Díodo rectificador Lucínio Preza de Araújo http://www.prof2000.pt/users/lpa Constituição Um díodo rectificador é constituído por uma junção PN de material semicondutor (silício ou germânio) e por dois terminais, o Ânodo (A) e o Cátodo (K). Símbolo: 2 Junção PN A junção de um material semicondutor do tipo P (com excesso de lacunas) com um material semicondutor do tipo N (com excesso de electrões livres) origina uma junção PN. Na zona da junção, os electrões livres do semicondutor N recombinam-se com as lacunas do semicondutor P formando uma zona sem portadores de carga eléctrica que se designa por zona neutra ou zona de deplecção. Electrões livres Zona neutra ou zona de deplecção Lacunas 3 Identificação visual dos terminais O terminal que se encontra mais próximo do anel é o cátodo (K). O terminal ligado à parte mais estreita/afunilada é o cátodo (K). O terminal ligado à parte roscada é o cátodo (K). 4 Díodo polarizado directamente O díodo rectificador é um componente unidireccional ou seja, só conduz num sentido (quando o Ânodo está a um potencial positivo em relação ao Cátodo). Nessa situação diz-se que o díodo está polarizado directamente. A K + VCC _ 5 Díodo polarizado inversamente Quando o díodo rectificador está polarizado inversamente (Ânodo a um potencial negativo em relação ao cátodo) não conduz (está ao corte). K A + VCC _ 6 Principio de funcionamento Quando polarizado directamente um díodo rectificador conduz porque na junção PN a zona neutra ou zona de deplecção (zona sem portadores de carga eléctrica) estreita a resistência eléctrica diminui e a corrente eléctrica passa. Electrões livres Lacunas Zona neutra ou zona de deplecção estreita 7 Principio de funcionamento Quando polarizado inversamente um díodo rectificador não conduz porque na junção PN a zona neutra ou zona de deplecção (zona sem portadores de carga eléctrica) alarga a resistência eléctrica aumenta significativamente e a corrente eléctrica não passa. Electrões livres Lacunas Zona neutra ou zona de deplecção alarga 8 Queda de tensão interna Quando o díodo está polarizado directamente a corrente eléctrica ao passar pela zona neutra ou zona de deplecção que apresenta uma certa resistência, origina uma queda de tensão (U=RxI). Nos díodos de silício essa queda de tensão interna pode variar entre 0,6Volt e 1Volt. Nos díodos de germânio essa queda de tensão interna pode variar entre 0,2Volt e 0,4Volt. 9 3ºquadrante 1ºquadrante Características técnicas Tensão directa UF Corrente directa IF Tensão inversa UR Corrente inversa IR IF UR UF IR 10 Leitura das características técnicas Exemplo: Díodo rectificador 1N4007 UR = 1000V Tensão inversa máxima que se pode aplicar ao díodo em polarização inversa. IF = 1A Corrente directa máxima permanente que pode circular pelo díodo. IR = 5A Corrente inversa que percorre o díodo quando polarizado inversamente VF = 1,1V Queda de tensão interna máxima quando o díodo polarizado directamente conduz uma corrente directa de 1A. 11 Curva característica IF Corrente directa Tensão de ruptura UR UF Corrente de fuga Corrente de avalanche IR Pode-se observar na curva característica do 1º quadrante (díodo polarizado directamente) que à medida que se aumenta a tensão directa (UF) a corrente directa (IF) também aumenta. Na curva do 3º quadrante (díodo polarizado inversamente) podemos observar que para uma dada faixa da tensão inversa (UR) a corrente inversa (IR) é desprezível (corrente de fuga). A tensão inversa não pode atingir a tensão de ruptura pois isso acarreta que o díodo passe a conduzir em sentido contrário (rompeu a junção PN). 12 Recta de carga Consideremos o circuito: + VF _ + VCC _ IF + RC _ -VCC + VF + RC.IF = 0 VF + RC.IF = VCC Encontramos uma equação que relaciona VF e IF: VCC = VF + RC.IF Esta equação permite determinar os dois pontos da recta de carga, que sobreposta à curva característica do díodo, determinará o ponto de funcionamento (Q) do díodo. 13 Recta de carga Este é um método gráfico que permite que encontremos o ponto de funcionamento do díodo. É de notar que a recta de carga depende do circuito (VCC e RC) em que o díodo está inserido, enquanto que a curva característica é fornecida pelo fabricante. IF VCC = VF + RC.IF Corrente de saturação IFQ Tensão de corte Ponto de funcionamento (Q) Recta de carga VFQ Tensão de corte IF=0 VCC=VF Corrente de saturação VF=0 IF=VCC / RC VF 14 Exemplo da determinação do ponto de funcionamento (Q) de um díodo IF VCC = VF + RC.IF + VCC=3 V RC=750 _ Tensão de corte IF=0 VCC=VF VF=3 V Corrente de saturação VF=0 IF=VCC / RC IF=3 / 750 mA IF= 4 mA 5 4 2,5 3 Q 2 1 1 2 3 Para as condições do circuito (VCC=3Volt e RC=750) e a curva característica representada, a corrente directa no díodo será de IFQ≈2,5mA e a tensão directa será de VFQ=1,1V. 1,1 15