 1,0 e 3,0 b) 2,0 e 1,0 c) 2,0 e 1,5 d) 2,0 e 3,0 e) 10,0 e 30,0 Resposta: Página 18 de 23 Professora FLORENCE [D] Pelo gráfico, percebe-se que o motorista imprudente é o condutor do veículo A, que recebe acelerações e desacelerações mais bruscas. De 10 s a 20 s: |a(I)| = De 30 s a 40 s: a(II) = 30 10 20 |a(I)| = 20 10 10 0 30 30 a(II) 40 30 10 2,0 m/s2. = 3,0 m/s2. 23. (Unemat 2010) Um corpo possui movimento retilíneo, com velocidade variando no decorrer do tempo, conforme o gráfico abaixo. Assinale a alternativa correta. a) A aceleração do corpo é nula no intervalo de tempo IV. b) A aceleração do corpo é constante no intervalo de tempo IV. c) A aceleração do corpo é nula no intervalo de tempo I. d) A aceleração do corpo é maior no intervalo de tempo III do que no intervalo de tempo I. e) A aceleração do corpo é variável nos intervalos de tempo II e IV. Resposta: [B] Como o movimento é retilíneo, a aceleração tem módulo igual ao módulo da aceleração escalar, dado por: | a | | v | . t Assim: aI = aII (constante) 0; aIII = 0; aIV 0 (constante) Página 19 de 23 Professora FLORENCE 24. (Ufmg 2010) Ângela e Tânia iniciam, juntas, um passeio de bicicleta em torno de uma lagoa. Neste gráfico, está registrada a distância que cada uma delas percorre, em função do tempo: Após 30 minutos do início do percurso, Tânia avisa a Ângela, por telefone, que acaba de passar pela igreja. Com base nessas informações, são feitas duas observações: I - Ângela passa pela igreja 10 minutos após o telefonema de Tânia. II - Quando Ângela passa pela igreja, Tânia está 4 km à sua frente. Considerando-se a situação descrita, é CORRETO afirmar que a) apenas a observação I está certa. b) apenas a observação II está certa. c) ambas as observações estão certas. d) nenhuma das duas observações está certa. Resposta: [C] Analisando o gráfico: No instante t = 30 min, Tânia está passando pelo km 12, onde fica a igreja. Ângela passa por esse marco no instante t = 40 min, isto é, 10 min após o telefonema. No instante t = 40 min, Tânia está no km 16, ou seja, 4 km à frente de Ângela. Página 20 de 23 Professora FLORENCE 25. (Pucpr 2010) Um motociclista dirige uma motocicleta ao longo de uma estrada reta como mostrado no diagrama velocidade x tempo. A respeito dessa situação, assinale a alternativa correta: a) Entre os instantes t = 3 s e t = 5 s o movimento é acelerado. b) A aceleração no intervalo de tempo entre t = 5 s e t = 7 s vale – 4 m/s2. c) O deslocamento do motociclista entre os instantes t = 3 s e t = 5 s foi de 20 m. d) A aceleração no intervalo de tempo entre t = 5 s e t = 7 s vale 2 m/s 2 . e) A aceleração no intervalo de tempo entre t = 0 e t = 3 s é nula. Resposta: [B] Analisemos cada intervalo: – De 0 a 3 s: o movimento é uniformemente acelerado; a aceleração escalar é a1 = v1 8 2 2,7 m/s . t1 3 Página 21 de 23 Professora FLORENCE O espaço percorrido é calculado pela “área” de 0 a 3 s S1 38 12 m. 2 – De 3 s a 5 s: o movimento é uniforme, com velocidade escalar v2 = 8 m/s. O espaço percorrido é: S2 = v2 t2 8 2 = 16 m. – De 5 s s 7 s: o movimento é uniformemente retardado; a aceleração escalar é: a3 = v 3 0 8 8 2 4 m/s . t 3 7 5 2 O espaço percorrido é: S3 28 8 m. 2 26. (Ufrgs 2010) Observe o gráfico a seguir, que mostra a velocidade instantânea V em função do tempo t de um móvel que se desloca em uma trajetória retilínea. Neste gráfico, I, II e III identificam, respectivamente, os intervalos de tempo de 0s a 4s, de 4s a 6s e de 6s a 14s. Nos intervalos de tempo indicados, as acelerações do móvel valem, em m/s 2, respectivamente, a) 20, 40, e 20. b) 10, 20 e 5. c) 10, 0 e -5. d) -10, 0 e 5. e) -10, 0 e -5. Resposta: [C] Como a trajetória é retilínea, a aceleração restringe-se à componente tangencial ( a t ), que, em módulo, é igual a aceleração escalar (a), dada pela taxa de variação da Página 22 de 23 Professora FLORENCE velocidade (v) em relação ao tempo (t). a= v t I. aI = . Usando essa expressão em cada um dos intervalos: 40 0 40 aI = 10 m/s2. II. aII = 0 (não houve variação da velocidade) III. aIII = 0 40 40 14 6 8 aIII = – 5 m/s2. 27. (Uece 2010) Ao cair de uma altura próxima à superfície da Terra, uma maçã de massa igual a 100g causa no planeta uma aceleração aproximadamente igual a a) Zero. b) 1 m/s2. c) 10 m/s2. d) 1 N. Resposta: [A] Pelo princípio da ação-reação, com a mesma intensidade que a Terra atrai a maçã, a maçã atrai a Terra. No caso, a maçã tem massa m = 100 g = 0,1 kg. A força de interação é: F = P = m g = 1 N. A massa da Terra é extremamente grande para que essa força provoque nela alguma aceleração detectável. Assim, a aceleração que a força exercida pela maçã na Terra é praticamente nula. Página 23 de 23