Teoria dos Grafos Trabalho Computacional ALGORITMO DE KRUSKAL Algoritmo polinomial para geração de uma Árvore Geradora Mínima de um grafo conexo Hilio Holz Ramon M. Ramos Professora: Maria Claudia Silva Boeres Agenda 1. Árvores, Árvores Geradoras, Árvores Geradoras Mínimas e seus pesos 2. O problema da Árvore Geradora Mínima 3. O algoritmo de Kruskal 4. Estruturas de dados utilizadas 5. Implementações realizadas 6. Complexidade do algoritmo 7. Resultados obtidos 8. Conclusão Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Árvore O que é? Na teoria dos grafos, uma árvore nada mais é do que um tipo especial de grafo: Árvores são grafos em que não existem ciclos! Uma árvore Algoritmo de Kruskal Um grafo comum com ciclos Hilio Holz e Ramon M. Ramos Árvore Geradora O que é? Uma árvore é dita geradora se ela interliga (direta ou indiretamente) todos os nós do grafo. Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Árvore Geradora Mínima – AGM O que é? Uma Árvore Geradora Mínima - AGM, ou Minimum Spanning Tree - MST, de um grafo com pesos nas arestas (grafo valorado) é qualquer árvore geradora do grafo que tenha peso mínimo. Vale frisar.. Localizar uma AGM só é possível em grafos valorados, ou seja, com pesos nas arestas. Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Peso total de uma AGM O que é peso? Peso é o valor dado a cada aresta, podendo representar qualquer valor em um problema real, como custo, fluxo, confiabilidade, etc. Como calcular o peso total? O peso total de uma AGM é dado pela soma dos pesos das arestas da árvore. Peso total da árvore geradora: 1+2+4+6+12 = 25 Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos O problema da AGM O problema da Árvore Geradora Mínima – AGM consiste em encontrar, dado um grafo com arestas valoradas, uma estrutura de conexão (árvore) em que todos os nós (geradora) se conectem (direta ou indiretamente) uns aos outros. Essa estrutura deve possuir o menor peso possível, onde o peso é dado pela soma dos pesos das arestas escolhidas (mínima). Como resolver? • Opção 1 – Difícil! formar todas as árvores geradoras possíveis e escolher a de menor peso O matemático Arthur Caley provou que um grafo com N nós possui NN-2 árvores geradoras diferentes. N=4, 16 árvores N=6, 1.296 árvores N=10, 100.000.000 árvores Apenas 1 árvore mínima • Opção 2 – Melhor Usar um algoritmo específico para esta tarefa... Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Algoritmos possíveis de AGM Há quatro possibilidades conhecidas Algoritmo de Kruskal. Algoritmo de Prim. Algoritmo Reverse-Delete. Algoritmo de Borůvka. Esta apresentação se limita a demonstrar o comportamento do Algoritmo de Kruskal Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos O algoritmo de Kruskal História Este algoritmo apareceu pela primeira vez no jornal Proceedings of the American Mathematical Society, em 1956, e foi escrito por Joseph Bernard Kruskal, Jr. Objetivo Resolver o problema de AGM para grafos conexos. Para grafos desconexos encontra a Floresta Geradora Mínima. O que é Floresta Geradora Mínima? É o mesmo princípio das AGM só que para grafos desconexos. Uma Floresta Geradora Mínima é composta pelo conjunto de árvores geradoras mínimas de cada componente conexo. Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Funcionamento 1. Lê todas as arestas 1. Verifica: 2. Ordena em ordem crescente 1. Se forma ciclo, descarta 3. Seleciona cada aresta na ordem 2. Senão adiciona à arvore Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Programa exemplo Clicar na figura para abrir o programa... Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Estrutura de dados Estruturas de dados utilizadas Matriz de Adjacência com pesos Lista de Arestas Algoritmo implementado utilizando Conjuntos Disjuntos Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Matriz de Adjacência • Arestas nulas representadas com 999 • Alocado somente metade da matriz • Sem ordenação! • Não façam isso em casa! Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Lista de Arestas • Não representa arestas inexistentes • Não consegue representar grafos desconexos 5 1 2 2 4 7 5 V1 : 1 V2 : 2 Custo : 5 Algoritmo de Kruskal V1 : 1 V2 : 5 Custo : 7 3 10 4 V1 : 1 V2 : 3 Custo : 2 V1 : 3 V2 : 2 Custo : 4 V1 : 3 V2 : 5 Custo : 10 Hilio Holz e Ramon M. Ramos Conjuntos Disjuntos • Conjuntos de objetos conectados • Objetos • Conjuntos Disjuntos • Find • Union Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Conjuntos Disjuntos - Quick Find • Estrutura de Dados • Vetor de inteiros id[ ] de tamanho N • Dois vértices são de mesmo conjunto se tem o mesmo id. • Find: Retornar o id do nó • Union: Para mesclar conjuntos contendo p e q, muda-se todas as entradas com id[p] para id[q] Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Conjuntos Disjuntos - Quick Union • Estrutura de Dados • Vetor de inteiros id[ ] de tamanho N • id[i] é o pai de i • Find: Procurar recursivamente até id[i] =i • Union: mudar o id da raiz de um dos conjuntos Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Heurística 1 - União por Ordenação • Objetivo Evitar árvores compridas. • Union: A raiz de menor ordem aponta para a raiz de maior ordem. Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Heurística 2 - Compressão de Caminho • Find: Fazer cada nó no caminho apontar diretamente para a raiz. Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Implementação – Complexidade •Make Sets •Ordenação •Find's + Union's Estrutura Conjuntos Make Sets Ordenação Find's + Union's Matriz Quick-Find O(V) O(n3) O(n+Lg n) Quick-Find O(V) O(E Lg E) O(n+Lg n) Quick-Union O(V) O(E Lg E) O(n+Lg n) QU+heurísticas O(V) O(E Lg E) O(n) Lista Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Implementação • Linguagem • C • Testes • Grafos Esparsos Densos Completos • Número de Vértices variando de 50 a 2000 (de 50 em 50) Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Resultados – Grafos Esparsos Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Resultados – Grafos Densos Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Resultados – Grafos Completos Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Exemplo • Ex:Problema realmente grande • 109 vértices e 1010 arestas • Aplicação das heurísticas reduz o tempo de 3000 anos para 1 minuto em relação ao Quick-Find Fonte: http://www.cs.princeton.edu/~rs/AlgsDS07/01UnionFind.pdf Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Conclusão • Ordenação tem efeito muito importante • 'Quick Union + heurísticas' é implementação assintoticamente mais rápida conhecida • Bons Algoritmos tornam as soluções possíveis Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos Obrigado! Dúvidas / Perguntas? Algoritmo de Kruskal Hilio Holz e Ramon M. Ramos