ESTRUTURAS DE CONCRETO – CAPÍTULO 3 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos. 31 de março, 2003. AÇOS PARA ARMADURAS 3.1 DEFINIÇÃO E IMPORTÂNCIA Aço é uma liga metálica composta principalmente de ferro e de pequenas quantidades de carbono (em torno de 0,002% até 2%). Os aços estruturais para construção civil possuem teores de carbono da ordem de 0,18% a 0,25%. Entre outras propriedades, o aço apresenta resistência e ductilidade, muito importantes para a Engenharia Civil. Como o concreto simples apresenta pequena resistência à tração e é frágil, é altamente conveniente a associação do aço ao concreto, obtendo-se o concreto armado. Este material, adequadamente dimensionado e detalhado, resiste muito bem à maioria dos tipos de solicitação. Mesmo em peças comprimidas, além de fornecer ductilidade, o aço aumenta a resistência à compressão. 3.2 OBTENÇÃO DO PRODUTO SIDERÚRGICO Para a obtenção do aço são necessárias basicamente duas matérias-primas: minério de ferro e coque. O processo de obtenção denomina-se siderurgia, que começa com a chegada do minério de ferro e vai até o produto final a ser utilizado no mercado. O minério de ferro de maior emprego na siderurgia é a hematita (Fe2O3), sendo o Brasil um dos grandes produtores mundiais. USP – EESC – Departamento de Engenharia de Estruturas Aços para armaduras Coque é o resíduo sólido da destilação do carvão mineral. É combustível e possui carbono. Em temperaturas elevadas, as reações químicas que ocorrem entre o coque e o minério de ferro, separam o ferro do oxigênio. Este reage com o carbono do coque, formando dióxido de carbono (CO2), principalmente. Também é utilizado um fundente, como o calcário, que abaixa o ponto de fusão da mistura. Minério de ferro, coque e fundente são colocados pelo topo dos altos-fornos, e na base é injetado ar quente. Um alto forno chega a ter altura de 50m a 100m. A temperatura varia de 1000°C no topo a 1500°C na base. A combinação do carbono do coque com o oxigênio do minério libera calor. Simultaneamente, a combustão do carvão com o oxigênio do ar fornece calor para fundir o metal. O ponto de fusão é diminuído pelo fundente. Na base do alto forno obtém-se ferro gusa, que é quebradiço e tem baixa resistência, por apresentar altos teores de carbono e de outros materiais, entre os quais silício, manganês, fósforo e enxofre. A transformação de gusa em aço ocorre nas aciarias, com a diminuição do teor de carbono. São introduzidas quantidades controladas de oxigênio, que reagem com o carbono formando CO2. 3.3 TRATAMENTO MECÂNICO DOS AÇOS O aço obtido nas aciarias apresenta granulação grosseira, é quebradiço e de baixa resistência. Para aplicações estruturais, ele precisa sofrer modificações, o que é feito basicamente por dois tipos de tratamento: a quente e a frio. a) Tratamento a quente Este tratamento consiste na laminação, forjamento ou estiramento do aço, realizado em temperaturas acima de 720°C (zona crítica). 3.2 USP – EESC – Departamento de Engenharia de Estruturas Aços para armaduras Nessas temperaturas há uma modificação da estrutura interna do aço, ocorrendo homogeneização e recristalização com redução do tamanho dos grãos, melhorando as características mecânicas do material. O aço obtido nessa situação apresenta melhor trabalhabilidade, aceita solda comum, possui diagrama tensão-deformação com patamar de escoamento, e resiste a incêndios moderados, perdendo resistência, apenas, com temperaturas acima de 1150 °C (Figura 3.1). Estão incluídos neste grupo os aços CA-25 e CA-50. Figura 3.1 - Diagrama tensão-deformação de aços tratados a quente Na Figura 3.1 tem-se: P: força aplicada; A: área da seção em cada instante; A0: área inicial da seção; a: ponto da curva correspondente à resistência convencional; b: ponto da curva correspondente à resistência aparente; c: ponto da curva correspondente à resistência real. 3.3 USP – EESC – Departamento de Engenharia de Estruturas Aços para armaduras b) Tratamento a frio ou encruamento Neste tratamento ocorre uma deformação dos grãos por meio de tração, compressão ou torção, e resulta no aumento da resistência mecânica e da dureza, e diminuição da resistência à corrosão e da ductilidade, ou seja, decréscimo do alongamento e da estricção. O processo é realizado abaixo da zona de temperatura crítica (720 °C). Os grãos permanecem deformados e diz-se que o aço está encruado. Nesta situação, os diagramas de tensão-deformação dos aços apresentam patamar de escoamento convencional, torna-se mais difícil a solda e, à temperatura da ordem de 600°C, o encruamento é perdido (Figura 3.2). Está incluído neste grupo o aço CA-60. Figura 3.2 - Diagrama tensão-deformação de aços tratados a frio Na Figura 3.2, tem-se: P: força aplicada; A: área da seção em cada instante; A0: área inicial da seção; a: ponto da curva correspondente à resistência convencional; b: ponto da curva correspondente à resistência aparente; c: ponto da curva correspondente à resistência real. 3.4 USP – EESC – Departamento de Engenharia de Estruturas 3.4 Aços para armaduras BARRAS E FIOS A NBR 7480 (1996) fixa as condições exigíveis na encomenda, fabricação e fornecimento de barras e fios de aço destinados a armaduras para concreto armado. Essa Norma classifica barras os produtos de diâmetro nominal 5 ou superior, obtidos exclusivamente por laminação a quente, e como fios aqueles de diâmetro nominal 10 ou inferior, obtidos por trefilação ou processo equivalente, como por exemplo estiramento. Esta classificação pode ser visualizada na Tabela 3.1. Tabela 3.1 – Diâmetros nominais conforme a NBR 7480 (1996) 5 6,3 BARRAS Ø >= 5 Laminação a Quente CA - 25 CA - 50 8 10 12,5 16 20 22 25 FIOS 2,4 3,4 3,8 4,2 Ø <= 10 Laminação a Frio CA - 60 4,6 5,0 5,5 6,0 6,4 7,0 32 40 8,0 9,5 10 O comprimento normal de fabricação de barras e fios é de 11m, com tolerância de 9%, mas nunca inferior a 6m. Porém, comercialmente são encontradas barras de 12m, levando-se em consideração possíveis perdas que ocorrem no processo de corte. 3.5 CARACTERÍSTICAS MECÂNICAS As características mecânicas mais importantes para a definição de um aço são o limite elástico, a resistência e o alongamento na ruptura. Essas características são determinadas através de ensaios de tração. O limite elástico é a máxima tensão que o material pode suportar sem que se produzam deformações plásticas ou remanescentes, além de certos limites. 3.5 USP – EESC – Departamento de Engenharia de Estruturas Aços para armaduras Resistência é a máxima força de tração que a barra suporta, dividida pela área de seção transversal inicial do corpo-de-prova. Alongamento na ruptura é o aumento do comprimento do corpo-de-prova correspondente à ruptura, expresso em porcentagem. • Os aços para concreto armado devem obedecer aos requisitos: • Ductilidade e homogeneidade; • Valor elevado da relação entre limite de resistência e limite de escoamento; • Soldabilidade; • Resistência razoável a corrosão. A ductilidade é a capacidade do material de se deformar plasticamente sem romper. Pode ser medida por meio do alongamento (ε) ou da estricção. Quanto mais dúctil o aço, maior é a redução de área ou o alongamento antes da ruptura. Um material não dúctil, como por exemplo o ferro fundido, não se deforma plasticamente antes da ruptura. Diz-se, então, que o material possui comportamento frágil. O aço para armadura passiva tem massa específica de 7850 kg/m3, coeficiente de dilatação térmica α = 10-5 /°C para -20°C < T < 150°C e módulo de elasticidade de 210 GPa. 3.6 ADERÊNCIA A própria existência do material concreto armado decorre da solidariedade existente entre o concreto simples e as barras de aço. Qualitativamente, a aderência pode ser dividida em: aderência por adesão, aderência por atrito e aderência mecânica. A adesão resulta das ligações físico-químicas que se estabelecem na interface dos dois materiais, durante as reações de pega do cimento. 3.6 USP – EESC – Departamento de Engenharia de Estruturas Aços para armaduras O atrito é notado ao se processar o arrancamento da barra de aço do bloco de concreto que a envolve. As forças de atrito dependem do coeficiente de atrito entre aço e o concreto, o qual é função da rugosidade superficial da barra, e decorrem da existência de uma pressão transversal, exercida pelo concreto sobre a barra. A aderência mecânica é decorrente da existência de nervuras ou entalhes na superfície da barra. Este efeito também é encontrado nas barras lisas, em razão da existência de irregularidades próprias originadas no processo de laminação das barras. As nervuras e os entalhes têm como função aumentar a aderência da barra ao concreto, proporcionando a atuação conjunta do aço e do concreto. A influência desse comportamento solidário entre o concreto simples e as barras de aço é medida quantitativamente através do coeficiente de conformação superficial das barras (η). A NBR 7480 (1996) estabelece os valores mínimos para η1, apresentados na Tabela 3.2. Tabela 3.2 – Valores mínimos de η para φ ≥ 10mm Categoria Coeficiente de conformação superficial mínimo para Ø >= 10mm CA-25 CA-50 CA-60 1,0 1,5 1,5 As barras da categoria CA–50 são obrigatoriamente providas de nervuras transversais ou oblíquas. Os fios de diâmetro nominal inferior a 10mm (CA–60) podem ser lisos (η = 1,0), mas os fios de diâmetro nominal igual a 10mm ou superior devem ter obrigatoriamente entalhes ou nervuras, de forma a atender o coeficiente de conformação superficial η. 3.7 USP – EESC – Departamento de Engenharia de Estruturas 3.7 Aços para armaduras DIAGRAMA DE CÁLCULO O diagrama de cálculo, tanto para aço tratado a quente quanto tratado a frio, é o indicado na Figura 3.3. Figura 3.3 - Diagrama tensão-deformação para cálculo fyk: resistência característica do aço à tração fyd: resistência de cálculo do aço à tração, igual a fyk / 1,15 fyck: resistência característica do aço à compressão; se não houver determinação experimental: fyck = fyk fycd: resistência de cálculo do aço à compressão, igual a fyck /1,15 εyd: deformação específica de escoamento (valor de cálculo) O diagrama indicado na Figura 3.3 representa um material elastoplástico perfeito. Os alongamentos (εs) são limitados a 10%o e os encurtamentos a 3,5%o, no caso de flexão simples ou composta, e a 2%o, no caso de compressão simples. Esses encurtamentos são fixados em função dos valores máximos adotados para o material concreto. 3.8