NEEJA NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CAXIAS DO SUL – 4ª CRE Rua Garibaldi, 660 – Centro CEP – 95080-190 Fone Fax 3221-1383 Email – [email protected] blog - http://blogneejacxs.blogspot.com/ ENSINO FUNDAMENTAL COMPONENTE CURRICULAR MATEMÁTICA MÓDULO ÚNICO JANEIRO – 2017 2 Neste módulo o ensino de Matemática deve levar o aluno a: Construir o significado do número natural a partir de seus diferentes usos no contexto social, explorando situações-problema que envolvam contagens, medidas e códigos numéricos. Interpretar e produzir escritas numéricas, levantando hipóteses sobre elas, com base na observação de regularidades, utilizando-se da linguagem oral, de registros informais e da linguagem matemática. Resolver situações-problema e construir, a partir delas, os significados das operações fundamentais, buscando reconhecer que uma mesma operação está relacionada a problemas diferentes e um mesmo problema Desenvolver procedimentos de cálculo — mental, escrito, exato, aproximado — pela observação de regularidades e de propriedades das operações e pela antecipação e verificação de resultados. Refletir sobre a grandeza numérica, utilizando a calculadora como instrumento para produzir e analisar escritas. Estabelecer pontos de referência para situar-se, posicionar-se e deslocar-se no espaço, bem como para identificar relações de posição entre objetos no espaço; interpretar e fornecer instruções, usando terminologia adequada. Perceber semelhanças e diferenças entre objetos no plano, identificando formas bidimensionais, em situações que envolvam descrições orais, construções e representações. Reconhecer grandezas mensuráveis, como comprimento, massa, capacidade e elaborar estratégias pessoais de medida. Identificar grandezas diretamente e inversamente proporcionais, resolver regras de três. Interpretar e resolver problemas que envolvam trigonometria, ângulos, triângulos e quadriláteros. Utilizar instrumentos de medida, usuais ou não, estimar resultados e expressá-los por meio de representações não necessariamente convencionais. Identificar o uso de tabelas e gráficos para facilitar a leitura e interpretação de informações e construir formas pessoais de registro para comunicar informações coletadas. Resolver equações do 1º e 2º graus, teorema de Pitágoras e utilizar as relações trigonométricas na resolução de problemas propostos. Introdução aos Números Naturais O conjunto dos números naturais é representado pela letra maiúscula N e estes números são construídos com os algarismos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, que também são conhecidos como algarismos indo-arábicos. Representamos: I N = { 0, 1, 2, 3, 4, 5, 6, ...} Representaremos o conjunto dos números naturais com a letra N. As reticências (três pontos) indicam que este conjunto não tem fim. N é um conjunto com infinitos números. Observe que para qualquer número pertencente ao conjunto N, sempre conseguimos determinar o número seguinte, isto é, o seu sucessor, bastando adicionar UM ao número. Exemplos: Seja m um número natural. 1. (a) O sucessor de m é m+1. 2. (b) O sucessor de 0 é 1. 3. (c) O sucessor de 1 é 2. 4. (d) O sucessor de 19 é 20. Por outro lado 6 é o ANTECESSOR de 7, pois 7 – 1 = 6 Concluindo: 3 ANTECESSOR subtraímos 1 do número SUCESSOR somamos 1 ao número Frequentemente estamos trabalhando com as 4 operações sem nos darmos conta disso; pois elas aparecem no nosso dia-a-dia e são resolvidas naturalmente. a) Adição: TERMOS DA ADIÇÃO Para comprar uma calça de 59 reais e um blusa de 23 reais, quanto vou gastar? 59 Parcela + 23 Parcela 82 Soma ou total b) Subtração: TERMOS DA SUBTRAÇÃO Dos 40 alunos de uma sala, 23 foram ao passeio. Quantos ficaram? 40 Minuendo – 23 Subtraendo 17 Diferença Observação: Para realizar somas ou subtrações com números elevados, devemos armar a conta e prestar atenção na colocação dos algarismos. Exemplos: Veja: 42237 + 3046 + 1025 CM DM 4 + 4 UM 2 3 1 6 C 2 0 0 3 16305 – 784 = D 3 4 2 0 U 7 6 5 8 CM DM 1 UM 6 1 5 – C 3 7 5 D 0 8 2 U 5 4 1 c) Multiplicação: TERMOS DA MULTIPLICAÇÃO Num cinema há 18 filas de 24 cadeiras em cada uma. Qual o total de cadeiras? 18 Fator x 24 Fator 72 36= 432 Produto d) Divisão: TERMOS DA DIVISÃO 4 Qual será o valor de cada prestação na compra de um televisor de 780 reais em 4 vezes iguais? Dividendo 780 4 Divisor - 4 . 195 Quociente 38 . -36 . .020 -20 0 Resto Relações essenciais EXERCÍCIOS: 1) Resolva os problemas: a) Uma escola funciona em dois turnos. Pela manhã são 1327 alunos e a tarde 965 alunos. Quantos alunos há na escola? b) Um terreno tem 395 metros quadrados de área construída e 155 metros quadrados de área livre. Qual a área total do terreno? c) Determine a soma do número 273 com seu sucessor. d) Em uma adição, as parcelas são 721 e 139. Qual é a soma? 2) Efetue as operações seguintes a) adicione 16 a 43. Da soma, subtraia 35. b) Subtraia 24 de 109. A esta diferença, adicione 85. c) Adicione 36, 48 e 53. Da soma, subtraia 97. 3) Arme e efetue: a) 34 + 54 + 82 + 128 = d) 5846 – 328 = b) 94873 + 1023 + 572 = e) 67856 – 7845 = c) 325142 + 8765 + 12+104 = f) 3794 – 3629 = Atenção: Na multiplicação observa-se que: A ordem dos fatores não altera o produto.Ex.: 6 x 3 = 3 x 6 O “1” é o elemento neutro da multiplicação pois, multiplicado a qualquer número natural não altera esse número. Exs.: 1 x 4 = 4 10 x 1 = 10 A multiplicação substitui a adição de parcelas iguais. Obser Exs.: 4 + 4 + 4 = 3 . 4 = 12 7 + 7 + 7 + 7 = 4 . 7 = 28 4) Complete escrevendo em forma de produto: a) 9 + 9 = b) 12 + 12+12 = c) 6 + 6 + 6 = d) a + a 5) Efetue as multiplicações: a) 48 x 15 = b) 625 x 4 = c) 906 x 0= d) 1 x 3.750 = Lembre-se: dobro = 2 vezes triplo = 3 vezes quádruplo = 4 vezes quíntuplo = 5 vezes uma dezena = 10 unidades uma dúzia são 12 unidades 6) Calcule : a) o dobro de 585 = b) o triplo de 685= c) o quádruplo de 1260= Lembretes Numa divisão, quando o dividendo é zero, o quociente é zero. Ex.: 0 : 4 = 0 Não existe divisão de um número por zero. Ex.: 12 : 0 = ? Numa divisão, o resto é sempre menor que o divisor. 5 NOTA: Sempre que os números forem elevados, armamos e efetuamos também as divisões, veja os exemplos. 7668 –72 Verificamos inicialmente quantas vezes o “36” “cabe” no “76”; duas vezes. Colocamos o 2 no quociente e multiplicamos pelo divisor. O resultado é colocado abaixo do “76”. Subtraímos. Baixamos o próximo algarismo que é o “6”. O número formado é o “46”. O divisor “cabe” nele 1 vez. Colocamos no quociente. Procedemos agora como antes, até o fim da conta. 36 213 46 –36 108 –108 000 Veja outro exemplo: 423503 –405 185 –180 45 9411 esta divisão não é exata. 50 –45 053 – 45 08 7) Efetue: a) 3745 : 28 = e) 12358 x 314 = b) 14720 : 64 = f) 1846 x 27 = c) 10656 : 72 = d) 64380 : 102 = g) 3853 x 265 = h) 408 x 507 = POTENCIAÇÃO Numa sala de aula há 5 fileiras de carteiras e cada fileira com 5 carteiras. Qual o total de carteiras dessa sala de aula? Para calcular esse total de carteiras você faz: 5 x 5 dois fatores iguais Podemos representar: quantidade de fatores 5 x 5 = 5² fator que se repete Então: expoente 5² = 25 potência base Essa é a operação de Potenciação. 6 Escrevemos 2² 5³ 34 45 Lemos dois ao quadrado cinco elevado ao cubo três elevado à quarta potência quatro elevado à quinta potência Observações: Todo número elevado a um é igual a ele mesmo. 1 1 = 1; 21 = 2; 31 = 3; 41 = 4 ... Todo número natural não-nulo elevado a zero é igual a um. 10 = 1; 20 = 1; 30 = 1; 40 = 1 ... Toda potência de um é igual a um. 10 = 1; 11 = 1; 12 = 1; 13 = 1; 14 = 1... Toda potência de 10 é igual ao número formado pelo algarismo 1 seguido de tantos zeros quantas forme as unidades do expoente. 100 = 1; 101 = 10; 102 = 100; 103 = 1000; 104 = 10.000 ... 8) . Em 7² = 49, responda: a) Qual é a base? b) Qual é o expoente? c) Qual é a potência? 9) . Escreva cada uma das multiplicações na forma de potência indicada: a) 50 x 50 = b) 15 x 15 x 15 x 15 x 15 = c) 9 x 9 x 9 x ,,, x 9 = d) x .x .x .x repete 9 vezes 10) Calcule as potências: a) 13² = b) 21² = c) 9³ = d) 26 = e) 73 = RADICIAÇÃO Vamos considerar os seguintes problemas: a) Qual é o número que elevado ao quadrado dá 9? É o 3, pois 3² = 9 b) Qual é o número que elevado ao quadrado dá 25?É o 5, pois 5² = 25 A resolução desses problemas dá origem a uma nova operação chamada RADICIAÇÂO. Assim: 3² = 9 equivale a 2 9 = 3 (lemos: a raiz quadrada de 9 é igual a 3). 5² = 25 equivale a 2 25 = 5 (lemos: a raiz quadrada de 25 é igual a 5). Radical Índice 2 9=3 Raiz Radicando Na operação, 2 é o índice, 9 é o radicando, 3 é a raiz e é o radical. 7 Representamos 36 6 3 8 2 4 16 2 2 Lemos A raiz quadrada de 36 é igual a 6. A raiz cúbica de 8 é igual a 2. A raiz quarta de 16 é igual a 2. NOTA: Quando o índice é 2 costuma-se omiti-lo: 2 49 = 49 2 100 = 100 11) Complete: a) 36 = ____ b) 4 = ______ c) 9 = _________ d) 25 = _______ DIVISIBILIDADE O assunto divisibilidade está diretamente relacionado a várias situações do nosso dia. Observe o exemplo: Um lojista percebeu que havia 460 pares de meias esportivas em estoque. Para vender essas meias, resolveu fazer promoção e decidiu empacotar os pares de meias em embalagens com a mesma quantidade. Será que é possível as embalagens conterem: 2 pares de meias? 10 pares de meias? 3 pares de meias? 5 pares de meias? (Livro EJA – Ensino Fundamental) Para conhecer as possibilidades não é necessário efetuar divisões ou fazer tentativas. Há regras práticas que permitem verificar se um número é ou não divisível por outro, sem se efetuar a divisão. Estas regras práticas são chamadas de CRITÉRIOS DE DIVISIBILIDADE. Vamos ver os mais utilizados. Divisibilidade por 2. Um número é divisível por 2 quando for par (terminar em 0, 2, 4, 6 ou 8). Assim, os números 30, 72 e 216 são divisíveis por 2. a) ( 12) . Assinale com x os números divisíveis por 2: ) 140 b) ( ) 5.876 c) ( ) 37 d) 423 e) 128 f) 423 g) 128 Divisibilidade por 3. Um número é divisível por 3 quando a soma dos valores absolutos de seus algarismos for divisível por 3. Assim: a) 132 é divisível por 3, pois 1 + 3 + 2 = 6 e 6 é divisível por 3. b) 14.025 é divisível por 3, pois 1 + 4 + 0 + 2 + 5 = 12 e 12 é divisível por 3. 13) . Usando a regra acima, verifique se os números a seguir são divisíveis por 3: a) 723 b) 1.349 c) 6.529 d) 36.996 Divisibilidade por 5. Um número é divisível por 5 quando terminar em 0 ou 5. Assim, 30 e 235 são divisíveis por 5. 8 14) . Assinale com x os números divisíveis por 5: a) ( ) 135 b) ( ) 487 c) ( ) 4.760 d) ( ) 34265 e) ( ) 1357 Divisibilidade por 10. Um número é divisível por 10 quando terminar em zero. Assim, 780 e 1.230 são divisíveis por 10. a) ( 15) . Assinale com x os números divisíveis por 10: ) 430 b) ( ) 135 c) ( ) 1.890 d) ( ) 467 e) ( ) 780 Números Primos O conceito de números primos está diretamente relacionado à quantidade de divisores de um número. Observe os conjuntos dos divisores de 2, 3, 4, 5, 6 e 9, abaixo: a) D(2) = {1, 2} b) D(3) = {1, 3 } c) D(4) = {1, 2, 4} d) D(5) = {1, 5} e )D(6) { 1,2,3,6,} A partir dos conjuntos acima podemos notar que: a) Os números 2, 3 e 5 possuem apenas dois divisores: 0 1 e ele próprio. Esses números são chamados primos. Números primos são todos os números naturais maiores que 1 que possuem apenas dois divisores: o 1 e ele próprio. Os números que não foram riscados correspondem aos números primos. b) Os números 4, 6 e 9, possuem mais que dois divisores, são chamados compostos. Números compostos são todos os números naturais maiores que 1 que possuem mais de dois divisores. c) O único par e primo é o 2. d) número 1 não é primo nem composto. e) O conjunto dos números primos é infinito. 16) Uma vila tem casas numeradas de 1 a 30. Quantas dessas casas têm números que são primos? 17). Escreva certo ou errado: a) Os dez primeiros números naturais primos são: 2, 3, 5, 7, 11, 13, 17, 19, 23 e 29 b) Não existe número par que seja primo. c) Não podemos determinar o maior número primo. d) O único número par que é primo é o número 2. e) Todos os números ímpares são primos (__________) (__________) (__________) (__________) (__________) FATORAÇÃO Fatorar um número é escrever esse número em forma de produto. Observe algumas fatorações do nº 20. 20 = 2 . 10 20 = 4 . 5 9 Decomposição em fatores primos Todo número natural, maior que 1, pode ser decomposto num produto de dois ou mais fatores. Decomposição do número 24 num produto: 24 = 4 x 6 24 = 2 x 2 x 6 24 = 2 x 2 x 2 x 3 = 23 x 3 No produto 2 x 2 x 2 x 3 todos os fatores são primos. Chamamos de fatoração de 24 a decomposição de 24 num produto de fatores primos. Então a fatoração de 24 é 23 x 3. De um modo geral, chamamos de fatoração de um número natural, maior que 1, a sua decomposição num produto de fatores primos. Regra prática para a fatoração Existe um dispositivo prático para fatorar um número. Acompanhe, no exemplo, os passos para montar esse dispositivo: 1º) Dividimos o número pelo seu menor divisor primo; 2º) a seguir, dividimos o quociente obtido pelo menor divisor primo desse quociente e assim sucessivamente até obter o quociente 1. A figura ao lado mostra a fatoração do número 630. Então 630 = 2 x 3 x 3 x 5 x 7 630 = 2 x 32 x 5 x 7. Observação: A direita do traço vertical só podem ser escritos números primos. 18) Marcelo tem 3 irmãos cujas idades são números primos. Sabe-se que o produto das idades dos 3 irmãos é 195. Quais não as idades dos irmãos de Marcelo? 19) Decomponha em fatores primos os números a seguir: a) 18 b) 12 c) 312 d) 15 e) 147 f) 637 Mínimo Múltiplo Comum. Na cozinha de um restaurante, a manutenção do fogão é feita a cada dois dias; a da geladeira, a cada três; e a do freezer, a cada cinco dias. Hoje, 10 de setembro, os três equipamentos, juntos, estão sendo vistoriados. Esta coincidência ocorrerá novamente em: Para resolver esta situação, vamos analisar os múltiplos de 2, 3 e 5. a) M(2) = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, ...} b) M(3) = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, ...} c) M(5) = { 0, 5, 10, 15, 20, 25, 30, 35, ...} A próxima revisão se dará em 30 dias. Método Prático para determinar o menor múltiplo comum de dois ou mais números (m.m.c.) decomposição simultânea. Qual é o m.m.c. de 16, 24 e 40? Nesse caso, decompomos todos os números ao mesmo tempo, conforme é mostrado a seguir: 10 16, 24, 8, 12, 4, 6, 2, 3, 1, 3, 1, 1, 1, 1, 40 20 10 5 5 5 1 2 2 2 2 3 5 24 O produto dos fatores obtidos na decomposição é o m,m.c. desses números. m.m.c. (16, 24, 40) = 240 20) Decomponha os números: a) 60 b) 150 c) 55 21) Calcule o m.m.c. dos números: a) m.m.c. ( 12 , 8 ) = b) m.m.c ( 8,5 ) = c) m.m.c.(6,3,9) d) m.m.c. ( 6, 10, 12 ) = CONJUNTO DOS NÚMEROS RACIONAIS – FRAÇÃO Representação: Na representação da fração, há dois números separados por uma barra horizontal. 2 Numerador 8 Denominado r Denominador: indica em quantas partes iguais algo foi dividido. Numerador: indica quantas das partes iguais foram consideradas. As frações são chamadas de Números Racionais. Fração indica parte de um todo. Exemplo: Dividindo um retângulo em três partes iguais e pintando uma parte, essa parte é 1 do 3 retângulo. Veja outras frações dos retângulos. 1 2 3 4 5 6 Às vezes, uma fração pode indicar a quantidade toda. 3 3 4 4 LEITURA: Os nomes das frações dependem do denominado: Se ele for 2 meios Se ele for 3 terços Se ele for 4 quartos 5, 6, 7, 8, 9 lê-se respectivamente: quinto(s), sexto(s), sétimo(s), oitavo(s), nono(s). Quando o denominador for 10, 100, 1000 ... lê-se o numerador acompanhado das palavras décimo(s), centésimo(s), milésimo(s) ... Para frações com denominadores diferentes desses, usa-se a palavra avos. 1 Ex: um onze avos 11 11 EXERCÍCIOS: 22) Que parte da figura está pintada? Responda com uma fração. 23).Escreva como se lêem cada uma das frações abaixo: 3 2 6 a) b) = c) = 7 15 20 d) 24).Escreva as seguintes frações: a) dois quintos b) cinco doze avos c) seis centésimos 15 = 6 d) um décimo FRAÇÕES EQUIVALENTES Frações equivalentes são frações que visivelmente são diferentes, mas se fizermos as devidas representações percebemos que representam a mesma quantidade. Veja o exemplo abaixo: .3 .2 1 2 .2 .4 2 4 3 6 4 8 .3 .4 Percebeu a propriedade? Multiplicando o numerador e o denominador de uma fração por um mesmo número, obtém-se uma fração igual à primeira. Observe: :2 8 4 8 4 Será que é igual a Sim, porque = 18 9 18 : 2 9 Então: Dividindo o numerador e o denominador por um mesmo número, também se obtém uma fração igual a primeira. EXERCÍCIOS: 25) Usando a equivalência de frações, descubra o número que deve ser colocado no lugar da letra “x” para que se tenha: a) 7 14 9 x b) 4 x 7 28 c) 7 x 2 12 d) 15 x 30 2 e) 3 9 11 x Observação: Frações irredutíveis são frações cujos os termos são números primos entre si, não sendo mais possível simplificar. 12 26) Dividindo o numerador e o denominador torne as frações irredutíveis. (Veja o exemplo) 15 15 1 15 3 5 5 1 ou 45 15 3 45 3 15 5 3 a) 8 12 b) 12 30 c) 30 45 d) 40 140 e) 350 500 f) 40 400 Reduzindo frações ao mesmo denominador Dadas duas ou mais frações com denominadores diferentes, podemos obter frações equivalentes às frações iniciais e que apresentam o mesmo denominador. Esse denominador deve ser o menor dos múltiplos comuns (m.m.c.) dos denominadores das frações dadas. Essa operação é denominada redução das frações ao menor denominador comum. Veja um exemplo: 7 3 9 Reduzir as frações ao menor denominador comum. , e 15 10 20 Observe que o m.m.c. (15, 10, 20) = 60. As novas frações (frações equivalentes) deverão ter o denominador 60 e o numerador proporcional, então você deve dividir o m.m.c. pelo denominador de cada fração e multiplicar o resultado pelo numerador em cada uma delas. Veja: 60 : 15 = 4; 4 . 7 = 28 60 : 10 = 6; 6 . 3 = 18 28 60 Assim: 60 : 20 = 3; 3 . 9 = 27 18 60 7 3 9 , , 15 10 20 frações equivalent es frações que têm denominado res diferentes x 28 18 27 , , 60 60 60 frações que têm mesmo denominado r EXERCÍCIO: 27) Reduza ao mesmo denominador: = MODELO: 27 60 7 2 , x = 5 3 21 , 6 10 6 LEMBRE: 6 é m.m.c. entre 2 e 3. 5 2 a) , 4 3 6 3 b) , 5 8 1 5 c) , 4 3 d) 4 2 , 7 5 COMPARAÇÃO DE FRAÇÕES a) Quando elas são homogêneas, a maior é aquela que possui o maior numerador. 8 6 1 Exemplo: 5 5 5 b) Quando elas são heterogêneas, devemos transformá-las em homogêneas, isto é, reduzi-las ao mesmo denominador. 3 4 Exemplo: , 5 6 Reduzindo-as ao mesmo denominador temos, respectivamente: m.m.c. (5, 6) = 30 13 x 3 5 18 30 x 4 6 20 30 Assim: 18 20 3 4 , portanto . 5 6 30 30 OPERAÇÕES COM FRAÇÕES: Você já aprendeu que fração é um número que representa parte(s) do inteiro. Agora você vai aprender a resolver situações problemas que envolvem números fracionários. Para isso terá que saber operar (fazer conta) com esses números. Adição e Subtração de Frações Quando vamos efetuar uma soma ou uma subtração de frações devemos considerar dois casos: 1º caso – As frações têm o mesmo número em baixo, ou seja, mesmo denominadores: Exemplo: 3 2 5 6 6 6 Conclusão: Quando as frações têm o mesmo denominador devemos somar ou subtrair apenas os números de cima, ou seja, os numeradores e manter o mesmo denominador. TÉCNICA para ADIÇÃO e SUBTRAÇÃO 1º) determine o m.m.c. dos denominadores (nºs debaixo) 2º) o resultado do m.m.c. será o novo denominador 3º) divida o novo denominador pelo nº debaixo e multiplique pelo nº de cima de cada fração 4º) efetue a adição Exemplo: Adriana viajou para a praia. Durante a primeira hora de viagem, ela percorreu do caminho e, na segunda hora, mais . Que fração do percurso total Adriana já percorreu? Vamos encontrar frações equivalentes as dadas no problema encontrando o M.M.C. entre 3 e 5. 28) Calcule, simplificando o resultado quando possível: 5 3 12 3 6 3 a) b) c) = 8 2 2 4 6 8 d) 3 7 2 3 MULTIPLICAÇÃO DE FRAÇÕES A multiplicação de frações é muito simples, basta multiplicarmos numerador por numerador e denominador por denominador, respeitando suas posições. Observe: 14 29) De acordo com essa regra prática, efetue e simplifique, se possível. 4 2 13 3 4 9 12 10 a) b) c) d) 7 10 9 26 18 20 5 36 DIVISÃO DE FRAÇÕES A divisão deve ser efetuada aplicando uma regra prática e de fácil assimilação, que diz: “repetir a primeira fração e multiplicar pelo inverso da segunda”. 30) Efetue e simplifique quando possível. 18 4 8 a) 9 : b) : 7 35 5 c) 5 15 : 10 4 d) 7 : 21 12 Potenciação (multiplicação com o mesmo número) Como vimos no conjunto dos naturais (Módulo 1) a potenciação é uma maneira abreviada de representar uma multiplicação de fatores iguais. Observe: 5 . 5 . 5 = 53 = 125 O mesmo ocorre com as frações: 3 1 1 1 1 2 2 2 2 3 1 1 Da comparação vem que: 8 2 31)Resolva as potências: 2 3 a) 5 2 3 b) 7 2 1 c) 4 Gabarito/ 1ª parte 1. 2. 3. 4. 5. 6. 7. 3 1 d) 10 A) 2292 alun B) 550 metros C) 547 D) 860 A) 24 b) 170 c) 40 A) 298 B) 96.468 C) 334.023 D) 5.518 E) 60.011 F) 165 A) 2 x 9 B) 3 x 12 C) 3 x 6 D) 2 x a A) 720 B) 2500 C) 0 D) 3750 A) 1170 B) 2055 C) 5040 A) 133 resto 21 B) 230 resto 0 C) 148 resto 0 D) 631 resto 18 E) 3.880.412 F) 49.842 G) 1.021.045 H) 206.856 8. A) 7 B) 2 C) 49 9. A) 50² B) 155 C) 99 D) X4 10. A) 169 B) 441 C) 729 D) 64 E) 343 11. a) 6 b) 2 c) 3 d) 5 12. a, b, e, g 13. A) Sim B )Não C) Não D) Sim 14. a, c, d 15. a , c, e 16. 10 CASAS 17. a) Certo b) Errado c) Certo d) Certo e) Errado 18. 3 anos; 5 anos e 13 anos 19. a) 18 = 2 x 3² b) 12 = 2² x 3 c) 312 = x 3 d) 15 = 3 x 5 2 4 e) 9 15 e) 147 = 3 x 72 f) 637 = 13 x 72 20. a) 60= 2² x 3 x 5 b) 150 = 2 x 3 x 5² c) 55 = 5 x 11 21. a) 24 b) 40 c) 18 d) 60 22. 1 1 2 1 2 3 a) b) c) d) e) f) 3 6 4 3 8 2 23. a) três sétimos b) dois quinze avos c) seis vinte avos d) quinze sextos 24. 2 a) 5 b) 5 12 25. a) x =18 2 3 26. a) 27. a) c) 13 4 30. a) 5 2 d) b) x = 16 b) 2 5 c) 15 8 , 12 12 28. a) 6 100 b) b) b) 5 2 9 4 c) x = 42 2 3 13 8 31. a) 2 7 d) 48 15 , 40 40 c) 1 10 c) d) 9 25 d) x = 1 e) 7 10 3 20 , 12 12 23 6 b) e) x = 33 f) d) 7 10 20 14 , 35 35 29. a) 9 49 c) 1 16 4 35 d) 1 1000 b) 1 6 e) c) 1 10 d) 2 3 16 81 2ª parte NÚMEROS DECIMAIS São aqueles que aparecem valores menores que a unidade. Esses números são normalmente chamados “números com vírgula”. Ex: 3,54 ; 8,403 ; 0,001 Considere o numeral decimal: 3,547 3 representa a parte inteira. 547 representa a parte decimal. Na parte decimal: O 1º algarismo representa os décimos. O 2º algarismo representa os centésimos. O 3º algarismo representa os milésimos. Obs.: A vírgula separa a parte inteira da parte decimal. 12 21 A representação , etc são chamadas de frações decimais, pois o seu denominador é 100 100 uma potência de dez. Outros exemplos de fração decimal: 8 3 4 , , 10 1000 10000 16 Um número decimal pode ser colocado na forma genérica: Centenas Dezenas Unidades , Décimos Centésimos Milésimos Por exemplo, o número 130,824, pode ser escrito na forma: 1 Centena 3 dezenas 0 unidades , 8 décimos 2 centésimos 4 milésimos Exemplos: 0,6 Seis décimos 0,37 Trinta e sete centésimos 0,189 Cento e oitenta e nove milésimos 3,7 13,45 Três inteiros e sete décimos Treze inteiros e quarenta e cinco centésimos 130,824 Cento e trinta inteiros e oitocentos e vinte e quatro milésimos Importante: Todo nº decimal pode ser transformado em fração decimal. 1º escreva como numerador o número decimal sem a vírgula. 2º escreva como denominador a unidade (1) seguida de tantos zeros quantos sejam os algarismos decimais (após a vírgula). Ex: 12973 2 1 b) 12,973 = c) 0,001 = 1000 100 1000 Toda fração decimal pode ser transformada em número decimal. 1º) escreva o numerador da fração e 2º) separe este nº com uma vírgula, deixando após ela tantos algarismos quantos sejam os zeros do denominador da fração. a) 0,02 = Ex: 478 3 235 b) c) 4,78 0,003 0,235 100 1000 1000 1. Transforme as frações decimais em numerais decimais: 15 379 1 8 a) b) c) d) 10 10 10 100 Multiplicação por uma potência de 10: Para multiplicar um número decimal por 10, por 100, por 1000, basta deslocar a vírgula para a direita uma, duas, ou três casas decimais. Por exemplo: (a) 7,4 x 10 = 74 (b) 7,4 x 100 = 740 (c) 7,4 x 1000 = 7400 Divisão por uma potência de 10: Para dividir um número decimal por 10, 100, 1000, etc, basta deslocar a vírgula para a esquerda uma, duas, três, ... casas decimais. Por exemplo: (a) 247,5 ÷ 10 = 24,75 (b) 247,5 ÷ 100 = 2,475 (c) 247,5 ÷ 1000 = 0,2475 17 OPERAÇÕES COM NÚMEROS DECIMAIS A ) Adição : para adicionar duas ou mais importâncias em reais, efetua-se da forma indicada para os números decimais( vírgula embaixo de vírgula). Ex.: R$ 720,38 + R$ 6,00 720,38 + 6,00 726,38 R$ 720,38 + R$ 6,00 = R$ 726,38 B ) Subtração: Efetua-se da forma indicada para os números decimais . Ex.: R$ 650,00 – R$ 34,50 650,00 - 34,50 615,50 R$ 650,00 – R$ 34,50 = R$ 615,50 C) Multiplicação : só é válida a multiplicação de uma importância em real por um número. Não existe a multiplicação de real por real. Para se multiplicar real por número efetua-se da mesma forma que a multiplicação de numerais decimais. Multiplicamos os dois números decimais como se fossem naturais. Colocamos a vírgula no resultado de modo que o número de casas decimais do produto seja igual à soma dos números de casas decimais do fatores. Exemplos: 3,49 x 2,5 Para dividirmos dois números decimais devemos deixá-los com o mesmo número de casas decimais e então procedemos como na divisão de inteiros. Observe as divisões a seguir: 14,7 : 0,003 igualando as casas decimais: 14,700 : 0,003 eliminando a vírgula: 14700 : 3 resolvendo: 14700 2700 000 3 4900 Então a divisão de 14,7 por 0,003 resulta em 4900. 0,729 : 8,1 igualando as casas decimais: 0,729 : 8,100 eliminando a vírgula: resolvendo: 72900 0 8100 0,09 729 : 8100 Então a divisão de 0,729 por 8,1 resulta em 0,09. 18 a) Observação: A divisão e a multiplicação de números decimais por potências de dez se dá apenas pelo deslocamento da vírgula, conforme a operação que se deseje realizar. 12,834 . 100 = 1283,4 (deslocou a vírgula duas casas para a direita) 3,76 . 1000 = 3760 (deslocou a vírgula três casas para a direita) 123,98 : 100 = 1,2398 (deslocou a vírgula duas casas para a esquerda) 65,987 : 10000 = 0,0065987 (deslocou a vírgula quatro casas para a esquerda) 2. Determine o quociente nas divisões a) 6,7 : 5 = b) 13 : 5,2 c) 144 : 0,25 3. Efetue as operações indicadas: a) 0,0387 . 100 = b) 2,12 . 100 = d) 234,79 : 1000 = e) 546,1 : 10 = c) 2,12 . 100 = f) 9,73 : 100 = 4) Efetue as seguintes operações: a) R$ 66,00 + R$ 3,50 = b) R$ 3,20 + R$ 6,40 + R$ 19,20 = d) R$ 48,00 : R$ 3,00 = e) R$ 54,00 : 6 = c) R$ 65,20 – R$ 32,10 = f) R$ 18,30 x 3 = SISTEMA MÉTRICO DECIMAL O que é medir uma grandeza? Pense: Quantos palitos de fósforos há em uma caixa? Você responde esta pergunta contando os fósforos. E, se eu perguntar: Quantos litros de vinho cabem em um garrafão? Você responderá contando quantas vezes a unidade (litro) cabe na grandeza a ser medida (garrafão). Você fez uma medição. Então, medir é comparar. Logo: Medir uma grandeza significa compará-la a outra de mesma espécie, chamada unidade padrão e descobrir quantas vezes essa unidade padrão cabe na grandeza inicial. Como unidades-padrão mais conhecidas temos: o metro . o litro . metro quadrado metro cúbico . a hora . quilograma . o grau MEDIDAS DE COMPRIMENTO A unidade fundamental utilizada para medir o comprimento é o metro (m). Múltiplos e Submúltiplos do Metro Para medir a distância entre duas cidades, autódromos, pistas de aviões, ou seja, medir grandes distâncias usamos medidas maiores que o metro que chamamos de múltiplos do metro: quilômetro (km), que vale 1000 m hectômetro (hm), que vale 100 m decâmetro (dam), que vale 10 m Para medir pequenas extensões como o comprimento de uma folha de papel, a espessura de um vidro, o diâmetro da cabeça de um parafuso, etc., usamos medidas menores que o metro que chamamos de submúltiplos do metro, que são: 19 decímetro (dm), que vale 0,1 m (décima parte do metro) centímetro (cm), que vale 0,01 m (centésima parte do metro) milímetro (mm), que vale 0,001 m (milésima parte do metro) Veja o quadro: EXERCÍCIOS: 5). Associe: a) quilômetro b) hectômetro c) decâmetro d) metro ( ( ( ( ) dm )m ) hm ) km e) decímetro f) centímetro g) milímetro ( ( ( ) dam ) mm ) cm 6). Complete: Qual a unidade de comprimento mais adequada que devemos usar para medir: a) a distância de Porto Alegre a São Paulo? __________ b) a minha altura? __________ c) o diâmetro da cabeça de um parafuso? __________ d) a espessura do vidro de uma janela? __________ e) a largura do batente de uma porta? __________ f) o comprimento de um campo de futebol? __________ 7). Resolva os problemas: a) Numa construção, chama-se pé-direito a distância do chão ao teto. Nos prédios de apartamentos o pé-direito mínimo é de 2,70 m. Qual a altura aproximada de um prédio de 15 andares? b) As telas dos aparelhos de televisão costumam ser medidas, em diagonais, por polegadas. Considerando-se 1 polegada = 2,5 cm, quantos cm tem a diagonal de um aparelho de 16 polegadas Transformação de Unidades Cada unidade de comprimento é 10 vezes maior que a unidade imediatamente inferior. multiplica por divide por Exemplos: a) Transformar 5,473 km em metros. c) Transformar 70 cm em metros. 5,473 km = (5,473 x 1000) = 5473 m 70 cm = (70 : 100) = 0,70 b) Transformar 0,082 hm em metros. 0,082 hm = (0,082 x 100) = 8,2 m d) Transformar 92,8 dm em metros. 92,8 dm = ( 92,8 : 10 ) = 9,28 m 20 EXERCÍCIOS: 8). Faça a conversão de: a) 32,8 dm ______________m) c) 1,9 dam ________________hm b) 15 mm _______________cm d) 0,12 m _______________ dam Perímetro de um Polígono A soma das medidas dos lados de um polígono é chamada de perímetro desse polígono. A unidade de medida utilizada no cálculo do perímetro é a mesma unidade de medida de comprimento: metro, centímetro, quilômetro... Ex.: Calcular o perímetro da figura abaixo. 4m Solução: 3,5 m 2m P = 2m + 4 m + 3,5 m + 5 m P = 14,5 m 5m EXERCÍCIOS: 9). Resolva os problemas: a) Os lados de um triângulo medem 3 cm, 4 cm e 5 cm. Qual é o seu perímetro? b) Um quadrado tem 7 cm de lado. Qual é o seu perímetro? c) Um jardim é quadrado e cada um de seus lados mede 114 m. Se Mariana der três voltas completas em torno do jardim, quantos metros ela vai andar? d) O perímetro de um quadrado mede 48 cm. Calcule a medida do lado desse quadrado. e) Um retângulo tem 4 cm de base e 2,5 cm de altura. Qual o seu perímetro? f) Calcule a medida do lado de um triângulo eqüilátero cujo perímetro mede 18 m. Circunferência Circunferência é a figura geométrica formada por todos os pontos de um plano que distam igualmente de um ponto fixo do plano. Esse ponto fixo é chamado centro da circunferência. Elementos da circunferência Qualquer segmento que una o centro a qualquer ponto de uma circunferência, chama-se raio. Qualquer segmento que una dois pontos distintos da circunferência chama-se corda. A corda que passa pelo centro da circunferência chama-se diâmetro. O diâmetro é a maior corda da circunferência. Perímetro da circunferência O perímetro ou contorno de uma circunferência é obtido por C = 2 . C=2. Observação: .r (lê-se pi) 3, 14 r raio .r 21 EXERCÍCIOS: 10. Calcule: a) O raio de uma circunferência mede 4 cm. Quanto mede o seu contorno? b) Qual é o perímetro de uma circunferência com 2,5 cm de raio? c) O diâmetro de uma circunferência mede 3 cm. Qual é o seu perímetro? d) Calcule o contorno de uma circunferência cujo diâmetro mede 20 cm. MEDIDAS DE SUPERFÍCIE Sabe-se que, no Egito antigo, os agricultores das margens do rio Nilo pagavam ao faraó um imposto pelo uso da terra. Esse imposto era proporcional ao tamanho da terra cultivada. Esse fato motivou um grupo especial de egípcios a se dedicarem a medir superfícies e a descobrir maneiras que tornassem mais fácil essa medição. Medir superfícies faz parte de nossas atividades: O orçamento da pintura de uma parede é feito medindo-se a superfície dessa parede. Quando se vai revestir com tábuas ou pisos cerâmicos o chão de uma casa, é preciso medir a superfície ocupada pelo chão da casa. Quando se vai encapar com plástico um caderno ou um livro, é preciso medir a superfície ocupada pela capa do caderno ou do livro. O Imposto Territorial Urbano (IPTU) que pagamos às prefeituras é calculado sobre a medida da superfície ocupada pelo terreno onde está construída a nossa casa. Chama-se área a medida de uma superfície. A unidade fundamental utilizada para medir superfícies é o metro quadrado (m²). As unidades maiores que o metro quadrado usadas para medir grandes superfícies são as seguintes: O decâmetro quadrado (dam²), que corresponde a uma região quadrada de 1 dam de lado e equivale a 100 m². O hectômetro quadrado (hm²), que corresponde a uma região quadrada de 1 hm de lado e equivale a 10 000 m². O quilômetro quadrado (km²), que corresponde a uma região quadrada de 1 km de lado e equivale a 1000 000 m². A unidade mais usada é o quilômetro quadrado (km²). As unidades menores que o metro quadrado usadas para medir pequenas superfícies são as seguintes: O decímetro quadrado (dm²), que corresponde a uma região quadrada de 1 dm de lado e equivale a 0,01 m². O centímetro quadrado (cm²), que corresponde a uma região quadrada de 1 cm de lado e equivale a 0,0001 m². O milímetro quadrado (mm²), que corresponde a uma região quadrada de 1 mm de lado e equivale a 0,000001 m². Entre elas, a mais usada é o centímetro quadrado (cm²). Mudança de Unidades Cada unidade de superfície é 100 vezes maior que a unidade imediatamente inferior. multiplica-se por km² 100 hm² 100 dam² 100 divide- se por m² 100 dm² 100 cm² 100 mm² 22 A mudança de unidade se faz deslocando a vírgula para a direita ou para a esquerda. Exemplos: a) Transformar 73,58 dam² em m². 73,58 dam² = (73,58 x 100) = 7358 m² b) Transformar 0,54623 km² em m². 0,54623 km² = (0,54623 x 1000 000) = 5462 EXERCÍCIOS: 11. Responda: a) Qual unidade você usaria para medir a superfície do perímetro urbano de sua cidade? b) Se você fosse medir a superfície do quadro e giz da sala de aula, qual unidade você usaria? c) Você quer colocar vidro em um vitrô pequeno. Qual unidade você usaria para medir a superfície do vidro colocado nesse vitrô? d) Uma parede deve ser revestida com azulejos. A parede tem 20 m² de área e cada azulejo tem 0,04 m² de área. Quantos azulejos devem ser comprados para revestir totalmente essa parede? 12. Complete: a) 5,08 m² = ______________dm² b) 4 km² = _______________hm² c) 2,12 dm² = ________________cm² d) 9 hm2 = ___________________ m2 Medindo Superfícies ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS Medir uma superfície é compará-la com outra superfície, tomada como unidade. O resultado dessa comparação é um número chamado área da superfície. Quando estudamos o Brasil, lemos nos livros certas afirmações, como: A área do território brasileiros é de 8 511 965 km². O Amazonas é o maior estado brasileiro em extensão territorial e tem uma área de 1 564 455 km². Por esses dois exemplos, podemos dizer que: Área de uma figura geométrica plana é o número que expressa a medida da superfície dessa figura numa certa unidade. ÁREAS DE FIGURAS PLANAS: Quadrado l = lado l Área = l x l l Retângulo h b = base h = altura Área = b x h b Triângulo h b b = base h = altura Área = bxh 2 23 EXERCÍCIOS: 13. Calcule as áreas das seguintes figuras planas: a) Quadrado de lado igual a 8 cm. b) Retângulo de dimensões 6 e 10 cm. c) Triângulo de base 8 cm e altura 3 cm. MEDIDAS DE VOLUME Estamos interessados em medir a quantidade de espaço ocupado por um sólido. 1m Como nas outras unidades aprendidas, necessitamos de um padrão. 1m Nesse caso será o cubo de aresta medindo 1 metro e será chamado metro cúbico (m³ Múltiplos e Submúltiplos do Metro Cúbico 1m quilômetro cúbico hectômetro cúbico decâmetro cúbico metro cúbico decímetro cúbico centímetro cúbico milímetro cúbico km³ hm³ dam³ m³ dm³ cm³ mm³ Dessas unidades, as mais usadas são o decímetro cúbico (dm³) e o centímetro cúbico (cm³). 1 m³ = 1000 dm³ 1 dm³ = 1000 cm² Mudança de Unidades Cada unidade de volume é 1000 vezes maior que a unidade imediatamente inferior. multiplica-se por km³ 1000 hm³ 1000 dam³ 1000 m³ 1000 dm³ 1000 cm³ 1000 mm³ divide- se por A mudança de unidade se faz deslocando a vírgula para a direita ou para a esquerda. Exemplos: a) Transformar 5,847 dm³ em cm³. 5,847 dm³ = (5,847 x 1000) = 5847 cm³ b) Transformar 56,4 dm³ em m³. 56,4 dm³ = (56,4 : 1 000) = 0,0564 m³ EXERCÍCIOS: 14. Responda: a) Uma medida de 0,045 m³ corresponde a quantos dm³? b) Uma medida de 0,001 dm³ corresponde a quantos cm³? c) Um sólido tem 2350 cm³ de volume. Qual é o seu volume em dm³? d) Um sólido tem 52000 dm³. Qual o volume desse sólido em m³? a) b) c) d) 15. Complete: 8 m³ = ______________dm³ 3 cm³ = _______________mm³ 50 dm³ = ________________cm³ 0,832 m³ = _______________dm³ e) 2 km³ = _______________ dam³ f) 745 dm³ = _______________ m³ g) 75000 m³ = ______________ dam³ h) 327458 cm³ = _____________ dm³ 24 UNIDADES DE CAPACIDADE Observe o desenho abaixo: Dizemos que a capacidade da caixinha é de 1 litro. Usamos o tremo capacidade (volumétrica) para medir, por exemplo, quantidades de líquidos ou gases que cabem no interior de determinado recipiente. Observe que nas caixas-d’água, vem escrito: Capacidade: 1000 litros. A unidade padrão é o litro. Múltiplos e submúltiplos do litro quilolitro hectolitro decalitro litro decilitro centilitro mililitro kl hl dal l dl cl ml Importante: Como relacionar unidade de volume com unidade de capacidade. 1 litro = 1 decímetro cúbico 1 l = 1 dm³ 1 ml 1 ml = 1 cm³ 1000 l = 1 m³ EXERCÍCIOS: 16. Indique qual unidade, dentre litro e mililitro, é a mais adequada para medir a capacidade dos seguintes recipientes: a) a caixa-d’água de residências:____ b) ampola de injeção:_____ c) tanque de gasolina:____ 17. Resolva os problemas: a) Uma caixa-d’água tem capacidade de 8 m³. Quantos litros ela contém? b) Foram vendidos 3 l de leite, distribuídos em copos com capacidade de 250 ml. Quantos copos de leite forma vendidos? 25 MEDIDAS DE MASSA: Dependendo do valor da massa do corpo podemos usar outras unidades, múltiplos e submúltiplos do quilograma. Veja: 1 tonelada (1t) = 1000 kg 1 grama (1 g) = 0,001 kg (milésima parte do quilograma) 1 kg = 1000 g 1 miligrama (1mg) = 0,001 g (milésima parte do grama) 1 g = 1000 mg 18. Dentre quilograma, grama, miligrama e tonelada, qual utilizamos normalmente para medir a massa de: a) um homem: c) um navio: e) um pernilongo: b) um morango: d) um saco de batatas: f) uma bolinha de tênis: 19. Lembrando que 1 kg = 1000 g, escreva em seu caderno as seguintes massas em gramas: a) 15 kg: b) 1,5 kg c) 0,9 kg: d) 0,25 kg 20. Na foto ao lado, observamos a massa que uma balança digital acusou quando foi colocado sobre ela um pacote de manteiga. a) Quantos pacotes iguais a esse são necessários para completar 1 kg de manteiga? b) Se o preço da manteiga é de R$ 6,00 o quilograma, quanto deverá custar esse pacote? 21. Helena e Marta vão à feira com uma lista de compra. Supondo que cada laranja e cada pepino tenham 100 g de massa; cada mamão, 250 g; e o repolho, 1200 g, e que elas compraram tudo o que estava na lista, quantos quilogramas vão ter de carregar na volta para casa? 3 kg de batatas 0,5 kg de cenouras meia dúzia de pepinos 1,5 kg de tomates dois mamões duas dúzias de laranjas um repolho GABARITO / 2ª PARTE 1) a) 1,5 b) 37,9 c)0,1 d) 0,08 11) a) Km2 b) cm2 c) cm2 d) 500 azulejos 2) a) 1,34 b) 2,5 c) 576 12) a) 508 b) 400 c) 212 d) 9000 3) a) 3,87 b) 239,8 c) 212 13) a) 64 cm2 b) 60 cm2 c) 12 cm2 d) 0,23479 e) 54,61 f) 0,0973 14) a) 45 dm3 b) 1 cm3 c) 2,35 dm3 d) 52 m3 4) a) 69,5 b) 28,80 c) 32,90 15) a) 8.000 b) 3.000 c) 50.000 d) 832 d) 16,00 e) 9,00 f) 54,90 e) 2.000.000 f) 7,458 g) 75 h) 327,458 5) ( e ) ; ( d ) ; ( b) ; ( a ); ( c ); ( g ); ( f ). 16) a) litro b) mililitro c) litro 6) a) km b) m c) mm d) mm e) cm e) m 17) a) 8000 litros b) 12 litros 7) a) 40,5m b) 40cm 18) a) quilograma b) grama c) tonelada 8) a) 3,28 b) 1,5 c) 0,19 d) 0,012 d) quilograma e) miligrama f) grama 9) a) 12 cm b) 28 cm c) 1368 m; 684 m; 304m 19) a) 15000g b) 1500g c) 900g d) 250g d) 12 cm e) 13 cm f) 6 cm 20) a) 4 pacotes b) R$ 1,50 10) a) 25,12 cm b) 15,7 cm c) 9,42 cm d) 62,8 cm 21) 9,7 Kg 26 3ª PARTE O conjunto Z dos Números Inteiros Definimos o conjunto dos números inteiros como a reunião do conjunto dos números naturais, o conjunto dos opostos dos números naturais e o zero. Este conjunto é denotado pela letra Z (Zahlen=número em alemão). Este conjunto pode ser escrito por: Z = {..., -4, -3, -2, -1, 0, 1, 2, 3, 4,...} distâncias iguais Na reta numérica: -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 distâncias iguais Ordem e simetria no conjunto Z O sucessor de um número inteiro é o número que está imediatamente à sua direita na reta (em Z) e o antecessor de um número inteiro é o número que está imediatamente à sua esquerda na reta (em Z). Exemplos: (a) 3 é sucessor de 2 (c) -5 é antecessor de -4 (e) 0 é antecessor de 1 (g) -1 é sucessor de -2 (b) 2 é antecessor de 3 (d) -4 é sucessor de -5 (f) 1 é sucessor de 0 (h) -2 é antecessor de -1 Todo número inteiro exceto o zero, possui um elemento denominado simétrico ou oposto -z e ele é caracterizado pelo fato geométrico que tanto z como -z estão à mesma distância da origem do conjunto Z que é 0. Exemplos: (a) O oposto de ganhar é perder, logo o oposto de +3 é -3. (b) O oposto de perder é ganhar, logo o oposto de -5 é +5. 1. Complete: a) O oposto de + 7 é _______ b) O oposto de – 8 é _______ c) O oposto de – 3 é _______ d) O oposto de + 1 é _______ e) O oposto de + 10 é _______ f) O oposto de 0 é _______ g) O oposto de + 2 é _______ h) O oposto de + a é _______ i) O oposto de – b é _______ j) O oposto de + y é _______ Números Inteiros: Comparação De um modo geral, dados dois números inteiros: O negativo é sempre menor que o positivo. Se são positivos, o menor é aquele que está mais próximo de zero. Se são negativos, o menor é aquele que está mais distante de zero, ou seja, é o que tem maior módulo. Exemplos: a) – 5 < 1 b) + 2 < +10 c) + 5 > – 12 d) – 10 < – 4 27 EXERCÍCIO: 2. Complete com > (maior) ou < (menor): a) + 8 ...... + 3 g) + 2 ...... –1 b) + 2 ...... + 1 h) – 3 ...... –1 c) + 11 ...... + 5 i) – 2 ...... + 7 d) + 7 ...... + 10 j) –10 ...... – 3 e) 0 ...... + 2 l) + 2 ...... – 2 f) –1 ...... 0 m) – 5 ...... + 3 n) o) p) q) r) s) – 3 ...... – 8 0 ...... – 7 – 6 ...... – 2 –11 ...... + 11 5 ...... – 20 – 6 ...... – 2 Operações com Números Inteiros 1. ADIÇÃO A Soma de Números Inteiros As parcelas têm sinais iguais As parcelas têm sinais diferentes 1) (+ 43) + (+ 10) = + 53 2) (– 82) + (– 38) = – 120 3) (+ 52) + (– 38) = + 14 4) (+ 17) + (– 62) = – 45 Então: Então: A soma de dois números inteiros A soma de dois números inteiros com sinais iguais é um número inteiro com sinais diferentes é um número com: inteiro com: sinal igual ao das parcelas. sinal igual ao da parcela de maior valor absoluto (ou módulo) Observação: A soma de dois números inteiros opostos é zero. Ex.: (+10) + (– 10) = 0 (– 5) + (+ 5) = 0 EXERCÍCIOS: 3. Calcule as somas: a) (+ 3) + (+ 7) = _____ b) (+ 2) + (+ 5) = _____ c) (+ 1) + (+ 3) = _____ d) (+ 8) + (+ 2) = _____ 4. Efetue: a) (– 2) + (– 3) = _____ b) (– 8) + (– 2) = _____ c) (– 12) + (– 1) = _____ d) (– 20) + (– 3) = _____ e) (+ 13) + (+ 5) = _____ f) (+ 6) + (+ 14) = _____ g) (+ 2) + (+ 33) = _____ h) (+ 8) + (+ 20) = _____ e) (– 7) + (– 2) = _____ f) (– 10) + (– 3) = _____ g) (– 6) + (– 8) = _____ h) (– 13) + (– 1) = _____ Atenção: A soma de números inteiros pode ser simplificada eliminando os parênteses e deixando de escrever o sinal de adição. Acompanhe os exemplos: a) (+38) + (– 75) = + 38 – 75 = – 37 b) (– 64) + (– 19) = – 64 – 19 = – 83 c) (– 20) + (+ 30) = + 10 ou 10 d) (– 17) + (– 35) + (+ 21) = – 17 – 35 + 21 – 52 + 21 = – 31 28 EXERCÍCIOS: 5. Efetue, eliminando os parênteses, como no exemplo: a) Ex.:(+ 10) + (– 8) = + 10 – 8 = 2 i) (– 3) + (– 4) + (+9) = _____ b) (+ 7) + (– 2) = _____ j) (– 2) + (+ 5) = _____ c) (+ 1) + (– 5) = _____ k) (– 9) + (+ 10) = _____ d) (+ 8) + (– 9) = _____ l) (– 5) + (+ 6) = _____ e) (+ 5) + (– 10) = _____ m) (+ 3) + (– 8) + (+ 4) = _____ f) (+ 3) + (– 8) = _____ n) (– 12) + (+ 10) = _____ g) (– 12) + (+ 3) + (– 1) = _____ 0) (– 20) + (+ 15) = _____ h) (– 5) + (+ 7) + (+ 6) = _____ p) (+ 10) +(– 5) + (– 2) = _____ 6. Qual é a soma de (+73) + (– 48)? 7. Qual é o valor de (– 84) + (+ 65)? Lembrete: Na adição de números inteiros: A ordem das parcelas não altera a soma. Ex.: (+ 27) + (– 13) = (– 13) + (+ 27) 27 – 13 = – 13 + 27 14 = 14 O “zero” é o elemento neutro da adição. Ex.: (– 32) + 0 = – 32 + 0 = – 32 2. SUBTRAÇÃO Subtração (+ 10) – (+ 3) = + 7 (+ 3) – (+ 10) = – 7 (+ 5) – (– 8) = + 13 (– 24) – (– 20) = – 4 Adição (+ 10) + (– 3) = + 7 (+ 3) + (– 10) = – 7 (+ 5) + (+ 8) = + 13 (– 24) + (+ 20) = – 4 A diferença de dois números inteiros é igual à soma do primeiro com o oposto do segundo. Exs.: a) (– 36) – (– 51) = (– 36) + (+ 51) = 15 b) (+ 20) – (+ 15) = (+ 20) + (– 15) = 5 Uma subtração de números inteiros pode ser simplificada eliminando os parênteses e o sinal – e substituindo o segundo termo pelo seu oposto. Exs.: a) (+ 36) – (+ 84) = 36 – 84 = – 48 b) (– 2) – (– 9) = – 2 + 9 = 7 c) (+ 5) – (– 8) = 5 + 8 = 13 EXERCÍCIOS: 8. Elimine os parênteses e efetue: a) (+ 10) – (+ 2) = _____ b) (+ 7) – (+ 5) = _____ c) (+ 11) – (+ 9) = _____ d) (+ 3) – (– 2) = _____ e) (+ 10) – (– 8) = _____ f) (+ 3) – (– 5) = _____ g) (+ 5) – (+ 8) = _____ h) (– 4) – (+5) = _____ i) (– 5) – (– 7) = _____ j) (– 5) – (– 5) = _____ k) (– 9) – (+ 9) = _____ l) (– 10) – (+ 7) = _____ m) (– 8) – (– 3) = _____ n) (– 1) – (– 9) = _____ 3. MULTIPLICAÇÃO O pai de José fez no caixa eletrônico de seu banco três retiradas seguidas de R$ 50,00. Responda: quanto o pai de José retirou no total? Esse cálculo pode ser indicado por uma adição. 29 (– 50) + (– 50) + (– 50) = – 50 – 50 – 50 = – 150 ou uma multiplicação 3 . (– 50) = – 150 Outros exemplos (– 4) . (+ 9) = – 36 (+ 4) . (– 2) = – 8 Então: O produto de dois números inteiros diferentes de zero de sinais diferentes é um número inteiro de sinal ( – ) negativo. O produto de dois números inteiros diferentes de zero e com sinais iguais é um número positivo. Ex.: (+ 5) . (+ 8) = + 40 = 40 (– 6) . (– 2) = + 12 = 12 Observação: Quando um dos fatores é zero, o produto é zero. Exs.: a) (+ 50) . 0 = 0 b) 0 . (– 15) = 0 EXERCÍCIOS: 9. Efetue: a) (+ 3) . (– 4) = _____ b) (+ 7) . (– 5) = _____ c) (+ 9) . (– 2) = _____ d) (+ 11) . (– 3) = _____ e) (+ 15) . (– 1) = _____ f) (– 2) . (+ 7) = _____ g) (– 8) . (+ 3) = _____ h) (– 13) . (+ 1) = _____ i) ( 0 ) . (+ 2) = _____ j) (– 3) . (+ 6) = _____ k) (– 2) . (- 25) = _____ l) (+9) . (+ 3) = _____ m) (– 16) . (- 1) = _____ n) ( 0 ) . ( -7 ) = _____ o) (+ 2) . (+ 25) = _____ Mais de dois números Para efetuarmos a multiplicação com mais de dois números procedemos como nos seguintes Exemplos: a) (– 4) . ( + 2) . (– 5) = (– 8) . (– 5) = + 40 (+ 2) . (– 3) . (– 4) . (– 1) = b) (– 6) . (– 4) . (– 1) = (+ 24) . (– 1) = – 24 10. Efetue: a) (– 3) . (+ 2) . (– 4) = _____ b) (+ 5) . (+ 6) . (– 2) = _____ c) (– 7) . (– 5) . (– 2) = _____ d) (+ 8) . (+ 1) . (+ 1) = _____ e) (– 4) . (– 8) . (+ 3) = _____ f) (+ 7) . (– 2) . (+ 1) = _____ g) (– 10) . (+ 2) . (– 5) . (– 1) = _____ h) (+ 1) . (+ 2) . (+ 3) (– 4) = _____ i) (+ 9) . (– 1) . (+ 2) . (– 3) = _____ j) (+ 5) . (– 6) . (+ 2) . 0 = _____ Lembrete: Na multiplicação de números inteiros: A ordem dos fatores não altera o produto. Ex.: (– 3) . (– 4) = (– 4) . (– 3) 12 = 12 O elemento neutro da multiplicação é o + 1 ou 1. Exs.: (+ 7) . (+1) = (+ 1) . (+7) = 7 (– 30) . (+1) = (+ 1) . (– 30) = – 30 30 4. DIVISÃO A divisão é a operação inversa da multiplicação. 12 : 4 = 3 porque 3 . 4 = 12 1,4 : 0,7 = 2 porque 2 . 0,7 = 1,4 Usando essa idéia, podemos resolver divisões entre números negativos. 10 : (– 2) = – 5 porque – 5 . (– 2) = +10 = 10 (– 14) : 7 = – 2 porque – 2 . 7 = –14 (– 20) : (– 2) = 10 porque 10 . (– 2) = –20 Resumindo: O quociente entre dois números de mesmo sinal é um números positivo. O quociente entre dois números de sinais diferentes é um números negativo. EXERCÍCIOS: 11. Calcule: a) (– 6) : (– 2) = _____ b) (+ 8) : (– 4) = _____ c) (– 10) : (+ 2) = _____ d) (+12) : (+ 4) = _____ e) (+ 40) : (– 5) = _____ f) (– 12) : (– 3) = _____ g) (– 64) : ( + 8) = _____ h) (– 24) : (– 2) = _____ i) (– 48) : (– 48) = _____ 5 . POTENCIAÇÃO Uma multiplicação de fatores iguais pode ser escrita usando-se a potenciação. Observe: expoente base 25 = 2 . 2 . 2 . 2 . 2 = 32 potência Lembrete: base: fator que se repete; expoente: número de vezes que o fator aparece Na potenciação com números inteiros, destacamos: Expoente par: Quando o expoente é par, a potência é sempre positiva. expoente par Ex.: (+ 3)² = 9 pois (+ 3)² = (+ 3) . (+ 3) = + 9 = 9 12. Complete: a) (– 2)² = _____ b) (+ 5)² = _____ c) (– 7)² = _____ d) (–1)4 = _____ e) (– 8)² = _____ f) (– 3)4 = _____ g) (–1)6 = _____ h) (+ 3)4 = _____ i) (– 2)4 = _____ Expoente ímpar: Quando o expoente é impar, a potência tem o sinal da base. expoente ímpar Exs.: (+ 2)³ = + 8 pois (+ 2) . (+ 2) . (+ 2) = + 8 = 8 expoente ímpar (– 2)³ = – 8 pois (– 2) . (– 2) . (– 2) = – 8 13. Complete: a) (+ 3)³ = _____ b) (– 3)³ = _____ c) (+ 2)5 = _____ d) (– 2)5 = _____ e) (+ 4)³ = _____ f) (– 4)3 = _____ g) (+ 1)5 = _____ h) (– 1)7 = _____ 31 6. RAIZ QUADRADA Sabemos que 25 = 5 por que 5² = 25 Também vimos que (– 5)² = 25 Temos dois números inteiros que elevados ao quadrado resultam 25: o 5 e o – 5. Ou seja, existem duas raízes quadradas do número 25. Combinou-se que: 25 = 5 e – 25 = – 5 Atenção: Dois é um número par. Todo o número elevado ao quadrado (expoente par) é positivo. Portanto, não existem raízes quadradas de números negativos. Ex.: 16 não existe EXERCÍCIOS: 14. Porque a raiz quadrada de 400 é 20?. 15 . Complete: a) + 9 = _____ g) – 64 = _____ h) + 81 = _____ b) – 9 = _____ c) + 36 = _____ d) – 4 = _____ e) – 25 = _____ f) + 49 = _____ i) + j) + k) – l) + 1 = _____ 25 = _____ 16 = _____ 36 = _____ EXPRESSÕES ALGÉBRICAS Veja alguns exemplos: x representa Y representa um número. um número. 2) 2 . y significa: - duas vezes um número; - o produto de 2 por um número; - o dobro de um número. x representa a representa 1) x + 4 significa: - um número mais 4; - a soma de um número com 4; - um número acrescido de 4; - 4 unidades a mais do que um número representado por x. um número. a significa: 3) x – 4 significa: 3 - um número menos 4; - um número dividido por 3; - a diferença de um número com 4; - o quociente de um número por 3; - um número diminuído de 4; - a terça parte de um número represen- 4 unidades a menos do que um nu- tado por a. mero representado por x. um número. 4) Chamamos de expressão algébrica uma expressão que envolve números, letras e operações indicadas entre eles. As letras são as variáveis da expressão: elas representam um número qualquer. 32 EQUAÇÔES Equações são sentenças matemáticas abertas expressas por uma igualdade que envolvem números desconhecidos representados por letras. Numa equação, assim como em toda a igualdade, existem “dois lados”, separados pelo sinal =. Cada “lado” é um membro dessa equação. 4x + 2 = x + 1 1º membro Exemplos de equações: x a) x – =5 3 EXERCÍCIOS: 2º membro b) 3x + 22 = 27 c) 6(x + 2) = 8 16. Coloque x nas sentenças que são equações: a) 4x + 2 = 8 ( ) h) x – 1 = 0 b) 3 + 7 = 10 ( ) i) 3x4 + 7 = 10 c) 8x > 16 ( ) j) 4 + 3 < 10 d) y 2 ( ) k) 3 : 3 = 1 e) 6x + 2 = 0 ( ) l) 3² = 9 f) x5 + 7 = 10 ( ) m) x² + 3x + 2 = 0 g) 5 – 3 = 2 ( ) n) x³ + 4x = 0 ( ( ( ( ( ( ( ) ) ) ) ) ) ) RESOLUÇÂO DE UMA EQUAÇÃO DO 1º GRAU Resolver uma equação é determinar o valor da incógnita que torne a sentença verdadeira. A solução de uma equação é chamada de raiz da equação. Na equação x + 2 = 7, a variável x chama-se incógnita. Para que esta sentença se torne verdadeira o x deve valer 5. Então 5 é a raiz da equação. Veja outros exemplos: a) x + 1 = 8 Se x valer 7 a sentença se torna verdadeira. Então 7 é a raiz da equação. b) 3x – 1 = 11 Se x valer 4 a sentença se torna verdadeira. Então 4 é a raiz da equação. c) 8x – 12 = 4 Se x valer 2 a sentença se torna verdadeira. Então 2 é a raiz da equação. EXERCÍCIOS: 17. Complete: a) Em x + 3 = 7, o valor de x é ____ ou a raiz da equação é 4. b) Em 8x = 16, o valor de x é 2 ou a raiz da equação é _____. c) Em y – 5 = 0, o valor de y é ____ ou a raiz da equação é 5. d) Em z + 10 = 13, o valor de x é 3 ou a raiz da equação é _____. e) Em 5x = 10, o valor de x é ____ ou a raiz da equação é 2. f) Em x – 9 = 9, o valor de x é 18 ou a raiz da equação é _____. 18. Siga o modelo, determinando a raiz das equações. Modelo: x + 1 = 5 x = 4 a) 3x = 21 x= b) y – 2 = 8 y = 33 c) 2x = 14 d) y + 2 = 8 e) 5x = 10 f) 2x + 1 = 17 x= y= x= x= EQUAÇÔES DO 1º GRAU COM UMA VARIÁVEL Chamamos de equação do 1º grau com uma variável as equações onde o maior expoente dessa variável é 1. Exemplos: a) x + 2 = 7 b) 3y = 12 c) z – 5 = 3 EXERCÍCIO: 19. Assinale com x as equações do 1º grau: a) 3x + 7 = 10 ( ) b) x² – 16 = 0 ( ) c) y + 2 = 7 ( ) d) 2y – 3 = 9 ( ) e) y² = 25 ( ) f) 3x³ = 12 ( ) g) x² + 2x – 5 = 0 ( ) h) 5x – 32 = 12 i) y³ – 8 = 0 j) 3x + 2 = 0 k) x² – 4 = 8 l) 5x4 = 10 m) 10x +7 = 7 n) 5x³ – 9 = 10 ( ( ( ( ( ( ( ) ) ) ) ) ) ) Resolução de equações do 1º grau – PROCESSO PRÁTICO Para resolver uma equação do 1º grau, devemos: 1º) Agrupar no 1º membro todos os termos com a variável; Agrupar no 2º membro todos os termos independentes (números); 2º) Efetuar as operações; 3º) Determinar o valor da variável. Exemplos: Determine o valor da incógnita: Isolamos o x, transportando o 3 para o 2º membro. a) x + 3 = 7 O 3, que estava adicionado, passa subtraindo. x=7–3 x=4 b) 3x – 4 = 2x + 8 Agrupamos no 1º membro as variáveis e no 2º membro 3x – 2x = 8 + 4 os valores numéricos. Efetuamos as operações de cada membro. x = 12 c) d) 7x – 2 + 4 = 10 + 5x 7x – 5x = 10 + 2 – 4 2x = 8 8 x= 2 x=4 Agrupamos as variáveis e os valores numéricos, cada qual em seu membro. Interessa-nos o valor de x e não o valor de 2x. Então, devemos passar o 2 que estava multiplicando, para o 2º membro, dividindo. 3x – 2 = 10 + x 3x – x = 10 + 2 2x = 12 12 x= 2 x=6 Transportamos x para o 1º membro e –2 para o 2º membro. No 1º membro ficam os termos “com x” e no 2º membro ficam os valores numéricos. 34 e) 3 . ( x + 2) = 0 3x + 6 = 0 3x = – 6 6 x= 3 x=–2 Multiplicamos, conforme indicam as setas. Passamos o 6 para o segundo membro. EXERCÍCIOS: 20. Resolva as equações do 1º grau: a) 2x – 2 = 10 b) 3x + 5 = 2 c) 3x + 5 = 20 d) 5x – 2 = 18 e) 6x – 3 = 5x + 10 f) 8x – 1 = 2x + 11 g) 5x + 4 = 13 + 2x h) 5 x + 6x + 16 = 3x + 2x + 4 i) 2x + 3x + 9 = 8 . (6 – x) j) 4 . (x + 10) – 2 . (x – 5) = 0 PROBLEMAS DO 1º GRAU Recordando a passagem da linguagem comum para a linguagem matemática. Linguagem comum Um número. O dobro de um número. O triplo de um número. A metade de um número. Um número mais três é igual a cinco. O dobro de um número menos o próprio número é cinco. A soma dos quocientes de um número por três, por cinco e por dez é trinta e oito. Linguagem matemática X 2x 3x x 2 X+3=5 2x – x = 5 x x x 38 3 5 10 EXERCÍCIO: 21. Traduza para a linguagem matemática: a) Um número somado com doze dá vinte. ______________________ b) Um número mais três é igual a dez. ___________________________ c) Um número somado com cinco dá oito. ________________________ d) Subtraindo-se dez de um número, obtêm-se cinco. _______________ e) Um número aumentado de cinco dá onze. ______________________ f) O triplo de um número é doze. ________________________________ g) O quíntuplo de um número é dez. ______________________________ h) A sexta parte de um número somada com sua metade resulta em oito. _____________ Resolvendo Problemas Um dos caminhos para resolver um problema é usar uma equação. Para isso, é preciso determinar a equação que nos dá a solução desse problema. É o que se costuma chamar de equacionar o problema. Para equacionar um problema: 1º) identifique uma incógnita do problema e represente-a por uma letra qualquer; 2º) identifique o conjunto de números ao qual poderá pertencer a solução. Esse será o conjunto universo; 3º) escreva a equação do problema; 4º) resolva a equação; 5º) verifique se a raiz é ou não solução do problema proposto. 35 Nos exemplos que se seguem, as sugestões poderão ajuda-lo a equacionar os problemas propostos. Exemplos: a) Um número somado com sua quarta parte é igual a 80. Qual é esse número? Resolvendo a equação do problema: x x+ = 80 4 4x x 320 = 4 4 Resposta: O número procurado é 64. 5x = 320 320 x= 5 x = 64 Raiz da equação b) O dobro de um número mais a sua terça parte é igual a 21. Qual é esse número? x Linguagem simbólica: 2x + =21 3 Resolvendo a equação do problema: x 7x = 63 2x + =21 3 63 x= 6x x 63 7 = 3 3 x = 9 Raiz da equação. Resposta: O número procurado é 9. c) A soma de 2 números naturais consecutivos é 17. Quais são esses números? Números consecutivos: x e x + 1 16 Resolvendo a equação: x= x + x + 1 = 17 2 2x + 1 = 17 x=8 2x = 17 – 1 2x = 16 O outro número é x + 1 = 8 + 1 = 9 Resposta: Os números são 8 e 9. EXERCÍCIO: 22. Resolva os problemas: a) O dobro de um número aumentado e 15 é igual a 49. Qual é esse número? b) A soma de um número como seu triplo é igual a 48. Qual é esse número? c) A idade de um pai é igual ao triplo da idade de seu filho. Calcule essas idades, sabendo que juntos têm 60 anos. d) Somando 5 anos ao dobro da idade de Sônia, obtemos 35 anos. Qual é a idade de Sônia? e) O dobro de um número, diminuído de 4, é igual a esse número aumentado de 1. Qual é esse número? f) O triplo de um número, mais dois, é igual ao próprio número menos quatro. Qual é esse número? g) O quádruplo de um número, diminuído de 10, é igual ao dobro desse número aumentado de 2. Qual é esse número? MONÔMIOS E POLINÔMIOS Expressões algébricas O cinema encheu! Não há mais cadeira vazia. Qual terá sido a arrecadação da bilheteria? Se todos pagaram inteira: 200 x 6,00 = 1.200,00 Se todos pagaram meia: 200 x 3,00 = 600,00 Se 100 pagaram meia e 100 inteira: 100 x 3,00 = 300,00 100 x 6,00 = 600,00 + 900,00 36 Se 47 pagaram meia e 153 inteira: 47 x 3,00 = 141,00 153 x 6,00 = 918,00 + 1.059,00 Programando o cálculo Número de meias-entradas = x Número de inteiras = y Dinheiro arrecadado com a venda de meias-entradas = 3x Dinheiro arrecadado com a venda de inteiras = 6y Arrecadação total = 3x + 6y Uma sentença como esta, 3x + 6y, onde aparecem letras e números é chamada expressão algébrica. Vamos usá-la para calcular a arrecadação do cinema no caso de terem sido vendidas 92 meias-entradas e 108 inteiras. 3x + 6y 3.92 + 6. 108 = 276 + 648 = 924 A arrecadação terá sido de R$ 924,00 As letras que aparecem em uma expressão algébrica são chamadas de variáveis e estão substituindo valores, com as letras x e y na expressão da arrecadação do cinema. Veja algumas expressões algébricas: 1) 2ab + 1 3) 3a3 – 5ab2 + 4b3 x 2x 4) 2x – 2y3 2) x2 3 4 Valor Numérico Toda expressão algébrica tem o seu valor numérico, esse valor é encontrado a partir do momento em que temos ou atribuímos valores para as letras. Se em um exercício é pedido para que se calcule o valor numérico da expressão algébrica 2x 2y é preciso que saibamos ou atribuímos valores para as letra X e Y. Então vamos supor que na equação 2x2y, os valores das letras seja X= -2 e Y =1. Agora substituindo esses valores chegaremos em um valor numérico. 2x2y 2. (-2)2.1 2.4.1 = 8 Prioridade das operações numa expressão algébrica Nas operações em uma expressão algébrica, devemos obedecer a seguinte ordem: a) Potenciação ou Radiciação b) Multiplicação ou Divisão c) Adição ou Subtração Observações quanto à prioridade: 1. Antes de cada uma das três operações citadas, deve-se realizar a operação que estiver dentro dos parênteses, colchetes ou chaves. 2. A multiplicação pode ser indicada por × ou por um ponto · ou às vezes sem sinal, desde que fique clara a intenção da expressão. 3. Muitas vezes devemos utilizar parênteses quando substituímos variáveis por valores negativos. EXERCÍCIO: 23. Calcule o valor numérico das seguintes expressões algébricas: a) a + 10 para a = 2 b) 7 – x para x = 3 37 c) 25 – y para y = -2 d) x² + 1 para x = 4 e) 5a – 3b² para a = 3 e b = 2 f) 8x³ – 7xy para x = -1 e y = 1 g) 3y – 2x²y + 5x – 7 para x = -3 e y = 2 Os Monômios Uma expressão algébrica será chamada monômio se for inteira e envolver apenas operações de multiplicação. Em um monômio podemos identificar duas partes: a parte literal e o coeficiente. Monômio 5xy Coeficiente 5 Parte literal xy 1 2 a 4 1 4 –3 m²n³p mb² –3 1 a² m²n³p mb² As expressões algébricas formadas unicamente por monômios são também chamadas polinômios. E alguns podem ainda receber nomes especiais: As expressões em que aparecem mais de três monômios são chamadas simplesmente de polinômios. EXERCÍCIO: 24. Complete: a) –5x² coeficiente_______ parte literal _______ 2 coeficiente_______ parte literal _______ b) x 3 3 c) 2x³y² coeficiente_______ parte literal _______ d) 3a coeficiente_______ parte literal _______ e) x5 coeficiente_______ parte literal _______ 3 2 3 a b d coeficiente_______ parte literal _______ f) – 5 OPERANDO COM MONÔMIOS 1 O que os monômios 3xy, –8xy e xy tem em comum? 3 Todos eles tem a mesma parte literal, “xy”. Por isso são chamados monômios semelhantes. Monômios semelhantes 3b; – 4b; 3b 1 2x²; – x²; 0,51x² 5 2ax²; – 4ax²; ax² Os monômios 3x²y e 3xy² não são iguais, nem semelhantes. Os expoentes de cada variável são diferentes. Observação: É muito comum os estudantes, ao terem o primeiro contato com os cálculos algébricos, os seguintes erros no cálculo da adição ou da subtração: ERRADO: Veja que 3a³ e 2a² não possuem a mesma parte literal e, portanto, não podem ser somados. No caso acima, não há termos que podem ser somados ou subtraídos. 38 EXERCÍCIO: 25. Coloque V ou F: a) Dois termos de mesma parte literal são semelhantes. b) 5x² e 3x² são semelhantes. c) 5a²b e 7a²b² são semelhantes. d) 7x³y e x³y não são semelhantes. ab e) e 5ab são semelhantes. 3 f) 10x²y³ e 8x³y² não são semelhantes. ( ( ( ( ) ) ) ) ( ) ( ) Observação: Podemos diminuir o número de termos de uma expressão algébrica adicionando ou subtraindo os termos semelhantes. Exemplo: Reduzir os termos semelhantes das expressões 1) 2x² + 3xb – 5xb + x² +1 2) 5xy + 3 – 2xy + 4 2x² + x² + 3xb – 5xb +1 5xy – 2xy + 3 + 4 3x² – 2xb +1 3xy +7 Você percebeu a redução do número de termos da expressão? Chamamos isso de redução de termos semelhantes. EXERCÍCIOS: a) b) c) d) e) f) g) h) i) j) 26. Reduza os termos semelhantes: 2x + 3x = 12y + 3y – 9y = 3a – 2a +13a – 5a = 11b – b = 3x + 2y + 5x = 5y – 2x +10y + 7x = 5x + 3 – 2x + 11 = 15a²b + 2a²b – 3a²b = 4m – 5 + 3m +2 = 12xy – 7a – 15xy + 2xy – 13a = Na adição e subtração algébrica, operamos com os coeficientes e conservamos a parte literal Observe: Sejam: A = 3x² - 5x + 7 B = 2x² + 8x – 10 A + B = (3x² - 5x + 7) + (2x² + 8x – 10) Eliminamos os parênteses: 3x² - 5x + 7 + 2x² + 8x – 10 Reduzimos os termos semelhantes: 5x² + 3x – 3 Podemos ainda obter a soma A + B utilizando o seguinte método prático: 3x² – 5x + 7 2x² + 8x – 10 5x² + 3x – 3 39 Na subtração, nos parênteses precedidos do sinal de “–“ trocamos todos os sinais de dentro. Sejam: A = 3x² - 5x + 7 B = 2x² + 8x – 10 A – B = (3x² - 5x + 7) – (2x² + 8x – 10) Eliminamos os parênteses: 3x² - 5x + 7 – 2x² – 8x + 10 Reduzimos os termos semelhantes: x² – 13x +17 Ou, então, pelo método prático: 3x² – 5x + 7 –2x² – 8x +10 x² – 13x +17 EXERCÍCIOS: 27. Dados: A = 5x – 3 Calcule: a) A + B = c) A + C = b) B + C = d) A – B = B = 2x + 4 e) B – C = f) A – C = C = – 3x + 8 g) B – A = h) C – B = i) C – A = j) A + B – C = MULTIPLICAÇÃO Para efetuar a multiplicação de polinômios, vamos considerar os seguintes casos: 1º caso: Monômio por monômio Multiplicamos os coeficientes e adicionamos os expoentes de mesma base da parte literal. a) 3x²y . 5x³y² = 3. 5 . x² . x³ . y . y² = 3. 5 . x2 + 3 . y1+ 2 = 15 x5y³ EXERCÌCIO: 28. Efetue: a) 4x . 2y = 3 d) x²y³ . 5x³ = 4 b) 3x . 5y = 15 xy c) 3 6 d) 2a . b = ab 5 5 – 10x²y . 5x = –50x³y b) 3x2 . 5x3 e) 3abc² . b³c = c) 2ab² . 7b³ = f) 5a³ . (– 4a²c) = g) 3x²y . 2xy² . 5x³z = 2º caso: Monômio por polinômio Multiplicamos o monômio por todos os termos do polinômio. Exemplo: 5x . (2x² + 3x – 4) = 10x³ + 15x² – 20x Outros exemplos: a) 3a² . (a²x – 2ª + 5) = 3a4x – 6a³ + 15a² b) x²y . (x³ – 2xy² + 3) = x5y – 2x³y³ + 3x²y 40 EXERCÌCIO: 29. Efetue: a) 3x . (x² – 2x + 3) = b) a² . (a³b + 2ac² – 3) = c) 2x³y² . (5x³y² – 3xy³ + 5) = 3º caso: Polinômio por polinômio Multiplicamos cada termo de um polinômio por todos os termos do outro polinômio. Exemplo: (2x – 3) . (3x² + 4x – 5) = 6x³ + 8x² – 10x – 9x² – 12x + 15 Reduzindo os termos semelhantes, temos: 6x³ – x² – 22x + 15 A multiplicação de polinômios também pode ser efetuada utilizando a seguinte disposição prática: 3x² + 4x – 5 2x – 3 x + 6x³ + 8x² – 10x – 9x² – 12x + 15 6x³ – x² – 22x + 15 EXERCÌCIO: 30. Efetue: a) (3x – 4) . (2x² – 5x) = b) ( x – 1) . (x² –7x + 10) = c) (2a² – 5a) . (3a² – a) = d) (y – 1) . (y + 1) = e) (2x + 3) . (2x + 3) = DIVISÃO Para efetuar a divisão de polinômios, vamos considerar os seguintes casos: 1º caso: Monômio por monômio Para resolver basta dividir o coeficiente do 1º monômio pelo 2º e subtrair os expoentes de mesma base da parte literal. Exemplo: 8x5y3 : 2x³y = (8 : 2) . x5-3 . y3-1 = 4x²y² Veja outros exemplos: a) 12x3y4z : 4xy³z = (12 :4) . y4-3 . z1-1 = 3x²y 5 4 1 5 4-3 2-1 5 b) 6 a b²x : 3 a³b = 6 . 3 a . b = 2 abx 5 5 c) 5x7y²z³ : 6x4y = . X7-4 . y2-1 z³ = x³yz³ 6 6 41 EXERCÍCIO: 31. Efetue: a) – 8x³ : 2x = b) 20x4y³ : 5x² = c) 7x³y² : xy = 2º caso: Polinômio por monômio Para resolver, dividem-se todos os termos do polinômio pelo monômio. Exemplos: a) (15x4 – 9x³ + 6x²) : (3x²) = As divisões são: (15x4 : 3x²); (– 9x³ : 3x²) e (6x²: 3x²) Lembre-se que, em cada divisão, devemos aplicar a regra dos sinais, ou seja: sinais iguais, positivo e sinais diferentes, negativo. Teremos, então: 5x² - 3x +2 b) (7x3y4 + 10x4y³ – 2x²y5) : (2x²Y²) = As divisões são: (7x3y4 : 2x²Y²); (10x4y³ : 2x²Y²) e (– 2x²y5 : 2x²Y²) Resolvendo: 7 xy² + 5x²y – y³ 2 EXERCÌCIO: 32. Efetue: a) (10x4 – 20x³) : (10x²) = b) (8a³b4 – 16a4b³) : (– 2a²b²) = c) (18x³y²z5 – 9x²y²) : (3xy²) = Sistemas de Equações de 1º Grau Resolução de um sistema de equações de 1º grau Há mais de um método para resolvermos um sistema de equações. Um deles chama-se método da substituição. Veja esse método aplicado à resolução do sistema: x+y=7 x–y=1 Isolando o x na equação x + y = 7, temos x = 7 – y. Uma vez que o valor de x de uma equação deve ser igual ao da outra, podemos substituir: x = 7–y x–y=1 (7 – y ) – y = 1 –y–y=1–7 – 2 y = – 6 . (–1) 2y = 6 6 y= y=3 2 42 Achamos o y e agora vamos calcular “x” x = 7–y x = 7–3 x=4 Aqui está a solução do sistema S ={(4,3)} Veja outro exemplo: x – 2y = 7 2x + y = 4 isolamos x = 7 + 2y Substituímos x na 2ª equação 2x + y = 4 2 . (7 + 2y) + y = 4 14 + 4y + y = 4 4y + y = 4 – 14 5y = – 10 10 y= 5 elimina-se o parênteses resolvemos a equação y = –2 Calculamos o valor de x x = 7 + 2y x = 7 + 2 . (–2) x=7–4 x=3 S = {(3, –2)} EXERCÌCIO: 33. Resolva os sistemas, aplicando o método de substituição: a) x–y=8 x + y = 12 b) x+y=9 x–y=3 5x + y = 6 d) x – 2y = 10 e) x + y = 4 2x + 3y = 13 c) 3x + y = 15 x+y=9 Se você tiver um sistema de equações e um termo com variável em uma das equações for oposto ao termo com a mesma variável na outra, o sistema está pronto para ser resolvido pelo método da Adição. Exemplo: 2x + 3y = 10 –2x + 5y = 22 Observe que em uma equação há o termo 2x e na outra –2x que são opostos. O que acontece quando adicionamos termos opostos? Eles se anulam. Então: 2x + 3y = 10 –2x + 5y = 22 8y = 32 32 y= 8 y=4 43 Para descobrir a outra variável, devemos substituir esse valor em uma das equações do sistema: 2x + 3y = 10 2x + 3 . 4 = 10 2x + 12 = 10 2x = 10 – 12 2x = – 2 2 x= x = –1 2 S = {( –1, 4)} Quando as incógnitas possuem coeficientes diferentes: Exemplo: 3x + 2y = 8 4x + 5y = 13 Multiplicando a primeira equação por 4 e segunda por –3, obteremos equações equivalentes com coeficientes simétricos, junto ao termo x. 3x + 2y = 8 . (4) 4x + 5y = 13 . (–3) 12x + 8y = 32 –12x – 15y = –39 –7y = –7 (. –1) 7y = 7 7 y= y=1 7 Substituindo y em 3x + 2y = 8, temos: 3x + 2 . 1 = 8 3x + 2 = 8 3x = 8 – 2 3x = 6 6 x= 3 x=2 Assim, o par ordenado (2,1) é a solução do sistema. S = {(2, 1)} EXERCÌCIO: 34. Usando o método de adição, resolva os sistemas: a) x+y=9 x–y=7 2x + 3y = 8 d) x + 3y = 10 b) –2x + 5y = 6 3x – y = 4 2x + 5y = 12 e) 3x + 2y = 7 c) x+y=8 3x + y = 12 f) 5x – 8y = 1 2x + 3y = –12 44 PROBLEMAS DO 1º GRAU COM DUAS VARIÁVEIS EXERCÍCIOS: 35. Resolva os problemas (use o método que preferir): a) Numa classe há 33 alunos e a diferença entre o dobro do número de meninas e o número de meninos é 12. Quantas são as meninas? b) A soma de dois números é 81 e a diferença entre eles é 25. Calcule esses dois números. c) Um sitiante comprou galinhas e coelhos num total de 21 cabeças e 54 pés. Quantas galinhas e quantos coelhos comprou? d)Juntando 29 pacotes de açúcar, uns com 5 kg, outros com 1 kg, podemos obter um total de 73 kg. Quantos pacotes de cada tipo foram usados? GABARITO / 3ª PARTE 1. a) -7 b) +8 2. a) > b) > c) +3 d) -1 e) -10 f) 0 c) > e) < d) < f) < g) > h) < g) -2 h) –a i) < j) < l) > m) < i) +b j) –y n) > o) > p) < q) < r) > s) < 3. a) 10 c) 4 e) 19 g) 20 i) 28 b) 7 d) 10 f) 18 h) 35 4. a) -5 b) -10 c) -13 d) -23 e) -8 f) -9 g) -13 h) -14 i) -14 j) -40 5. a) 2 b) 5 c) -4 d) -1 k) 1 l) 1 m) -1 n) -2 6. 25 7. -19 8. a) 8 b) 2 c) 2 e) -5 o) -5 f) -5 p) 3 a) 24 b) -60 11. a) 3 b) -2 c) -70 c) -5 d) 8 d) 3 c) 32 e) -8 d) -32 f) -14 n) 0 g) -24 o) 50 e) 96 f) -14 12. a) 4 b) 25 c) 49 d) 1 e) 64 13. a) 27 b) -27 g) – 10 h) 8 i) 2 j) 3 d) 5 e) 18 f) 8 g) -3 h) -9 i) 2 j) 0 k) -18 l) -17 m) -5 n) 8 9. a) -12 b) -35 c) -18 d) -33 e) -15 i) 0 j) -18 k) 50 l) 27 m) 16 10. j) 30 f) 4 e) 64 g) -100 g) -8 f) 81 g) 1 f) -64 h) -13 h) 12 h) 81 g) 1 h) -24 i) 54 j) 0 i) 1 i) 16 h) -1 14. Porque 20 x 20 = 400 15. a) 3 b) -3 c) 6 d) -2 e) -5 f) 7 g) -8 h) 9 i) 1 j) Não Existe k) Não Existe l) Não Existe 16. a; e; f; h; i; m; n 17. a) 4 b) 2 c) 5 d) 3 e) 2 f) 18 18. a) 7 b) 10 c) 7 d) 6 e) 2 f) 3 19. a; d; h; j; m 20. a) 6 b) -1 c) 5 d) 4 e) 13 f) 2 g) 3 h) -2 i) 3 j) -25 45 21. a) x + 12 = 20 b) x + 3 = 10 c) x + 5 = 8 22. a) 17 b) 12 23. a) 12 d) X - 10 = 5 e) x + 5 = 11 f) 3x = 12 c) 15 e 45 anos b) 4 c) 27 d) 17 24. a) –5 ; x² b) 2/3 ; x³ c) 2 ; x³y³ g) 5x = 10 h) x x + =8 6 2 d) 15 anos e) 5 e) 3 f) -1 f) -3 g) 6 g) -52 d) 3 ; a e) 1 ; x5 f) –1/5 ; a³b²cd³ 25. a) V b) V c) F d) F e) V f) V 26. a) b) c) d) 5x 6y 9a 10b e) 8x + 2y f) 15y + 5 x g) 3x + 14 h) 14 a²b i) 7m – 3 j) – xy – 20a 27. a) b) c) d) 7x + 1 – x + 12 2x + 5 3x – 7 e) 5x – 4 f) 8x – 11 g) –3x + 7 h) – 5x + 4 i) – 8x + 11 j) 10x – 7 28. a) 8xy b) 15x5 c) 14ab5 d) f) – 20a5c g) 30x6y³z 15 5 3 x y 4 e) 3ab4c³ 30 . a) b) c) d) e) 29. a) 3x3 – 6x² + 9x b) a5b + 2a³c² – 3a² c) 10x6y4 – 6x4y5 + 10x³y² 31. a) – 4x² 32. a) x² – 2x 33. a) S = {(10, 2)} b) S = {(6, 3)} c) S = {(3, 6)} 34. a) S = {(8, 1)} c)S = {(2, 6)} e) S = {(1, 2)} b) S = {(2, 2)} d) S = {(–2, 4)} f) S = {(–3, –2)} 35. b) 4x2y2 6x³ – 23x² + 20x x³ – 8x² +17x –10 6a4 – 17a³ +5a² y² – 1 4x² +12x +9 c) 7x2y b) – 4ab² a) 15 meninas. b) Os números são 28 e 53 c) 15 galinhas e 6 coelhos 5 c) 6x²z –3x d) S = {(2, – 4)} e) S = {(– 1, 5)} d) 11 pacotes de 5 kg e 18 pacotes de 1 kg e) Minha idade é 18 anos 4ª PARTE RAZÕES E PROPORÇÕES 1 – Razão Henrique comprou uma chácara bem longe da população da cidade. Nela construiu um pequeno chalé em formato triangular. Ele tem a parte inferior em tijolos e a parte superior de madeira. 46 Paulo, seu amigo, gostou tanto que tirou fotos do chalé para construir um do mesmo modelo, porém um pouco maior, por isso ao revelar as fotos, pediu uma ampliação da foto do chalé. Veja como ficou. Foto 2 Com o auxilio de uma régua, mediu em centímetros, algumas medidas do chalé em cada uma das fotos. Altura do triângulo de Largura da base Comprimento de cada madeira superior de tijolos um dos lados do telhado Foto 1 4 cm 5 cm 5,6 cm Foto 2 6 cm 7,5 cm 8,4 cm Dividindo-se cada comprimento da foto 2 pelo respectivo comprimento de foto 1 (ver tabela) obtivemos: 6 cm 6 7,5 cm 7,5 8,4 cm 8,4 1,5 1,5 1,5 5,6 cm 5,6 4 cm 4 5 cm 5 Observe que todos os quocientes obtidos são iguais a 1,5, ou seja a razão entre cada comprimento da foto 2 e o comprimento correspondente da foto 1 e 1,5. Essa razão (1,5) foi o fator de ampliação. Isso significa que cada cm medido na foto 1 corresponde a 1,5 cm na foto 2. De um modo geral, dizemos que: Razão de dois números racionais (com o segundo diferente de zero) é o quociente do primeiro pelo segundo. Observações: a 1) A razão ou a : b pode ser lida das seguintes maneiras: “razão de a para b” ou “a está para b b”. 2) Em toda razão o primeiro número denomina-se antecedente e o segundo número, conseqüente. 47 a b antecedente conseqüente Exemplos: 1º) Determinar a razão de 12 para 40. 12 : 4 3 = fração irredutível que corresponde à razão pedida. 40 : 4 10 Nesse caso podemos ler “3 está para 10” ou “3 para 10”. 2º) Numa partida de basquete, Rafael fez 15 arremessos acertando 9 deles. Nessas condições: a) Qual a razão do número de acertos para o número total de arremessos de Rafael? acertos 9 3 9 : 15 = = “3 está para 5”, ou seja, para cada 5 arremessos 15 5 dados, Rafael acertou 3. total b) Qual a razão entre o número de arremessos que Rafael acertou e o número de arremessos que ele errou? 15 – 9 = 6 Número de arremessos errados. 9 3 9:6= = “3 está para 2”, ou seja, para cada 3 arremessos 6 2 acertados, Rafael errou 2. EXERCÌCIOS: 1. Escreva na forma de razão e dê a leitura correspondente: 2 MODELO: 2 e 9 lê-se 2 está para 9 9 a) 3 e 4 ____________________________________ b) 1 e 8 ____________________________________ c) 6 e 10 ____________________________________ d) 5 e 20 ____________________________________ e) 20 e 5 ____________________________________ f) 4 e 1 ____________________________________ g) 2 e 2 ____________________________________ 2. Resolva os problemas: a) Num tanque de combustível há 5 litros de álcool e 30 litros de gasolina. Determine as razões das medidas: 1) do álcool para a gasolina; 2) da gasolina para a mistura; 3) do álcool para a mistura. b) João faz entregas a domicílio usando uma moto. Certo dia, ele rodou 150 km e, no dia seguinte, 500 km. Qual é a razão entre os percursos de um dia para o dia seguinte? PROPORÇÃO Para entendermos o significado da proporção, iremos recorrer à medidas do chalé do início desse módulo, cujas medidas estão abaixo. Foto 1 Foto 2 Altura do triângulo de Largura da base madeira superior de tijolos 4 cm 5 cm 6 cm 7,5 cm 48 Veja que: A razão entre a altura do triângulo de madeira da foto 1 e da foto 2 é: 4 2 , ou seja: 6 3 A razão entre a largura da base superior de tijolos da foto 1 e da foto 2 é: 50 2 5 5 x 10 , ou seja: = = 7,5 7,5 x 10 75 3 2 4 5 Como as duas razões são iguais a podemos escrever: = 3 6 7,5 Então: Proporção é uma igualdade entre duas razões. 4 5 A proporção = também pode ser escrita assim: 6 7,5 4 : 6 = 5 : 7,5 As duas representações lê-se: “quatro está para seis, assim como cinco está para sete e meio”. Observações: 1) Os números 4, 6, 5 e 7,5 são chamados termos da proporção. 2) O primeiro e o último termo são chamados extremos da proporção e os outros dois, meios da proporção. extremos 4 : 6 = 5 : 7,5 4 6 = 5 meios 7,5 extremos meios Veja o que acontece quando: multiplicamos os meios: 6 . 5 = 30 multiplicamos os extremos: 4 . 7,5 = 30 Viu? Deu a mesma coisa. Isso acontece em toda a proporção, o que significa dizer que: Em toda a proporção o produto dos meios é igual ao produto dos extremos. Essa propriedade é chamada de propriedade fundamental das proporções. 5 15 As razões e formam uma proporção, pois 5 . 24 = 8 . 15 8 24 120 120 7 14 As razões e não formam uma proporção, pois 7 . 3 6 . 14 6 3 21 84 EXERCÌCIOS: 3. Complete: 3 6 a) = Lê-se: 3 está para 4, assim como 6 está para __________. 4 8 7 14 b) = Lê-se: 7 está para 3, assim como 14 está para __________. 3 6 10 2 c) = Lê-se: 10 está para _______, assim como 2 está para __________. 5 1 49 4. Complete: 1 2 a) = 5 10 4 12 = 3 9 3 6 c) = 5 10 4 8 d) = 7 14 b) 1 e 10 são os extremos e 5 e __________ são os meios. 4 e ______ são os extremos e 3 e __________ são os meios. _____ e _____ são os extremos e _____ e 6 são os meios. _____ e _____ são os extremos e _____ e ________________. 5. Complete, formando uma proporção: 2 ... a) = 3 6 b) 1 3 = 5 ... c) ... 3 = 1 3 d) 4 8 = 10 ... e) ... 5 = 12 6 f) 1 ... = 2 20 Proporção: Resolução Resolver uma proporção é determinar o valor do termo desconhecido, que torna a igualdade verdadeira. Veja alguns exemplos: 20 8 1) Resolver a proporção = 25 x Aplicando a propriedade fundamental: 20 . x = 25 . 8 Resolvendo a equação: 20x = 200 200 x= 20 x = 10 x3 3 2) Resolver a proporção = x 1 5 Aplicando a propriedade fundamental: 5 . (x + 3) = 3 . (x + 1) Resolvendo a equação: 5x + 15 = 3x + 3 5x – 3x = 3 – 15 2x = – 12 x=–6 Como: o antecedente é x + 3, temos – 6 + 3 = – 3 e o conseqüente é x + 1, temos – 6 + 1 = – 5 EXERCÌCIO: 5. Determine o valor do termo desconhecido: a) 3 x = 12 4 c) b) 9 1 = x 5 d) 4 6 = x 3 5 10 = 11 x e) 7 7 = x 5 g) 2x 8 = 3 6 f) 9 12 = x 4 h) 2 10 = 3x 15 50 GRANDEZAS PROPORCIONAIS Grandeza: É uma relação numérica estabelecida com um objeto. Assim, a altura de uma árvore, o volume de um tanque, o peso de um corpo, a quantidade pães, entre outros, são grandezas. Grandeza é tudo que você pode contar, medir, pesar, enfim, enumerar Exemplo: Quando colocamos gasolina em nosso carro, despendemos certa importância em dinheiro. A quantidade colocada e o preço que pagamos por ela são duas grandezas variáveis dependentes. O mesmo ocorre quando compramos arroz, feijão, batata, açúcar... O peso e custo da mercadoria comprada são grandezas variáveis dependentes. Consideremos, então, o exemplo seguinte: Uma máquina produz: - 3 camisas em 2 horas; - 6 camisas em 4 horas; - 12 camisas em 8 horas. À medida que aumentamos a grandeza “camisa” a grandeza “tempo” (horas) também aumenta na mesma razão. Então, dizemos que as grandezas camisa e tempo são diretamente proporcionais. Duas grandezas são diretamente proporcionais quando aumentando uma delas, a outra aumenta na mesma razão; ou quando diminuindo uma delas a outra também diminui na mesma razão. Grandezas Inversamente Proporcionais (G.I.P.) Duas grandezas são ditas inversamente proporcionais quando o aumento de uma implica na redução da outra, quando a redução de uma implica no aumento da outra, ou seja, o que você fizer com uma acontecerá o inverso com a outra. Observação: É necessário que satisfaça a propriedade destacada abaixo. Exemplo: Numa viagem, quanto maior a velocidade média no percurso, menor será o tempo de viagem. Quanto menor for a velocidade média, maior será o tempo de viagem. Observe a tabela abaixo que relaciona a velocidade média e o tempo de viagem, para uma distância de 600km. Velocidade (km/h) Tempo (h) média de viagem 60 100 120 150 200 300 10 6 5 4 3 2 Velocidade média e Tempo de viagem são grandezas inversamente proporcionais, assim se viajo mais depressa levo um tempo menor, se viajo com menor velocidade média levo um tempo maior. Observe que quando multiplicamos a velocidade média pelo tempo de viagem obtemos sempre o mesmo valor.. EXERCÌCIO: 7. Complete, usando aumenta ou diminui e diretamente ou inversamente: a) Um auto percorre 120 km em: - 1 hora, com velocidade de 120 km por hora; - 2 horas, com velocidade de 60 km por hora. Aumentando a grandeza tempo (horas), a grandeza velocidade _______________. Então, tempo e velocidade são grandezas _________________ proporcionais. 51 b) Uma automóvel percorre a distância de: - 120 km e consome 20 litros de álcool; - 240 km e consome 40 litros. Aumentando a grandeza distância (km), a grandeza álcool _______________. Então, distância e álcool são grandezas _________________ proporcionais. c) Uma padaria gasta: - 100 km de farinha de trigo para fazer 500 pães; - 200 km de farinha de trigo para fazer 1.000 pães. Aumentando a grandeza farinha, a grandeza pães _______________. Então, farinha e pães são grandezas _________________ proporcionais. Regra de três simples Regra de três simples é um processo prático para resolver problemas que envolvam quatro valores dos quais conhecemos três deles. Devemos, portanto, determinar um valor a partir dos três já conhecidos. Passos utilizados numa regra de três simples: 1º) Construir uma tabela, agrupando as grandezas da mesma espécie em colunas e mantendo na mesma linha as grandezas de espécies diferentes em correspondência. 2º) Identificar se as grandezas são diretamente ou inversamente proporcionais. 3º) Montar a proporção e resolver a equação. Exemplos: 1) Com uma área de absorção de raios solares de 1,2m2, uma lancha com motor movido a energia solar consegue produzir 400 watts por hora de energia. Aumentando-se essa área para 1,5m2, qual será a energia produzida? Solução: montando a tabela: Área (m2) 1,2 1,5 Identificação do tipo de relação: Energia (Wh) 400 x Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna). Observe que: Aumentando a área de absorção, a energia solar aumenta. Como as palavras correspondem (aumentando - aumenta), podemos afirmar que as grandezas são diretamente proporcionais. Assim sendo, colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna. Montando a proporção e resolvendo a equação temos: Logo, a energia produzida será de 500 watts por hora. Veja os exemplos: a) Se 20 metros de arame custam R$ 100,00, quanto custarão 15 metros desse arame? Metros 20 Reais 100 15 x Colocamos a flecha apontando para “x” 52 Se, comprando 20 metros gastamos R$ 100,00, comprando menor quantidade de metros gastaremos menos. As grandezas arame (metros) e preço (reais) são diretamente proporcionais, portanto, colocamos as flechas (setas) no mesmo sentido. Metros 20 Reais 100 15 x Montando a proporção e resolvendo: 20 100 = 15 x 20 . x = 100 . 15 20x = 1500 1500 x= 20 Então: x = 75 Resposta: Custarão R$ 75,00 b) Se uma casa é construída por 4 homens em 3 dias, em quantos dias essa casa será construída por 1 homem? Homens Dias 4 3 Colocamos a flecha apontando para “x” 1 x Com menos homens trabalhando, são necessários mais dias para realizar a obra. As grandezas homens e dias são inversamente proporcionais, portanto, colocamos as setas em sentido contrário. Homens Dias 4 3 1 x Ao montar a proporção uma das razões será invertida: 1 3 = 4 x 1.x=4.3 x = 12 Então: x = 12 Resposta: 12 dias EXERCÌCIO: 8. Resolva os problemas: a) Se 8 metros de um tecido custam R$ 60,00, quanto custarão 24 metros desse tecido? Metros 8 R$ 60 24 x b) Um operário ganha R$ 75,00 em 5 dias. Quanto receberá trabalhando 30 dias? R$ 75 Dias 5 x 30 53 c) Uma máquina produz 300 peças em 6 minutos. Quantas peças essa máquina produzirá em 7 minutos? Peças 300 Minutos 6 x 7 d) Se 6 homens constroem uma ponte em 1º dias, em quantos dias 2 homens construirão esta ponte? Homens 6 Dias 10 2 x e) Um auto faz um percurso em 3 horas, com a velocidade de 60 km/h. Em quantas horas fará esse percurso com a velocidade de 90 km/h? Horas 3 Velocidade 60 x 90 f) Três torneiras enchem um tanque em 12 horas. Quantas torneiras iguais serão necessárias para encher o mesmo tanque em 9 horas? g) Um trem faz um percurso em 2 horas, com a velocidade de 40km/h. Qual deverá ser sua velocidade para fazer o mesmo percurso em 10 horas? h) Em um terreno de 1.000 metros quadrados podemos plantar 2.000 pés de laranjas. Quantos pés de laranjas poderemos plantar em um terreno de 200 metros quadrados? PORCENTAGEM Você já deve ter ouvido falar em porcentagem. É uma palavra que se vê e ouve diariamente através do rádio, da televisão, jornais, etc. Domicílios com coleta de lixo O gráfico ao lado mostra que no ano de 1997 havia coleta de lixo em 70% dos domicílios brasileiros. Você sabe que: 70 70% = 100 Fonte: IBGE, 2000 Vamos, então falar sobre as porcentagens, que são comparações com 100. Em 1997, da cada 100 domicílios brasileiros, 70 tinham coleta de lixo. 70 para 100 é 70 100 e 70 = 70% 100 54 70 % 70 7 ou 10 100 Podemos escrever setenta por cento assim: 0,70 ou 0,7 Dados do IBGE mostram que o salário do trabalhador brasileiro aumentou no período de 2.000 a 2.009. Essa é uma notícia animadora; no entanto, muitos ainda ganhavam pouco em 2.000, dois em cada cinco trabalhadores recebiam menos de 1 salário mínimo. Podemos representar esse dado por meio de uma porcentagem. 2 2 em 5 = 5 2 x2 4 x 10 40 = = = 40% 1 0 x 10 5 x2 100 Observe os exemplos abaixo: 1) Na padaria perto de casa, o pão doce, que custava R$ 1,25, passou a custar R$ 1,45. Calculei a porcentagem de aumento assim: 1,45 – 1,25 = 0,20 de aumento 16 0,20 = 0,16 0,16 = = 16% 1,25 100 O aumento do pão doce for de 16% 2) Numa loja de esportes, a camisa do meu time, que custava R$ 25,00 passou a custar R$ 27,00. Qual a porcentagem de aumento? 27 – 25 = 2 Temos um aumento de R$ 2,00 em R$ 25,00 x4 2 25 = x4 8 100 8% O aumento foi de 8% EXERCÌCIOS: De um modo geral, os jornais fornecem informações sobre o mercado financeiro utilizando porcentuais. Veja na ilustração da outra página. 9. Escreva cada porcentual seguinte na forma decimal correspondente: a) 43% b)25% c) 32% 10. Escreva usando o símbolo %: a) 0,16 = d) 0,092 = b) 0,08 = e) 0,136 = c) 0,725 = f) 0,8 = d) 9% e) 11,87% f) 2,71% 55 15 = 15% 100 11 9 c) = d) = 100 100 932 100 g) = h) = 100 100 18 MODELO: 18% = 100 d) 200% = _______ e) 1% = _______ f) 500% = _______ 11. Complete conforme o modelo: 3 = 100 1 e) = 100 a) 12 = 100 130 f) = 100 b) 12. Faça como o modelo: a) 37% = _______ b) 70% = _______ c) 2% = _______ MODELO: Observação: Uma razão comum , como por exemplo 3 , pode ser transformada em razão porcentual, 4 procedendo-se da seguinte maneira: Divide-se o antecedente pelo conseqüente. 3 75 = 0,75 = = 75% 4 100 Foi obtido dividindo-se 3 por 4. EXERCÌCIOS: 13. Transforme em razão centesimal (denominador 100): 2 6 7 a) = c) = e) = 5 8 10 1 12 32 b) = d) = f) = 2 20 50 14. Lembrando que a) 15% de 100 = b) 8% de 500 = c) 25% de 12 = 7 = 5 14 h) = 25 g) 3 3 de 20 pode ser representado por . 20, calcule: 4 4 d) 9% de 20 = g) 20% de 300 = e) 50% de 72 = h) 10% de 300 = f) 10% de 540 = i) 5% de 80 = 15. Para fazer um molho forma usados os seguintes ingredientes: 3g Pimenta 45 g Sal 90 g Cebola 27 g Alho 135 g Azeite 300 g Total Qual o porcentual de cada ingrediente? Problema Resolvido Os problemas de porcentagem podem ser resolvidos através de uma regra de três simples e direta. Exemplos: a) Em uma classe de 40 alunos, 10% formam reprovados. Quantos alunos foram reprovados? Em 100 alunos, seriam reprovados 10. 10% significa que Em 40 alunos, foram reprovados x. 56 100 10 40 x Aplicando a regra de três, 100 . x = 40 . 10 400 x=4 Resposta : Foram reprovados 4 alunos. 100 b) Se 30% de uma certa quantia é R$ 12,00, qual é essa quantia? 100 30 x 12 Aplicando a regra de três: 30 . x = 12 . 100 30x = 1200 1200 x= 30 x = 40 Resposta : A quantia é de R$ 40,00 100x = 400 x= EXERCÌCIO: 16. Resolva os seguintes problemas: a) Em uma classe de 50 alunos, 10% faltaram. Quantos alunos faltaram? b) Se 20% de uma certa quantia corresponde a R$ 36,00, qual é essa quantia? c) Um objeto custa R$ 2.000,00 a prazo e a vista tem um desconto de 20%. Quanto pagarei por este objeto comprando-o à vista? d) Um feirante observou que, em cada 75 laranjas, 6 estavam estragadas. Qual a taxa de porcentagem de frutas estragadas? e) Numa turma de 30 operários faltaram 12. Qual a taxa de operários presentes? f) Numa classe foram reprovados 15% dos alunos, isto é, 9 alunos. Quantos alunos havia na classe? g) Numa classe 20% dos alunos correspondem a 9 alunos. De quantos alunos é formada essa classe? h) Se um comerciante compra uma mercadoria por R$ 800,00 por quanto deve vendê-la para ter um lucro de 15%? JURO SIMPLES Numa empresa financeira, Mauro aplicou R$ 18.000,00, a uma taxa de juro simples de 15% ao ano. Após 2 anos de aplicação, ele recebeu R$ 5.400,00 de juro simples. Vamos destacar algumas informações desse texto. R$ 18.000,00 Total do dinheiro aplicado, Chamamos de capital. 15% ao ano Porcentual da aplicação, Chamamos de taxa de juro simples. 2 anos Período de aplicação, Chamamos de tempo 57 R$ 5.400,00 Compensação, em dinheiro, que se recebe quando termina o período de aplicação: é o juro simples. Apliquei uma quantia em dinheiro. Recebo juro pelo tempo que apliquei. Fiz empréstimos de uma quantia. Pago juro pelo tempo que durou o empréstimo. Comprei em prestações. Pago juro, conforme o número de prestações. Quando se estabelece uma taxa, fixa-se também a duração de cada período. Assim 15% ao ano significa 15% de uma aplicação no período de um ano. Chamamos de juro simples o juro calculado sobre a aplicação de um capital ao final de um ou mais períodos de aplicação. O total que se paga no final do empréstimo (capital + juro) chama-se montante. Fórmula empregada para a resolução dos problemas de juros. Calcular o juro produzido por R$ 8.000,00, à taxa de 5% ao ano, durante 2 anos. Os 5% ao ano significam que com cada R$ 100,00 ganhamos R$ 5,00 em 1 ano. j= c .i. t 100 Resolução do problema anterior, com a aplicação da fórmula: Capital R$ 8.000,00 c Taxa 5% ao ano i Tempo 2 anos t Juro ? j c .i. t Fórmula: j = 100 8000,00 . 5 . 2 j= 100 80000,00 j= 100 j = 800,00 Resposta: O juro produzido é de R$ 800,00 Observação: Quando não houver compatibilidade entre taxa e tempo, isto é: taxa anual e tempo em anos taxa mensal e tempo em meses taxa diária e tempo em dias é necessário, antes da resolução do problema, fazer a devida conversão. Exemplos: 1) Calcule o juro produzido por um capital de R$ 2.000,00, a 3% ao mês durante 2 anos. j=? t = 2 anos = 24 meses i = 3% ao mês c = 2000 Transformamos a unidade de tempo de anos para meses. 2 anos = 24 meses c .i. t j= 100 2000 . 3 . 24 j= 100 j = 1440 Resposta: o Juro é de R$ 1.440,00 58 2) Qual o capital que produz o juro de R$ 720,00, durante 3 anos ,à taxa de 25% a o ano? c .i. t 100 c . 25 . 3 720 = 100 72000 = 75 . c 72000 c= c = 960 75 Resposta: O capital é de R$ 960,00 j = 720,00 t = 3 anos i = 25% c=? j= EXERCÌCIO: 17. Resolva os seguintes problemas: a) Calcule o juro produzido por R$ 50.000,00, durante 2 anos, a uma taxa de 30% ao ano. b) Calcule o juro produzido por R$ 18.000,00, durante 3 meses, a uma taxa de 7% ao mês. c) Calcule o juro produzido por R$ 72.000,00, durante 2 meses, a uma taxa de 60% ao ano. d) Calcule o juro produzido por R$ 12.000,00, durante 5 meses, a uma taxa de 6,5% ao mês. e) Por quanto tempo devo aplicar R$ 10.000,00 para que renda R$ 4.000,00 a uma taxa de 5% ao mês. f) Por quanto tempo devo aplicar R$ 3.000,00 para que renda R$ 1.440,00 a uma taxa de 12% ao mês. g) A que taxa mensal devo empregar um capital de R$ 10.000,00 para que, no fim de 2 meses, renda R$ 2.000,00 de juros? h) A que taxa mensal devo empregar um capital de R$ 20.000,00 para que, no fim de 10 meses, renda R$ 18.000,00 de juros? i) Qual será o capital que, em 9 meses, a 6% ao mês renderá R$ 32.400,00 de juros? j) Qual o juro produzido por um capital de R$ 4.000,00, em 3 meses, à taxa de 12% ao ano? TRIÂNGULO É o polígono com o menor número de lados. Elementos de um triângulo Representação do triângulo ABC Vértices “bicos”: A, B, C Lados Segmentos de reta: AB, AC , BC Ângulos Internos: Â, B̂ , Ĉ Externos: Â, B̂ , Ĉ 59 Propriedades dos Triângulos 1ª Propriedade: A soma das medidas dos ângulos internos de qualquer triângulo é igual a 180º. A Seja o triângulo 70º 60º 50º B C Medindo com o transferidor, verificamos que: m (Â) = 70º m ( B̂ ) = 60º m ( Ĉ ) = 50º m (Â) + m ( B̂ ) + m ( Ĉ ) = 180º EXEMPLOS: 2x + 80º + 40º = 180º 2x = 180º – 80º – 40º 2x = 60º 1. Calcule a medida do ângulo B̂ : A 80º 2x x = 60º 2 x = 30º 40º Se B = 2x então B = 2.30 B = 60º C B 18. Calcule o valor de x nos triângulos: a) d) x= b) x= e) x= x= 60 c) f) x= x= x= QUADRILÁTERO Quadrilátero é o polígono de quatro lados. Seja o quadrilátero ABCD, abaixo: B C A D Temos: Os lados AB e CD ; AD e BC são opostos pois são segmentos não consecutivos. Os ângulos  e Ĉ ; B̂ e D̂ são opostos pois não são consecutivos. Os segmentos AC e BD são diagonais. Observe que cada diagonal divide o quadrilátero em dois triângulos, portanto, a soma dos ângulos internos de um quadrilátero é igual a 360º. Lembretes: Retas paralelas: são retas que não se cruzam, ou seja, não tem ponto comum. a b Indicamos a // b Retas perpendiculares: são retas que se cruzam num ponto formando 4 ângulos retos (cada um mede 90°). . . s . . r Indicamos por s r 61 19. Calcule o valor de x: x = _________ x = ______ 20. Resolva os problemas: a) Os ângulos internos de um quadrilátero medem x, 2x, 3x e 6x. Qual é o valor de x? b) Num quadrilátero, três dos seus ângulos medem 145º, 60º e 85º. Quanto mede o quarto ângulo? c) As medidas dos ângulos internos de um triângulo são dadas por x + 12º, 2x e x – 20º. Quanto mede cada ângulo desse triângulo? 62 GABARITO / 4ª PARTE Exercício 1. 3 6 20 2 a) ; 3 está para 4 c) ; 6 está para 10 e) ; 20 está para 5 g) ; 2 está para 2 4 10 5 2 1 5 4 b) ; 1 está para 8 d) ; 5 está para 20 f) ; 4 está para 1 8 20 1 Exercício 2. 1 6 1 3 1) 2) 3) b) a) 6 7 7 10 Exercício 3. a) 8 b) 6 c) 5,1 Exercício 4. a) 2 b) 9;12 c) 3 e10; 5 d) 4 e 14; 7 e 8 são meios Exercício 5. a) 4 b) 15 c) 9 d) 5 e) 10 e) 10 f) 10 Exercício 6. 30 a) 1 b) 45 c) 2 d) 22 e) 5 f) 3 g) x = 2 h) x = 1 i) k) 44 l) 15 7 Exercício 7. a) diminui; inversamente b) aumenta, diretamente c) aumenta; diretamente Exercício 8. a) R$ 180,00 b) R$ 450,00 c) 350 peças d) 30 dias e) 2 horas f) 4 torneiras g) 8 Km/h h) 400 laranjeiras Exercício 9. 43 25 32 9 1187 271 a) b) c) d) e) f) 100 100 100 100 100 100 Exercício 10. a) 16% b) 8% c) 72,5% d) 9,2% e) 13,6% f) 80% Exercício 11. a) 3% b) 12% c) 11% d) 9% e) 1% f) 130% g) 932% h) 100% Exercício 12. 37 70 2 200 1 500 a) b) c) d) e) f) 100 100 100 100 100 100 Exercício 13. 40 50 75 60 70 64 140 56 a) b) c) d) e) f) g) h) 100 100 100 100 100 100 100 100 Exercício 14. a) 15 b) 40 c) 3 d) 1,8 e) 36 f) 54 g) 60 h) 30 i) 4 Exercício 15. 1%; 15%; 30%; 9%; 45% Exercício 16. a) Faltaram 5 alunos c) 1.600,00 e) 60% g) 45 alunos b) R$ 7,20 d) 8% f) 60 alunos h) R$ 920,00 Exercício 17. a) R$ 30.000,00 b) R$ 3.780,00 c) R$ 7.200,00 d) R$ 3.900,00 e) 8 meses f) 4 meses g) 10% ao mês h) 9% ao mês i) R$ 60.000,00 j) R$ 120,00 Exercício 18. a) 60º b) 105º c) 40º d) 70º e) 60º f) 130º Exercício 19. A ) 120º B) 140º C) 60º D) 60º E) 50º F) 90º Exercício 20. a) x = 30º b) O quarto ângulo mede 70º c) Cada ângulo mede 27º, 59º e 94º 63 5ª PARTE RACIONALIZAÇÂO DE DENOMINADORES A racionalização de denominadores consiste em se obter uma fração equivalente com denominador racional, para substituir uma outra com denominador irracional. Conseguimos isto realizando algumas operações que eliminam o radical do denominador. Vamos analisar a seguinte fração: 1 2 É sabido que podemos eliminar o radical se multiplicarmos 2 por ele mesmo. Vejamos: Dividir um número irracional é uma dificuldade que podemos evitar se realizamos o processo da racionalização de denominadores. E como é isso? Veja, por exemplo essa divisão de 1 por 2 : 1 Vamos obter uma fração equivalente 2 a esta multiplicando os dois termos por 2 . 1 2 = 1 2 2 = 2 . 2 2 2 = 2 2 Aí está! Dividir 1 por 2 é o mesmo que dividir 2 por 2, que é uma operação na qual podemos conseguir o resultado com a aproximação que quisermos. Em resumo, quando uma fração tiver um denominador irracional, é melhor que ela seja racionalizada, isto é, transformada em uma equivalente com o denominador racional. Para isso, será importante lembrar sempre que: a = n n n an = a para qualquer número a positivo e n natural maior do que 1. Racionalizar = tornar racional Genericamente o fator racionalizante de um denominador é o próprio Exemplos: 6 6. 3 6:3 3 6 3 a) = = = = 2 3 3:3 3 32 3. 3 2. a b) EXERCÍCIOS: 1. Racionalize o denominador das frações: 1 2 2 8 a) c) e) g) i) 2 5 2 2 b) 4 7 d) 7 2 f) 3 3 h) 15 3 2 = a 2 10 a. a = . 2 a a 2 = 2 a a 64 2. Escreva uma fração com denominador racional que seja equivalente a: (veja o modelo) 3 3 3 . 10 30 30 modelo: = = = = 10 10 10 10 2 10 . 10 a) 8 3 b) 1 6 c) 2 10 d) 5 10 e) 5 2 As Equações de 2º Grau Uma equação de 2º grau com uma incógnita x é toda equação que pode se escrita na forma reduzida ou forma normal. ax² + bx + c = 0 em que as letra a, b e c, os coeficientes da equação, são números reais e a 0. Veja alguns exemplos de equação do 2º grau com os seus coeficientes. a) 3x² – 4x + 1 = 0 a=3 b=–4 c=1 c) –n² + 9 = 0 a = –1 b = 0 c = 9 x2 d) + 3x – 1 = 0 2 1 a= b = 3 c = –1 2 b) –2m² + 8m = 0 a = –2 b = 8 c = 0 Atenção! Fique atento aos coeficientes a, b e c. Quando eles forem diferentes de zero, a equação é completa. Se algum deles é nulo ou se os dois são iguais a zero a equação é incompleta. EXERCÍCIOS: 3. Compare as equações seguintes com a forma reduzida de uma equação de 2º grau, ax² + bx + c = 0 e identifique os valores a, b e c em cada uma: a) 6x² + 5x + 8 = 0 b) x² – 4x = 0 c) x² + x + 1 = 0 d) 2x² – 3 = 0 e) 0,7x² – 0,7 = 0 4. Identifique como completa ou incompleta cada uma das seguintes equações do 2º grau. a) x² – x – 20 = 0 d) y² – 10y = 0 b) –2y² + 3y – 1 = 0 e) x² – 3x – 6 = 0 c) r² + 4r = 0 f) 2x² – 50 = 0 Resolvendo equações do 2º grau Qualquer equação do 2º grau, com uma incógnita, escrita na forma normal, pode ser resolvida através de uma fórmula, desenvolvida pelo hindu Bháskara (1114 – 1185). Usando esta fórmula podemos determinar o conjunto solução das equações do 2º grau. Essa fórmula recebeu o nome de fórmula resolutiva ou fórmula de Bháskara. Um “pedaço” da fórmula de Bháskara tem especial importância e por isso recebe o nome discriminante: x b b 2 4ac 2a o discriminante é b² – 4ac 65 O discriminante, b² – 4ac, é normalmente indicado pela letra grega (delta). Quer dizer que a fórmula de Bháskara também pode ser escrita assim: b = b² – 4ac x 2a O discriminante é importante, pois a existência ou não de raízes reais depende exclusivamente dele. Quando 0, a equação tem raízes reais. > 0 (duas raízes reais) = 0 (uma única raiz real) Quando < 0, a equação não tem raízes reais. Exemplos: 1. Quais são as raízes reais da equação x² – 10x + 21 = 0? Inicialmente identificamos os coeficientes da equação a = 1 b = – 10 c = 21 A seguir, calculamos o discriminante = b² – 4ac = (–10)² – 4.1.21 = 100 – 84 = 16 > 0 Como > 0, a equação tem duas raízes reais diferentes: b x 2a 10 16 x 2 1 10 4 14 x' 7 2 2 10 4 x 2 10 4 6 x '' 3 2 2 Os números 7 e 3 são raízes reais da equação. Logo: S = {7, 3} conjunto solução 2. Um número real y é tal que 25y² + 10y = –1. Qual é esse número? 25y² + 10y = –1 25y² + 10y + 1 = 0 forma reduzida a = 25 b = 10 c = 1 = b² – 4ac = (10)² – 4.25.1 = 100 – 100 = 0 Como = 0, a equação tem uma única raiz real. b x 2a 10 0 x 2 25 10 0 10 1 x' 50 50 5 10 0 x 50 10 0 10 1 x '' 50 50 5 66 1 1 , logo: S = { } 5 5 3. Determine o conjunto solução da equação: 2x² – 4x + 3 = 0 a = 2 b = –4 c = 3 = b² – 4ac = (–4)² – 4.2.3 = 16 – 24 = –8 < 0 Como < 0, a equação não tem raízes reais. Logo: S = ø conjunto vazio Resumindo Dada a equação ax² + bx + c = 0, temos: Para , a equação tem duas raízes reais diferentes. Para , a equação tem duas raízes reais iguais. Para , a equação não tem raízes reais. Logo o número real procurado é EXERCÍCIOS: 5. Dadas as equações do 2º grau, calcule o discriminante de cada uma delas e identifique: a) x² – 11x + 28 = 0 d) x² + 8x + 16 = 0 b) 4x² + 2x + 1 = 0 e) x² – 7x + 16 = 0 c) 2x² – 4x –1 = 0 a) as equações que tem duas raízes reais diferentes. b) as que tem apenas uma raiz real. c) as que não admitem raízes reais. 6. Determine o conjunto solução das equações do 2º grau. a) x² – 7x + 6 = 0 h) x² – 3x + 10 = 0 b) x² – 8x + 15 = 0 i) 6x² + x – 1= 0 c) x² + 10x + 25 = 0 j) x² – 2x + 1 =0 d) –x² + 12x – 20 = 0 k) x² – 4x + 5 = 0 e) 5x² + 20 = 0 l) 2x² – 32 = 0 f) –x² + x = 0 m) 4x² – 7x = 0 g) x² – 6x + 9 = 0 Coordenadas Cartesianas no Plano Você já ouviu falar em cidades pré-traçadas? Brasília é um exemplo de cidade pré-traçada. Outros exemplos são: Rio Claro, no interior de São Paulo, Maringá, no interior do Paraná, e Palmas, em Tocantins. Em cidade pré-traçadas, a localização de um ponto é mais fácil de ser feita. A figura seguinte representa parte da planta de uma cidade pré-traçada e apresenta indicações de algumas praças. 67 Uma maneira simples de localizar as praças A e D é indicar: A praça A está localizada 4 quadras à direita e 2 quadras acima da praça Central. A praça Central está localizada 3 quadras acima e 5 quadras à esquerda da praça D. Outra forma de simplificar ainda mais essa explicação é esquematizando uma planta da seguinte maneira: 1º) Traçamos duas retas perpendiculares, uma horizontal, chamada eixo x, e outra vertical, chamada eixo y. 2º) O ponto de intersecção das duas retas recebe o nome de origem e coincide com a praça Central, identificado pela letra O, que corresponde ao número zero. 3º) Usando segmentos de mesma medida, associamos cada quadra a esse segmento. 4º) Usaremos números positivos para identificar as quadras situadas à direita e acima da praça Central. 5º) Usaremos números negativos para identificar as quadras situadas à esquerda e abaixo da praça Central. Vamos tomar a praça Central como referência e localizar, nesse esquema, as praças A, B, C, D e E. A praça A está na posição (4, 2). Esse par ordenado de números indica a posição da praça A (ponto A) em relação à para Central (ponto O, origem). A praça B está na posição (0, 3) em relação à origem. (praça Central) A praça C está na posição (–3, 1) em relação à origem. A praça D está na posição (–5, –3) em relação à origem. A praça E está na posição (1, –2) em relação à origem. 68 Os pares (4, 2), (0, 3), (–3, 1), (–5, –3) e (1, –2) são chamados pares ordenados, porque escrevemos em primeiro lugar o número encontrado no eixo x e, depois, o número encontrado no eixo y. O ponto que corresponde ao par (0, 0) é chamado ponto de origem. Essa maneira de localizar um ponto no plano é devido ao filósofo e matemático francês Descartes. Em homenagem a ele é que: as retas numéricas x e y são chamadas eixos cartesianos, sendo o eixo x horizontal (abcissas) o eixo y vertical (ordenadas) o plano formado por esses eixos chama-se plano cartesiano. os pares ordenados são as coordenadas cartesianas. EXERCÍCIOS: 7. A figura ao lado representa a planta de uma cidade. O prédio A está na esquina 2 com a avenida 1, tendo a localização A (2, 1). Dê a localização dos prédios B, C, D e E, usando pares ordenados. B( ) C( ) D( ) E( ) 5 4 . 3 . C . 2 . 1 0 1 . B D A 2 3 4 8. Represente no plano cartesiano os pontos: A (1, 1), B (2, – 3), C (– 1, 2), D (– 2, – 4), E (0, 3), F (4, 0) 6 5 y 3 2 1 1 2 3 4 5 -4 -3 -2 -1 -1 -2 -3 -4 x 9. Escreva nos parênteses a abcissa e a ordenada de cada ponto: T ( ) -2 y 4 ) 3 I ( 2 P ( 1 -4 R ( ) E ( 4 8 x 1 -2 ) -4 M ( ) ) E 69 Funções ou Aplicações Quem é que não se irrita ao ver uma torneira quebrada pingando, pingando? Pois para mostrar que isso é um enorme desperdício, Marcinha pegou uma grande vasilha graduada em litros e colocou-a para recolher os pingos que caíam. Durante uma semana, ao final de cada dia, ela anotava o volume que havia sido depositado durante aquele dia e calculava o total acumulado. Terminada a semana, Marcinha fez uns cálculos, montou um gráfico e deixou tudo sobre a mesa para que seu pai visse quando chegasse. O que Marcinha fez para tentar convencer seu pai foi a análise de uma grandeza em função de outra: o volume de água desperdiçado pela torneira quebrada em função do tempo. Foi fácil concluir: Nesse exemplo da torneira entramos em contato com duas grandezas, isto é, com algo que podemos quantificar de alguma maneira: volume e tempo. Pudemos perceber que, variando uma delas, varia também a outra: quer dizer, aumentando o número de dias, aumenta também o volume de água desperdiçado. Há muitas e muitas grandezas que se relacionam dessa forma, dependendo umas das outras, ou melhor, variando umas em função das outras. O que é exatamente uma função? Imagine duas grandezas, que chamaremos de A e B, e um conjunto de valores para cada uma. Imagine ainda que entre elas exista uma certa dependência, isto é, a um valor de uma delas corresponde certo valor da outra. Se cada elemento do conjunto de valores da grandeza A tiver em correspondência um único valor da grandeza B, dizemos que essa correspondência é uma função de A em B. Vavá sabe que o número de pessoas que transporta em sua lotação varia em função do horário. Ele fez uma tabela na semana passada. 70 Horário Número de pessoas Nesse caso temos de fato uma função, pois para cada horário há em correspondência apenas um número de pessoas transportadas. Afinal, como Vavá poderia transportar dois números diferentes de pessoas no mesmo horário? Uma relação de A em B é uma função se para todo elemento de A existe um único correspondente em B. Uma função é indicada por: f: A B (função de A em B) EXEMPLOS: São funções de A em B: a) A B Cada elemento de A tem um único elemento correspondente em B. b) A B Cada elemento de A tem um único elemento correspondente em B. c) A B Cada elemento de A tem um único elemento correspondente em B. Não são funções de A em B. a) A B Há elementos em A que não possuem correspondentes em B. 71 b) A B Há elemento em A que possui mais de um correspondente em B. EXERCÍCIO: 10. Escreva sim se representar função e não se não representar: a) A B A b) B __________ c) A __________ B d) A B __________ e) A __________ B A f) B __________ __________ A g) A B __________ B h) ________ 72 Funções definidas por equações a) No açougue, o quilograma de certo tipo de carne custa R$ 9,00. O preço a pagar y é, em função da quantidade de carne comprada, x. Veja o diagrama: Carne (kg) x . 2. 3. 1 Preço (R$) 1x9 2x9 3x9 .9 y .18 .27 A cada valor de x corresponde um único valor de y. A lei de formação dessa função é y = 9.x equação x e y são as variáveis da função Mais exemplos: b) Seja f: IR IR definida por y = 5x + 2 Podemos, atribuindo valores quaisquer a x, determinar os valores de y. Assim, em y = 5x + 2 Se x = 0 então y = 5 . 0 + 2 y=0+2 y=2 Se x = 1 então y = 5 . 1 + 2 y=5+2 y=7 Se x = 2 então y = 5 . 2 + 2 y = 10 + 2 y = 12 Observação: A função definida por uma equação pode ser escrita “função de x”. EXEMPLO: A função definida por y = 5x + 2 pode ser escrita f(x) = 5x + 2 e é função do 1º grau. Veja: Seja a função f(x) = 3x + 7 f: IR IR , vamos calcular o valor numérico dessa função para alguns valores de x. Se x = 0 então f(x) = 3x + 7 f(0) = 3 . 0 + 7 f(0) = 0 + 7 f(0) = 7 Se x = –1 então f(–1) = 3 . (–1) + 7 f(–1) = – 3 + 7 f(–1) = 4 Se x = –2 então f(–2) = 3 . (–2) + 7 f(–2) = – 6 + 7 f(–2) = 1 73 EXERCÍCIOS: 11. Dada a função f(x) = 3x + 1, determine: a) f(0) = c) f(–1) = b) f(2) = d) f(–4) = 12. Considerando a função f(x) = 3x + 5, calcule: a) f(0) = d) f(–3) = b) f(1) = e) f(4) = c) f(–2) = 13. Sendo f(x) = x² + 7x + 10, calcule: a) f(0) = b) f(1) = c) f(2) = d) f(–1) = e) f(–3) = f) f(–5) = Construindo Gráfico de Funções FUNÇÃO DE 1º GRAU Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a 0. Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante. Veja alguns exemplos de funções polinomiais do 1º grau: f(x) = 5x - 3, onde a = 5 e b = - 3 f(x) = -2x - 7, onde a = -2 e b = - 7 f(x) = 11x, onde a = 11 e b = 0 Gráfico O gráfico de uma função polinomial do 1º grau, y = ax + b, com a 0, é uma reta oblíqua aos eixos Ox e Oy. Exemplo: Vamos construir o gráfico da função y = 3x - 1: Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua: a) Para x = 0, temos y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1). b) Para y = 0, temos 0 = 3x - 1; portanto, Marcamos os pontos (0, -1) e reta. x y 0 -1 0 e outro ponto é . no plano cartesiano e ligamos os dois com uma 74 EXERCÍCIOS: 14. Represente graficamente a função y = f(x) = –3x + 2, completando a tabela. x 0 1 y (x, y) 15. Construa o gráfico da cada uma das seguintes funções (complete a tabela). c) y = –2x + 1 a) y = 3x + 1 x 0 1 y (x, y) b) y = –2x + 3 x 0 1 x 0 1 y (x, y) d) y = x + 3 y (x, y) y (x, y) x 0 1 y (x, y) c) y = 4x x 0 1 Função Quadrática No seu dia-a-dia você já deve ter visto uma curva conhecida como parábola. Vamos ver agora, a relação que existe entre essa curva, denominada parábola, e a função do 2º grau ou função quadrática. Acompanhe essa situação: Quando se disputa um torneio de futebol, basquete ou vôlei, com turno e returno, o número total de jogos do torneio que vamos indicar por y é dado em função do número x de equipes que disputam o torneio. 75 Nº de equipes (x) 2 3 4 ... ... x Nº de jogos (y) 2 = 2 (2 – 1) 6 = 3 (3 – 1) 12 = 4 (4 – 1) ... ... x (x – 1) Pela tabela, temos y = x (x – 1) ou y = x² – x polinômio do 2º grau Nessa situação apresentada o 2º membro da fórmula que define a função é um polinômio do 2º grau na variável x. De modo genérico: Qualquer função da forma y = ax² + bx + c, com a, b e c reais e a 0, definidas de IR IRsão chamadas funções quadráticas ou do 2º grau. São exemplos de função do 2º grau: a) y = x² – 3x – 4 b) y = x² – 16 c) y = –3x² + 18 d) y = 3x² – 15x Gráfico da função quadrática O gráfico de uma função polinomial do 2º grau, y = ax2 + bx + c, com a 0, é uma curva chamada parábola. Exemplo: Vamos construir o gráfico da função y = x2 + x: Primeiro atribuímos a x alguns valores, depois calculamos o valor correspondente de y e, em seguida, ligamos os pontos assim obtidos. X y -3 6 -2 2 -1 0 0 0 1 2 2 6 Observação: Ao construir o gráfico de uma função quadrática y = ax2 + bx + c, notaremos sempre que: se a > 0, a parábola tem a concavidade voltada para cima; se a < 0, a parábola tem a concavidade voltada para baixo; 76 Acompanhe os exemplos: Construir o gráfico das funções quadráticas de IR IR Agora, faça você: 16. Complete a tabela e construa o gráfico das funções quadráticas de IR IR c) y = x² + 2x –3 a) y = 2x² x y (x, y) x y (x, y) –3 –1 2 (–1, 2) –2 0 –1 1 0 2 1 2 b) y = –2x² x y –1 –2 0 1 2 –2 (x, y) d) y = –x² + 4x – 4 x y (x, y) –1 0 1 2 3 4 Retas Paralelas Duas retas de um mesmo plano são paralelas quando não possuem pontos em comum. 77 r s Indica-se r // s Feixe de Retas Paralelas r s t u v O conjunto de retas paralelas entre si de um plano, chama-se feixe de retas paralelas. Uma reta não pertencente ao feixe intercepta as retas do feixe; essa reta é chamada transversal. s t u v reta transversal TEOREMA DE TALES Na ilustração ao lado, percebe-mos que as avenidas das Rosas, das Margaridas e dos Lírios são paralelas. As ruas dos Pinheiros e dos Eucaliptos são transversais a essas avenidas. Será que podemos, com as informações deste mapa, determinar a distância entre a farmácia e o banco? A resposta é sim. Vamos descobrir como? Usando a proporcionalidade de segmentos temos: x 200 = 400 500 1 x = 2 500 2x = 500 500 x= 2 x = 250 R.: A farmácia dista 250m do banco, seguindo a rua dos Eucaliptos. ou simplificando as frações 78 Podemos dizer, então: Quando duas retas paralelas são cortadas por retas transversais, as medidas dos segmentos correspondentes determinados nas transversais são proporcionais. Essa relação é conhecida como teorema de Tales* (*Tales de Mileto era grego. Nasceu por volta de 624a.C. e é considerado um grande matemático.) Acompanhe mais exemplos de aplicação do teorema de Tales. 1) Determinar x nas figuras abaixo. a) x 6 8 3 6 x 3x = 8 . 6 8 x= 48 3 x = 16 3 3x = 48 b) x x 2 x 1 4 2 4x = 2 . (x + 1) x+1 2x = 2 2 x= 2 4 4x = 2x + 2 4 x – 2x = 2 x=1 1) Calcule o valor da medida y, considerando um feixe de paralelas cortado pelas retas transversais a e b.. y 15cm 2y 6 36cm b a y 2y + 6 15cm 36cm 36y = 15 . (2y + 6) 36y = 30y + 90 EXERCÍCIOS: 17) Calcule o valor de x no feixe de retas paralelas: 36y – 30y = 90 6y = 90 90 y= 6 y = 15cm 79 O Triângulo Retângulo Um triângulo é retângulo quando um de seus ângulos é reto (mede 90°). a c . b ângulo reto Num triangulo retângulo, chamamos os lados que formam o ângulo reto de catetos. O lado oposto ao ângulo reto (lado de maior medida) chama-se hipotenusa. No triangulo anterior temos: a medida da hipotenusa b medida do cateto c medida do cateto 80 Os triângulos retângulos sempre tiveram grande aplicação na vida prática, uma vez que é possível estabelecer uma série de relações entre seus elementos, principalmente lados e ângulos. Daí a sua grande importância no desenvolvimento da humanidade. Uma das relações mais importantes é conhecida como teorema de Pitágoras, que foi um matemático e filosofo grego. “Em todo o triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma dos quadrados das medidas dos catetos.” Lembre-se que triângulos retângulos são triângulos que tenham um ângulo interno medindo 90º . Então: (hipotenusa)2 = (cateto)2 + ( cateto)2 O teorema de Pitágoras é importantíssimo e tem muitas aplicações. Veja alguns exemplos. 1) Uma porteira de fazenda terá a forma de retângulo. Para dar maior rigidez à estrutura, uma barra de madeira será colocada na diagonal no retângulo, como se vê o projeto do carpinteiro. Poderemos calcular o comprimento da barra usando Pitágoras. a=? b = 2m c = 1,5m a2 = b 2 + c2 a2 = 22 + (1,5)2 a2 = 4 + 2,25 a2 = 6,25 a = 6,25 a = 2,5m R: A barra deve ter 2,5 m A peça que sustenta uma prateleira chama-se mão francesa. Essas estruturas são comuns. Podemos calcular a medida que falta usando Pitágoras a = 25cm, b = 15cm, c = ? a 2 = b 2 + c2 625 = 225 + c2 c2 = 625 – 225 c2 = 400 c = 400 c = 20cm 81 EXERCÍCIOS: 18) Determine a medida do elemento desconhecido nos triângulos retângulos: e) f) 19. Qual a medida do lado de um losango cujas diagonais medem 6cm e 8cm? 20. Resolva os problemas: A) O acesso à garagem de uma casa, situada no subsolo é feito por rampa, conforme nos mostra o desenho. Sabe-se que a rampa AC tem 10,25m de comprimento e a altura BC da garagem é de 2,25m. Qual é a distância AB entre o portão e a entrada da casa? 82 B) Na situação do mapa da figura, deseja-se construir uma estrada que ligue a cidade A à estrada BC , com o menor comprimento possível. Essa estrada medirá, em quilômetros: C B a( ) 24 b( ) 28 c( ) 30 d ( A) 32 e( ) 40 c) Uma torre vertical é presa por cabos de aço fixos ao chão, em um terreno plano horizontal, conforme mostra a figura. Se o ponto A está a 15m da base B da torre e o ponto C está a 20m de altura, o comprimento do cabo AC é: a( ) 20m b( ) 25m c( ) 35m d( ) 40m e( ) 15m Relações trigonométricas no triângulo retângulo Utilizando cálculos trigonométricos, que relaciona as medidas de seus ângulos, é de grande utilidade na medição de grandes distâncias, inacessíveis ao ser humano, como a altura de montanhas, torres e árvores ou largura de lagos e rios. A trigonometria não se limita ao estudo de triângulos. Encontramos aplicação da Trigonometria na Engenharia, na Mecânica, na Eletricidade, na Acústica, na Medicina, na Astronomia e até na Música. As Relações Trigonométricas Observe com atenção: No triângulo retângulo ABC abaixo, temos: 83 B a c A b C o cateto b é oposto ao ângulo B̂ ; o cateto b é adjacente ao ângulo Ĉ ; o cateto c é oposto ao ângulo Ĉ ; o cateto c é adjacente ao ângulo B̂ ; a é a hipotenusa As relações trigonométricas são razões entre a medida dos catetos e a hipotenusa e recebem nomes especiais. Tangente: é a razão (quociente) entre a medida do cateto oposto ao ângulo considerado e a medida do cateto adjacente a esse ângulo. Escrevemos: medida do cateto oposto ao ângulo tg <) = medida do cateto adjacente ao ângulo 1) Num triângulo retângulo, o cateto oposto ao ângulo de 40º mede 6cm. Qual o valor aproximado do outro cateto? ângulo: 40º cateto oposto a 40º: 6cm cateto adjacente: x medida do cateto oposto a 400 medida do cateto adjacente a 400 6 6 tg 40º = 0,83 x = 6 x= x 7,2 0,83 x 6 0,83 = A medida aproximada é de 7,2cm. x tg 40° = Seno: é a razão entre a medida do cateto oposto ao ângulo considerado e a medida da hipotenusa. Escrevemos: sen <) = medida do cateto oposto ao ângulo medida da hipotenusa 1) Um piloto contou que, ao decolar, o avião fez uma inclinação de 10º. Depois de voar 15km sem mudar a trajetória, qual deve ser a altura atingida pelo avião? ângulo: 10º x hipotenusa: 15km altura: x 84 sen 10º = medida do cateto oposto a 100 medida da hipotenusa x 0,17 = 15 x = 0,17 . 15 x = 2,55 A altura atingida será de 2,55km. Cosseno: é a razão entre a medida do cateto adjacente ao ângulo considerado e a medida da hipotenusa. Escrevemos: medida do cateto adjacente ao ângulo cos <) = medida da hipotenusa EXEMPLO: 1) Um pintor tem que apoiar uma escada em um muro para chegar à parte mais alta. Para que a escada não caia, o pé da escada deve estar 1,20m distante da parede, e a escada deve formar um ângulo de 70º com o chão. Pede-se o ângulo: 70º da escada. comprimento cateto adjacente a 70º: 1,20m hipotenusa: x medida do cateto adjacente a 700 medida da hipotenusa 1,20 0,342 = x 0,342 x =1,20 1,20 x= x = 3,50 A escada tem 3,50m 0,342 cos 70º = EXERCÍCIOS: 21) Considere o triângulo abaixo: a b c a) b) c) d) e) Qual é a hipotenusa? Qual é o cateto oposto a ? Qual é o cateto adjacente a ? Qual é o cateto oposto a ? Qual é o cateto adjacente a ? 85 22) No triângulo retângulo da figura, calcule: B a) sen  = b) cos  = 8cm 6cm c) tg  = d) sen Ĉ = 10 cm e) cos Ĉ = A C f) tg Ĉ = 23) Calcule o valor de x nos triângulos abaixo: a) g) 60º 50 10 40º x x b) h) 20 12 x 45º 35º x c) i) 10 x . x 24º 50º 100 d) j) x 40 30º 40º 120 x . 86 e) A k) 10 17 x 45º 28º C . x B f) 60º 50 l) x 9 40º . x 24) Resolva os problemas a) Veja a figura ao lado. Pode-se tombar a árvore em direção à casa, sem atingir a construção? b) Uma escada medindo 3m precisa fazer um ângulo de 40º com a parede para que não escorregue. A que distância o pé da escada precisa ficar da parede? c) Determine a altura h do poste indicada na figura. Use sen 37º = 0,60 cos 37º = 0,80 tg 37º = 0,75 d) Uma escada rolante de 10m de comprimento liga dois andares de uma loja e tem inclinação de 30º. Qual é, em metros, a altura h entre um andar e outro dessa loja? 87 TABELA DOS ÂNGULOS TRIGONOMÉTRICOS E SUAS MEDIDAS Ângulos seno cosseno tangente Ângulos seno cosseno tangente 1º 2º 3º 4º 5º 6º 7º 8º 9º 10º 11º 12º 13º 14º 15º 16º 17º 18º 19º 20º 21º 22º 23º 24º 25º 26º 27º 28º 29º 30º 31º 32º 33º 34º 35º 36º 37º 38º 39º 40º 41º 42º 43º 44º 45º 0,017 0,035 0,052 0,070 0,087 0,105 0,122 0,139 0,156 0,174 0,191 0,208 0,225 0,242 0,259 0,276 0,292 0,309 0,326 0,342 0,358 0,375 0,391 0,407 0,423 0,432 0,454 0,469 0,485 0,500 0,515 0,530 0,545 0,559 0,574 0,588 0,602 0,616 0,629 0,643 0,656 0,669 0,682 0,695 0,707 1,000 0,999 0,999 0,998 0,996 0,995 0,993 0,990 0,988 0,985 0,982 0,978 0,974 0,970 0,966 0,961 0,956 0,951 0,946 0,940 0,934 0,927 0,921 0,914 0,906 0,899 0,891 0,883 0,875 0,866 0,857 0,848 0,839 0,829 0,819 0,809 0,799 0,788 0,777 0,766 0,755 0,743 0,731 0,719 0,707 0,017 0,035 0,052 0,070 0,087 0,105 0,123 0,141 0,158 0,176 0,194 0,213 0,231 0,249 0,268 0,287 0,306 0,325 0,344 0,364 0,384 0,404 0,424 0,445 0,466 0,488 0,510 0,532 0,554 0,577 0,601 0,625 0,649 0,675 0,700 0,727 0,754 0,781 0,810 0,839 0,869 0,900 0,933 0,966 1,000 46º 47º 48º 49º 50º 51º 52º 53º 54º 55º 56º 57º 58º 59º 60º 61º 62º 63º 64º 65º 66º 67º 68º 69º 70º 71º 72º 73º 74º 75º 76º 77º 78º 79º 80º 81º 82º 83º 84º 85º 86º 87º 88º 89º 0,719 0,731 0,743 0,755 0,766 0,777 0,788 0,799 0,809 0,819 0,829 0,839 0,848 0,857 0,866 0,875 0,883 0,891 0,899 0,906 0,914 0,921 0,927 0,934 0,940 0,946 0,951 0,956 0,961 0,966 0,970 0,974 0,978 0,982 0,985 0,988 0,990 0,993 0,995 0,996 0,998 0,999 0,999 1,000 0,695 0,682 0,669 0,656 0,643 0,629 0,616 0,602 0,588 0,574 0,559 0,545 0,530 0,515 0,500 0,485 0,469 0,454 0,438 0,423 0,407 0,391 0,375 0,358 0,342 0,326 0,309 0,292 0,276 0,259 0,242 0,225 0,208 0,191 0,174 0,156 0,139 0,122 0,105 0,087 0,070 0,052 0,035 0,017 1,036 1,072 1,111 1,150 1,192 1,235 1,280 1,327 1,376 1,428 1,483 1,540 1,600 1,664 1,732 1,804 1,881 1,963 2,050 2,145 2,246 2,356 2,475 2,605 2,474 2,904 3,078 3,271 3,487 3,732 4,011 4,331 4,705 5,145 5,671 6,314 7,115 8,144 9,514 11,430 14,301 19,081 28,636 57,290 88 5ª PARTE / GABARITO 1. a) 2 2 2. 2 6 3 a) b) 4 7 7 c) 2 5 5 b) 6 6 d) 7 2 2 e) c) 3. a) a = 6 b = 5 c = 8 b) a = 1 b = – 4 c = 0 c) a = 1 d) a = 2 f) 2 g) 4 2 3 5 5 d) b=1 b=0 c=1 c=–3 a) completa b)completa c) incompleta d) incompleta 5. a) a ; c b) d c) b ; e 6. a) S = {1, 6} f) S = {–1, 0} b) S = {3, 5} g) S = {3} c) S = {– 5} h) S = ø d) S = {2, 10} 1 1 S = {– , } e) S=ø i) 2 3 C = (1, 3) i) 2 2 e) completa j) k) l) m) D = (3, 2) 10 5 e) e) a = 0,7 b = 0 4. 7. B = (5, 3) 8. h) 5 3 10 2 c = – 0,7 f) incompleta S = {0, 1} S=ø S = {– 4, 4} 7 S = {0, } 4 E = (6, 4) y E 3 C 2 A 1 -2 2 -1 -3 F x 3 4 1 -2 -3 -4 D 9. E = (8, 0); B I = (0, 3); M = (4, –4); P = (1, 2); R = (–2, –2); 10. São funções: c, g Não são funções: a, b, d, e, f, h 11. a) f(0) = 1 b) f(2) = 7 c) f (-1) = –2 12. a) f(0) = 5 13. a) f(0) = 10 b) f(1) = 8 b) f(1) = 18 c) f(–2) = 1 c) f(2) = 28 T = (–4, 4) d) f (- 4) = –11 d) f(–3) = 4 e) f(4) = 17 d) f(–1) = 4 e) f(–3) = –2 f) f(–5) = 0 89 14. 15. b) c) d) y=x+3 90 16. a) x y (x,y) –1 2 (–1, 2) 0 0 (0, 0) 1 2 (1, 2) 2 8 (2, 8) b) x y (x,y) –1 –2 (–1, –2) 0 0 (0, 0) 1 –2 (1, –2) 2 –8 (2, –8) –2 –8 (–2, –8) c) d) y x y (x,y) –3 0 (–3, 0) –2 –3 (–2, –3) –1 –4 (–1, –4) 0 –3 (0, –3) 1 0 (1, 0) 2 5 (2, 5) x y (x,y) –1 –9 (–1, –9) 0 –4 (0, –4) 1 –1 (1, –1) 2 0 (2, 0) 3 –1 (3, –1) 4 –4 (4, –4) 91 5 2 17. a) b) 3 c) 4 d) 4 b) 6 e) 18 18. a) 5 c) 13 19. O lado do losango mede 5cm f) 1 d) 9 20. a) A distância é de 10 m b) 30km 21. a) a 22. a) b) c) 23. a) b) c) d) 24. a) b) b) b h) 6 e) 15 d) c e) f) 7,07 25 43,3 12 j) 14 c) O comprimento do cabo é de 25 m d) e) f) g) h) i) 6 f)40 c) c 6 = 0,6 10 8 = 0,8 10 6 = 0,75 8 7,66 11,48 119,2 20 g) 2 e) b 8 = 0,8 10 6 = 0,6 10 8 = 1,333… 6 i) j) k) l) 4,07 100,68 15,01 6,894 Não. A altura da árvore é de 25,6m. c) A altura do poste é de 6m. A distância aproximada é de 1.93m. d) A altura entre os andares é de 5m. BIBLIOGRAFIA GIOVANNI & GIOVANNI Jr. Matemática - Pensar e descobrir – São Paulo : FTD, 2000. MATSUBARA & ZANIRATO, Big. Mat – Matemática: história; evolução; conscientização – São Paulo : IBEP, 2002. JAKUBO e LELLIS – Matemática na medida certa – São Paulo : Scipione, 1994 IMENES & LELLIS - Matemática – São Paulo : Scipione, 2000 SPINELLI, Walter e Souza, Maria Helena Soares de. Matemática, Oficina de Conceitos – São Paulo : Ática, 2002. ANDRINI, Álvaro. Praticando a Matemática/ Álvaro Andrini, Maria José Vasconcellos – São Paulo : Editora do Brasil, 2002. SOUZA, Maria Helena Soares de. Matemática, Oficina de Conceitos/ Maria Helena Soares de Souza, Walter Spinelli – São Paulo : Ática S.A., 2002. MATSUBARA, Roberto. Big. Mat – Matemática: história; evolução; conscientização/ Roberto Matsubara, Ariovaldo Zaniratto – São Paulo : IBEP, 2002. GUELLI, Oscar. Matemática: uma aventura do pensamento – São Paulo : Ática, 1999. MORI, Iracema.. Matemática: idéias e desafios/ Iracema Mori, Dulse Satiko Onaga – São Paulo : Saraiva, 2001. GIOVANNI, José Rui. Aprendendo Matemática/ José Rui Giovanni e Eduardo Parente – São Paulo : FTD, 1999. DI PIERRO NETTO. Matemática: conceito e história – São Paulo : Scipione, 1998 GIOVANNI, José Rui. Matemática pensar e descobris: O + novo/ Giovanni & Giovanni Jr – São Paulo : FTD, 2002. SILVA, Jorge Daniel da – Caderno do Futuro/ Jorge Daniel da Silva, Valter dos Santos Fernandes, Orlando D. Mabelini – São Paulo : IBEP, 2002. http://www.alunosonline.com.br/matematica/teorema-de-pitagoras.html