1 desenho geométrico 2013 eber nunes ferreira desenho geométrico 1-INTRODUÇÃO À GEOMETRIA 1.1 - INTRODUÇÃO A Geometria é a ciência que tem por objetivo o estudo rigoroso do espaço e das figuras que nele podem conceber. Baseia-se em: -conceitos primitivos: aqueles que não se definem, mediante os quais podem ser definidos todos os outros. Ex.: o ponto -postulados: proposições admitidas sem demonstrações. Ex.: há infinitos pontos em uma reta. -teoremas: proposições que necessitam de demomonstrações. Ex: a soma do quadrado dos catetos é igual ao quadrado da hipotenusa (Terema de Pitágoras). 1.2 -ELEMENTOS FUNDAMENTAIS Ponto O ponto resulta da interseção de duas linhas, sendo indicado com letras maiúsculas ou números: A, B, C, ... 1, 2, 3, ... e representados da seguinte forma: A 1 Linha Conceituação: a linha pode ser comparada a uma série de pontos que se sucedem no espaço, tão próximos que se confundem num traço contíguo, unidimensional. Assim, podemos concebê-la como o conjunto das posições de um ponto móvel, podendo se apresentar com a forma: linha poligonal linha reta linha mista linha curva Linha Reta Quando um ponto se desloca no espaço sem nunca mudar de direção, ele dá origem a uma linha reta, sendo esta, infinita e ilimitada nos dois sentidos. A r reta B P segmento de reta r semi-reta As retas podem ser classificadas conforme a posição absoluta em que se encontra, e quanto às posições relativas. Posição Absoluta Posições Relativas (retas coplanares) a b b COINCIDENTES a horizontal PARALELAS vertical a b b a inclinada CONCORRENTES EBER NUNES FERREIRA PERPENDICULARES eber nunes ferreira 2 desenho geométrico Plano O plano pode ser considerado como o conjunto das posições de uma linha reta móvel, que se desloca paralelamente a si mêsma em uma única direção. É designado por letras minúsculas do alfabeto grego. É representado da seguinte forma. = alfa = beta = gama 2 - LUGARES GEOMÉTRICOS Conceito: Lugar Geométrico de pontos é o lugar do plano onde todos os pontos nele situados gozam de uma mesma propriedade. Existem vários lugares geométricos, no entanto, cinco são considerados os mais importantes. São eles: circunferência, mediatriz, bissetriz, paralela e arco-capaz. 2.1 - Circunferência: é o lugar geométrico dos pontos equidistantes de um ponto dado. … … 3 3 2 2 1 1 O O 2.2 - Mediatriz: é o lugar geométrico dos pontos eqüidistantes de dois pontos dados. 1 1 2 2 … … A A B P A1=1B B AP=PB P 2.3 - Paralela: é o lugar geométrico dos pontos eqüidistantes de uma reta dada. 1 2 3 4 5 y 1 2 3 4 5 y d A B C D E x 1 2 3 4 5 y d A B C D E x A B C D E x d d= distância y' 1' EBER NUNES FERREIRA 2' 3' 4' 5' eber nunes ferreira 3 desenho geométrico 2.4 - Bissetriz: é o lugar gemétrico dos pontos eqüidistantes de duas retas concorrentes, ou o lugar geométrico dos pontos eqüidistantes dos lados de um ângulo dado. 3 3 2 1 A O 1 d y B x A O 2' B x d 1' d y C BISSETRIZ 2 C y BISSETRIZ BISSETRIZ d 1' 2' 3' x 3' 2.5 - Arco-capaz: é o lugar gemétrico dos pontos de onde segmentos dados, são vistos segundo ângulos dados. P' P" P Esta é uma propriedade observada entre a circunferência e sua corda. (Corda é o segmento que une dois pontos distintos da circunferência) O B DA COR A P' P" P O O O B C OR B B DA C OR DA A DA C OR A A P' O O O B 180º B DA C OR D CO R A A B DA C OR A A Q' Q' Q Lembre-se que a maior corda de uma circunferência é o seu diâmetro. O valor do arco-capaz quando a corda passa pelo centro é de 90º e neste caso, os ângulos e são congruentes (iguais). Q O A 180º B A O B 90º Q CORDA = DIÂMETRO EBER NUNES FERREIRA eber nunes ferreira 4 desenho geométrico 2.6 - EXERCÍCIOS RESOLVIDOS. Os exercícios que se seguem de 01 a 09 são apresentados já resolvidos e acompanhados do método construtivo. O aluno deverá repetir cada exercício assimilando e raciocinando os procedimentos utilizados. Os exercícios de 10 a 17 são apresentados apenas com o enunciado e o aluno deverá valer-se dos conhecimentos adquiridos. (Os exercícos resolvidos nem sempre se apresentam com as medidas reais). ER01 - Determine a mediatriz dos pontos A e B . Lembre-se : a mediatriz determina o ponto médio do segmento definido pelos pontos A e B. Construção: Centro em A, com abertura qualquer do compasso maior que a metade de AB, descreve-se um arco acima e outro abaixo do segmento dado. Centro em B, com a mesma abertura repete-se a operação anterior. Os arcos se cruzarãos aos pares determinando os pontos 1 e 2, que ligados determinarão a mediatriz pedida. Obs.: a abertura maior que a metade, pode ser maior que o próprio segmento. Vale salientar que quanto mais distantes ficarem os pontos 1 e 2, maior será a precisão. 1 A B A B 2 ER02 - Levantar uma perpendicular ao meio do segmento AB (mediatriz AB) situado sobre a reta x. Construção: Determinar a mediatriz de AB. 1 A B x A B 2 ER03 - Por um ponto P situado fora da reta x, levantar a reta y perpendicular à x. PROCESSO I - Construção: Centro em P, abertura qualquer, descreve-se um arco determinando os pontos 1 e 2 sobre x (prolongue-o se necessário). Agora determine a mediatriz de 12 e obtenha y. P P y x 1 x 2 2 EBER NUNES FERREIRA eber nunes ferreira 5 desenho geométrico PROCESSO II - Construção: Determina-se arbitrariamente o ponto 1 sobre a reta x. Centro em 1, abertura 1P, descreve-se um arco determinando o ponto 2 sobre 1x. Centro em 2, abertura 2P descreve-se outro arco que interceptará o primeiro no ponto 3. Uni-se 3 a P e obtém-se a perpendicular pedida. P P y 1 2 x x 3 ER04 - Por um ponto P, situado na reta x, levantar a reta y perpendicular à x. Construção: Centro em P, abertura qualquer, descreve-se um arco determinando os pontos 1 e 2 sobre x. Obtenha y determinando a mediatriz de 12. P 1 x P x 2 y ER05 - Pelo ponto P, situado na extremidade da reta x, levantar a reta y perpendicular à x. (Nos processos referentes a este exercício, não é previsto o prolongamento da reta PROCESSO I - Construção: Tomando como extremidade o ponto P, abertura qualquer, descreve-se um arco (maior que 120º) determinando o ponto 1 sobre x. Com mesma abertura, centro em 1, determina-se 2, em seguida, centro em 2 e determina-se 3, ambos sobre o arco inicial. Agora, basta encontrar a mediatriz dos pontos 2 e 3 e teremos solucionado o exercício. Pelo fato do ponto P, pertencer à mediatriz, basta determinar o ponto 4. Obs.: a abertura inicial é qualquer, mas depois de estabelecida, não poderá ser alterada dentro do exercício. y 4 2 3 P x P x 1 PROCESSO II - Construção: Tomando como extremidade o ponto P, abertura qualquer, descreve-se um arco (maior que 60º) determinando o ponto 1 sobre x. Com mesma abertura, centro em 1, determina-se 2 sobre o arco. Une-se 1 a 2 prolongando-o, determinando assim a reta auxiliar a . Com a mesma abertura, à partir de 2 determina-se 3 sobre a. O ponto 3 ligado ao ponto P determinará a perpendicular y pedida. a y 3 2 P EBER NUNES FERREIRA 1 x P x eber nunes ferreira 6 desenho geométrico PROCESSO III - Construção: De um ponto O qualquer, fora da reta dada, com abertura PO, descreve-se um arco (maior que 180°) determinando o ponto 1 sobre x. Une-se 1 a O prolongando-o, Determina-se assim, a reta auxiliar a que encontrará o ponto 2 sobre o arco. O ponto 2 ligado ao ponto P determinará a perpendicular y pedida. y a 2 O P x P x 1 PROCESSO IV - Construção: Este processo baseia-se no fato de que todo triângulo de lados 3u, 4u e 5u, é um triângulo retângulo. Sobre uma reta auxiliar e com o auxílio do compasso ou com o uso da régua graduada, marca-se 5 módulos quaisquer, mas que sejamiguais entre si . Centro em P, abertura igual a 3 módulos, descreve-se um arco determinando o ponco 1 sobre x. Centro novamente em P, abertura igual a 4 módulos e descreve-se um segundo arco. Centro em 1, abertura igual a 5 módulos e descreve-se um arco que interceptará o anterior determinando o ponto 2. Une-se P a 2 e obtém-se a perpendicular y desejada. y 2 5u 4u 1 u P x x 3u P u u u u ER06 - Por um ponto P, situado fora da reta x, traçar uma reta y paralela a x. PROCESSO I - Construção: Por P, passe uma reta a qualquer, que corte x no ponto A . Centro em A, abertura AP e determina-se sobre a o ponto 1. Pelo ponto 1, passe uma reta b qualquer, que corte x no ponto B. Centro em B abertura B1 e determina-se sobre b o ponto P’. Com a união dos pontos P e P’, obtém-se a reta y pedida. P P P' a y b x x A B A1 = AP BP' = B1 1 EBER NUNES FERREIRA eber nunes ferreira 7 desenho geométrico PROCESSO II - Construção: Centro em P, abertura qualquer, descreve-se um arco determinando 1 em x. Centro em 1, mesma abertura e determina-se sobre x o ponto 2 (arco P2). Centro em 1, abertura 2P, determina-se sobre o primeiro arco o ponto 3. Com a união dos pontos 3 e P, obtém-se a reta y pedida. P P y 3 1P = 12 13 = 2P x x 2 1 ER07 - Traçar uma reta y paralela à reta dada x. Construção: Centro em P (ponto qualquer sobre x), abertura qualquer, descreve-se uma semi-circunferência determinando A e B sobre x. Centro em A, com a mesma abertura, determina-se sobre o arco, o ponto 1. Centro em B, mesma abertura, determina-se sobre o arco o ponto 2. Com a união dos pontos 1 e 2, obtém-se a reta y pedida. 1 2 y x A x B P P ER08 - Determine o lugar geométrico dos pontos equidistantes do ângulo dado (bissetriz). Construção: Centro em O, abertura qualquer, determina-se sobre os lados do ângulo, os pontos 1 e 2. Centro em 1, abertura qualquer, traça-se um arco de circunferência. Centro em 2, mesma abertura, e traça-se um outro arco que concorrerá com o anterior, determinando o ponto 3. Unindo os pontos O e 3, obtém-se a bissetriz pedida. 2 O 3 O 1 O EBER NUNES FERREIRA eber nunes ferreira 8 desenho geométrico ER09 - Determine a bissetriz do ângulo dado, sem recorrer ao vértice. Construção: Traçe uma reta auxiliar qualquer cortando os lados do ângulo dado, obtendo os ângulos auxiliares A, B, C e D. Encontre o ponto 1 com o cruzamento das bissetrizes dos ângulos A e B, e o ponto 2 com as bissetrizes dos ângulos C e D. Com a união dos pontos 1 e 2, obtém-se a bissetriz pedida. D 2 A 1 C B EXERCÍCIOS PROPOSTOS EP01 - Dados os pontos 1,2,3 e 4, encontre o ponto P que seja equidistante dos pontos 1 e 2 e dos pontos 3 e 4. 2 3 4 1 EP02 - Construa uma circunferência cujo centro pertença a reta x e que contenha os pontos R e S. S R x EP03 - Construa uma circunferência de raio = 2cm e que contenha os pontos R e S. S R EBER NUNES FERREIRA eber nunes ferreira 9 desenho geométrico EP04 - Encontre sobre a reta x os pontos 1 e 2 distantes 2 cm da reta y. y x EP05 - Encontre o ponto K sabendo-se que o mesmo encontra-se equidistante dos lados não paralelos do trapézio ABCD e distante 2,5 cm da base maior. Quantos pontos solucionam este exercício ? D C A B EP06 - Construa uma circunferência que tangencie os lados em cada triângulo ABC dado. B C A EP07 - Construa o triângulo ABC sabendo que o lado BC = 4 cm, é paralelo a reta x. x B A EBER NUNES FERREIRA eber nunes ferreira 10 desenho geométrico 3 - DIVISÃO DE SEGMENTOS TEOREMA DE TALES Um feixe de retas paralelas determina em duas ou mais transversais quaisquer, segmentos proporcionais. s t t s v x a a b x c a b y y a w d b b a b z z Considerando o feixe de retas paralelas equidistantes (v, x, y, w e z), cortado pelas retas transversais s e t, temos na reta s, segmentos iguais de medida a, e na reta t, segmentos iguais de medida b. 3.1- DIVISÃO DE SEGMENTOS Exemplo de divisão do segmento AB em n partes iguais. Considerar n = 4. s' 0 1 2 3 A 4 0 B 1 s//s' 2 3 4 s PROCESSO: Contrução: Por A passe um reta auxiliar s determinando um ângulo qualquer com o segmento AB. Transporte este ângulo para o ponto B determinando a reta s' paralela a reta s. Com o uso do compasso ou de uma régua graduada, marque sobre s e s', n módulos iguais. Ao unirmos os pontos dos módulos, formando retas paralelas, o segmento AB é dividido em n partes iguais. EBER NUNES FERREIRA eber nunes ferreira 11 desenho geométrico 3.2- DIVISÃO SIMULTÂNEA DE SEGMENTOS Dividir os segmentos AB, CD e EF em n partes iguasis. Considerar n= 5 P A B C D 60º Contrução: Sobre uma reta auxiliar qualquer , com o uso do compasso ou de uma régua graduada, marque n módulos iguais. - Contrua um triângulo equilátero tendo por lado um dos segmentos a serem diivididos, preferencialmente o maior. F E 0 1 2 3 4 5 60º E 60º F Centro em P com abertura AB, transporta-se o segmento para o triângulo. Repete-se esta operação para todos os demais segmentos a serem divididos incluisve o segmento formado pelos módulos. PRIMEIRO PASSO P P A A B D C 0 1 2 3 4 D C F E Ao unirmos os pontos dos módulos ao ponto P todos os segmentos são divididos em n partes iguais simultaneamente. B F E 5 0 SEGUNDO PASSO 1 2 3 4 5 TERCEIROPASSO 3.3- DIVISÃO DE SEGMENTOS EM PARTES PROPORCIONAIS ER10 - Dividir os segmentos AB proporcional aos lados do Triângulo XYZ. Z x y X Y z y' A A B z' x' B y s' z x PROCESSO I : Contrução: Por A, passe uma reta auxiliar r formando um ângulo qualquer com o segmento dado. Sobre r, a partir de A, transporte os lados y, z e x com o uso do compasso. Una o ponto B a extremidade do lado x determinando a reta s. Pelas extremidades de cada segmento transportado, passe uma reta paralela a s. O encontro de cada reta paralela com o AB, divide o segmento em partes proporcionais a y, z e x. PROCESSO II : Aplicar o mesmo raciocínio utilizado o segundo processo de divisão em partes iguais. OBSERVAÇÃO: Com a divisão do segmento AB em partes proporcionais aos lados x, y e z, do triângulo, podemos construir um outro triângulo de lados x ', y' e z' proporcional a ao primeiro e cujo perímetro é igual ao segmento AB. Assim sendo, podemos contruir várias figuras proporcionais as outras conhecendo-se o seu perímetro. EBER NUNES FERREIRA eber nunes ferreira 12 desenho geométrico 4 - ÂNGULOS Considere, inicialmente três pontos A, B e C distintos não-colineares sobre uma superfície plana. Ao definirmos duas semi retas AB e AC, também definiremos duas regiões que elas limitam no plano. A reunião das semi-retas com qualquer uma das duas regiões por elas limitadas no plano é denominada ÂNGULO. B A C B B ângulo A A C ângulo C Portanto, ângulo é a reunião das semi-retas com a região por eles delimitada. Quando os lados do ângulo forem coincidentes, teremos a formação dos ângulos: de volta inteira e nulo. lados coincidentes A lados coincidentes A ÂNGULO DE VOLTA INTEIRA ÂNGULO NULO Quando os lados do ângulo forem semi-retas opostas,ou seja, os pontos A, B e C forem distintos colineares, a reunião das duas, resulta em uma única reta. Assim teremos a formação dos ângulos denominados de rasos ou de meia volta. A lados opostos lados opostos A ÂNGULO RASO OU DE MEIA VOLTA ÂNGULO RASO OU DE MEIA VOLTA Uma figura é denominada convexa se, para quaisquer dois pontos distintos a ela pertencentes, todos os pontos do segmento a ela também pertencerem. lado lado A A lado lado ÂNGULO CONVEXO EBER NUNES FERREIRA ÂNGULO CÔNCAVO eber nunes ferreira 13 desenho geométrico 4.1 - ELEMENTOS DE UM ÂNGULO Vértice do Ângulo : é o ponto comum às semi-retas. Lados : são as próprias semi-retas. Abertura Angular : é a unidade de medida do ângulo. Região Angular : é a porção compreendida ou delimitada pelos lados. lado Região Angular A Abertura Angular Vértice lado 4.2- MEDIDAS DA ABERTURA ANGULAR A abertura angular pode ser expressa em graus, grados e radianos, onde o maior ângulo que se obtém ao nível do desenho geométrico é o de 360° , 400 gr ou 2prd, ou seja, um ângulo de volta inteira. No entanto utilizaremos durante o curso, o grau, como unidade de medida. rd 270° 300gr 360° 0° 180° rd 200gr 400gr 0gr rd rd 100gr 90° rd NOTAÇÃO : Para indicarmos que um ângulo, tem uma determinada abertura, escrevemos das seguintes maneiras: BÂC = 45° ou  = 45° Atente para o fato de que dois ou mais ângulos que possuem medidas iguais são chamados ângulos congruentes.   0° ÂNGULO NULO   90° ÂNGULO RETO 180° 360° ÂNGULO RASO ÂNGULO DE VOLTA INTEIRA 4.3 - REGIÃO INTERNA E PONTO INTERIOR (PONTO INTERNO) Excluíndo os lados de um ângulo, obtemos as seguintes regiões: - região interna do ângulo convexo - e a região interna do ângulo côncavo. Um ponto é considerado ponto interior, quando pertecer à região interna do ângulo. A A A P A P ÂNGULO CONVEXO EBER NUNES FERREIRA ÂNGULO CÔNCAVO P PONTO INTERIOR eber nunes ferreira 14 desenho geométrico 4.4 - ÂNGULOS CONSECUTIVOS Dois ângulos são consecutivos quando possuem o mesmo vértice e um mesmo lado comum. A ângulos consecutivos B O' O O O C AÔB e BÔC são ângulos consecutivos AÔB e AÔC são ângulos consecutivos ângulos não consecutivos 4.5 - ÂNGULOS ADJACENTES Dois ângulos consecutivos são adjacentes quando não possuem ponto interior comum B A A A P B P B C P O O O C C AÔB e BÔC são ângulos consecutivos adjacentes, pois não possuem ponto interior comum, ou seja, o ponto P quando pertence a região interna de AÔB, não pertence a região interna de BÔC e vice-versa. D Se consideramos os ângulos AÔC e BÔC,eles serão classificados como ângulos consecutivos não adjacentes, pois possuem ponto (P) interior comum, ou seja o ponto P pertence a região interna dos dois ângulos. Se consideramos os ângulos AÔC e BÔD, eles serão classificados como ângulos não consecutivos,(possuem mesmo vértice, porém não possuem lado comum), e não adjacentes, pois possuem um ponto (P) interior comum (o ponto P pertence a região interna dos dois ângulos). 4.6 - ÂNGULOS COMPLEMENTARES E SUPLEMENTARES Dois ângulos são complementares, quando a soma de suas aberturas angulares é igual a um ângulo reto (90°). A A B B C C O O + = 90º O' D + = 90º Dois ângulos são suplementares, quando a soma de suas aberturas angulares (medidas) é igual a um ângulo raso (180°). B A O + = 180º EBER NUNES FERREIRA C B C A O O D + = 180º eber nunes ferreira 15 desenho geométrico Analise os ângulos abaixo e classifique-os conforme o exemplo. A B BÔC AÔB AÔC AÔB C e e e e AÔC ângulos consecutivos não adjacentes complemtares AÔC ............................................................ BÔD ............................................................ CÔD ............................................................ 30° 3 0° 30 ° D O 4.7 - TRANSPORTE GEOMÉTRICO DE ÂNGULOS Os ângulos obtidos com o auxílio do compasso necessitam que o mesmo seja apontado corretamente, para a obtenção de contruções geométricas com uma precisão adequada. 0° 14 0° 15 30º ° 160 75º 170° 180° Exemplo de construções Técnicas ER11 - Dado um âgulo , pede-se transportá-lo geometricamente para a semi-reta Or. 2' 2 2' V 1 COM ABERTURA QUALQUER E CENTRO EM V DESCREVE-SE UM ARCO QUE CORTA OS LADOS DO ÂNGULO DADO EM 1 E 2. O COM A MESMA ABERTURA E CENTRO EM O DESCREVE-SE UM ARCO QUE CORTA A SEMI-RETA EM 1'. V EBER NUNES FERREIRA O 1' O 1' COM A ABERTURA 12 E A PARTIR DE 1' MARCA-SE 2' O 1' COM A UNIÃO DE O2' OBTÉM-SE O ÂNGULO DESEJADO. r eber nunes ferreira 16 desenho geométrico Utilizando o transporte de ângulos podemos aplicar este conhecimento para adição e subtração geométrica de ângulos. 4.8 - ADIÇÃO DE ÂNGULOS ER12 - Dados os âgulos e , pede-se somá-los geometricamente tendo como vértice o ponto V. O O V 3 2 O O 1 V 2 3' 3' 2' 2' 2' V 1' V 1' 1' V 1' 4.9 - SUBTRAÇÃO DE ÂNGULOS ER13 - Dados os âgulos e , pede-se subtraí-los geometricamente tendo como vértice o ponto V. O O V 3 2 O O 1 V 2 3' 1' 3' 2' 2' 2' V 1' Com a abertura 12 e centro em 1' determina-se o ponto 2'. EBER NUNES FERREIRA V 1' Com a abertura 23 e centro novamente em 1'' determina-se o ponto 3'. V 1' O ângulo procurado é a diferença entre e. Portanto basta tornar os ângulos e em ângulos consecutivos não adjacentes eber nunes ferreira 17 desenho geométrico EXERCÍCIOS EP06 - Efetue graficamente as operações com os ângulos abaixo. O O O O V O O V 4.10 - CONSTRUÇÕES GEOMÉTRICAS DOS ÂNGULOS ER14 - Construção do ângulo de 45º através da divisão do ângulo de 90º 3 2 3 2 3 45º O 1 Centro em O com abertura qualquer obtem-se 1 e 3. O 1 Com a mesma abertura centros em 1 e 3 e determina-se 2. O 1 O2 divide o ângulo de 90º em 2 ângulos de 45º. ER15 - Construção do ângulo de 30º através da divisão do ângulo de 90º em 3 partes iguais. 4 4 4 3 30º 3 30º 2 2 30º O 1 Centro em O com abertura qualquer obtem-se 1 e 4. O 1 Com igual abertura, centros em 1 e 4 e determina-se 2 e 3. O 1 O2 e 03 dividem o ângulo de 90º em 3 ângulos de 30º. Observe ao dividir um ângulo reto em 3 partes iguais obtém-se também um ângulo de 30º e outro de 60º EBER NUNES FERREIRA eber nunes ferreira 18 desenho geométrico ER16 - Construção do ângulo de 60º 2 2 60º O O 1 Centro em O com abertura qualquer obtem-se 1. O 1 Com igual abertura, centro em 1 determina-se 2. 1 O2 define o ângulo 1O2 de 60º ER17 - Construção do ângulo de 30º 1 1 1 2 2 30º O O O Centro em O com abertura qualquer obtem-se 1. Com igual abertura, centro em 1 determina-se 2. O2 define o ângulo de 30º ER18 - Construção do ângulo de 15º 1 1 1 2 2 2 30º O O Centro em O com abertura qualquer obtem-se 1. 15º O Com igual abertura, centro em 1 determina-se 2. O2 define o ângulo de 30º Construa a bissetriz d o ângulo de 30º e obtenha um ângulo de 15º. ER19 - Construção do ângulo de 75º 15º 30º 2 15º 2 2 75º 75º 60º O 1 Repita a operação do exercício 3. EBER NUNES FERREIRA O 1 Construa a bissetriz d o ângulo de 30º e obtenha um ângulo de 15º. O 1 A somatória de 60º e 15º produz o ângulo desejado. eber nunes ferreira 19 desenho geométrico ER20 - Construção do ângulo de 120º 2 3 2 3 120º 60º 60º O O 1 Centro em O com abertura qualquer obtem-se 1. O 1 Com igual abertura, centro em 1 determina-se 2. Centro em 2 com mesma abertura e obtemse o ponto 3 1 O ângulo 1O3 mede 120º. ER21 - Dividir um ângulo dado em um número par de partes iguais. O 1 Determina-se a bissetriz do ângulo dado. O O 1 Assim ele foi dividido em duas vezes. 1 Em seguida traçam-se sucessivas bissetrizes. ER22 - Dividir um ângulo dado não reto em três iguais. - Com centro em O, traça-se uma circunferência auxiliar de raio qualquer, determinando os pontos A e B. - Traça-se a mediatriz do ângulo AÔB determinando o ponto 1 sobre a circunferência. A 3 - A partir do ponto 1, transporta-se com o auxílio do compasso, a medida do raio determinando o ponto 2 sobre a bissetriz. 1/3 5 r - Prolonga-se os lados do ângulo dado, determinando os ponto 3 e 4 sobre a circunferência. 1 r 2 1/3 O 6 - Unindo os pontos 3 e 2 e também os pontos 4 e 2 obtem-se os pontos 5 e 6 respectivamente. 1/3 4 - Unindo os pontos O5 e O6, dividimos o ângulo dado em 3 partes iguais. B O EBER NUNES FERREIRA eber nunes ferreira 20 desenho geométrico 5 - CONSTRUÇÃO DE ARCO-CAPAZ CONHECENDO-SE A CORDA Qualquer segmento cujas extremidades forem tocadas por uma circunferència, torna-se uma corda da circunferência, e passa a definir dois arcos de circunferência distintos . P P O A B CORDA A O B A CORDA O CORDA A B B Lembre-se que esta é uma propriedade observada entre a circunferência e sua corda. (Corda é o segmento que une dois pontos distintos da circunferência) Qualquer ponto P sobre um dos arcos, quando unido as extremidades da corda, determinará um ângulo constante. Esta propriedade comum destes pontos, define o lugar geométrico denominado, arco-capaz. (ver pág. 3) Vejamos a seguir os procedimentos para obtenção do arco-capaz quando nos é fornecido a corda e o ângulo desejado. Lembre-se que toda mediatriz de uma corda passa pelo centro da circunferência. Obtenção geométrica do ângulo auxiliar. Pelo vértice do ângulo dado, levante uma perpendicular em relação a um dos lados. Em ambos os casos, o ângulo auxiliar é a diferença entre o ângulo dado e o ângulo reto. (o maior menos o menor) 90º PARA ÂNGULOS AGUDOS PARA ÂNGULOS OBTUSOS A B r O O r A EBER NUNES FERREIRA B eber nunes ferreira 21 desenho geométrico 6 - POLÍGONOS A. Conceitos D C E F G A B D E B F A A - Linha Poligonal: é a linha formada pela sucessão de segmentos consecutivos não colineares. C B - Polígono: é a região do plano limitada por uma linha poligonal fechada. 2. Elementos D E D Diagonal D E E Lado A B Vértice C A C Apótema C A B B Ângulos Internos Ângulos Externos O segmento que une o centro do polígono regular ao ponto médio de um dos lados é denominado de apótema, e corresponde ao raio da circunferência inscrita no polígono. 3. Classificação Quando uma parte de um segmento unindo dois pontos internos situa-se fora da área poligonal. Côncavo Regular Convexo a) Conforme a posição dos dados: Irregular b) Conforme a dimensão dos lados: c) Quanto ao número de lados: N° de lados 3 4 5 6 7 8 Polígono N° de lados Triângulo Quadrilátero Pentágono Hexágono Heptágono Octógono 9 10 11 12 13 14 EBER NUNES FERREIRA Polígono Eneágono Decágono Undecágono Dodecágono Tridecágono Tetradecágono N° de lados 15 16 17 18 19 20 Polígono Pentadecágono Hexadecágono Heptadecágono Octodocágono Eneadecágono Icoságono eber nunes ferreira 22 desenho geométrico 7 -TRIÂNGULO 7.1 - Conceito: O Triângulo é o polígono convexo de três lados e três ângulos. 7.2 - Classificação: a - Conforme a dimensão dos lados: Equilátero Isósceles Escaleno Possui os lados iguais Possui dois lados iguais Possui os lados desiguais b - Conforme a natureza de seus ângulos internos: Retângulo Acutângulo Obtusângulo Possui um ângulo reto Possui ângulos agudos Possui um ângulo obtuso 7.3 - Elementos : Lados : Segmentos de retas ou curvas que formam o triângulo. Vértices : são os pontos de cruzamento dos lados. Ângulos : são formados pelos lados do triângulo. A ângulo lado 7.4 - Cevianas Notáveis Definição de Ceviana : é todo segmento que tem uma extremidade num vértice qualquer de um triângulo e a outra num ponto qualquer da reta suporte do lado oposto a esse vértice (denominado pé da ceviana). Reta suporte de um segmento, ou, simplesmente, suporte de um segmento, é a reta na qual esse segmento está contido. São três as cevianas notáveis: altura, bissetriz interna e mediana. O nome ceviana foi dado a esses segmentos como uma homenagem ao matemático italiano Giovanni Ceva. EBER NUNES FERREIRA vértice m s h x B P1 P2 P3 C P4 eber nunes ferreira 23 desenho geométrico Altura: é a perpendicular traçada de um vértice ao lado oposto ou ao seu prolongamento. Esta é a única ceviana que pode ser externa (no triângulo obtusângulo), ou mesmo coincidir com um lado (no triângulo retângulo). A Hc Hc Hb hb A Hb A hb hc hc hb ha ha ha Ha B Ha B C C hc B C Mediana : é o segmento que liga um vértice ao ponto médio do lado oposto. (Ceviana que tem uma extremidade no ponto médio de um lado). A A A Mc mc Mb ma mb B B C Ma B C C Bissetriz Interna : é toda ceviana que divide um ângulo interno em dois ângulos adjacentes e congruentes. A Â/ A A Sc Sb Â/2 2 sc sb sa B B C Sa B C C 7.5 - Centros Geométricos (Pontos Notáveis) Ortocentro (H) : é o ponto de encontro das alturas de um triângulo ou das retas suportes das A alturas. Hc hb A Hc Hb Hb A hb hc hc ha ha B hb ha Ha C Ha B C B hc A Utlilize o Arco-capaz de 90º (semicircunferência) para determinar os pés de duas alturas, o que é suficiente para encontrar o Ortocentro. Hc Hb hb C hc ha B EBER NUNES FERREIRA Ma Ha C eber nunes ferreira 24 desenho geométrico Baricentro (G) : é o ponto de encontro das três medianas de um triângulo sendo o seu Centro de Gravidade. A ma Mc Mb mb G B mc C Ma Incentro (I) : é o ponto de encontro das bissetrizes dos ângulos internos do triângulo, o qual equidista dos lados e é o centro da circunferência inscrita no triângulo. Observe que para determinar o raio da circunferência inscrita, faz-se necessário a determinação de um ponto de tangência, que é obtido traçando-se uma perpendicular pelo incentro em direção a um dos lados. A A sa Sc sb B T3 Sb I I T2 sc B C Sa T1 C Ex-incentro (E) : é o ponto de encontro das bissetrizes dos ângulos externos do triângulo. Observe que para determinar o raio da circunferência ex-inscrita, faz-se necessário a determinação de um ponto de tangência, que é obtido traçando-se uma perpendicular pelo ex-incentro em direção ao prolongamento de um dos lados . E1 A E1 A E2 E2 sa sb I B B C sc C E3 T1 A E2 E3 T2 B EBER NUNES FERREIRA C T3 eber nunes ferreira 25 desenho geométrico Circuncentro (O) : é o ponto de encontro das mediatrizes dos lados de um triângulo, o qual equidista dos três vértices e é o centro da circunferência circunscrita ao triângulo. A A B O B rc A C rc O B C O rc C No triângulo Acutângulo o Circuncentro é um ponto interno. No triângulo Obtusângulo o Circuncentro sempre é um ponto externo. No triângulo Retângulo o Circuncentro sempre será o ponto médio da hipotenusa. 7.6 - NOMENCLATURA A a , b e c - medidas dos lados BC, AC e AB, respectivamente. (alfa) , (beta) e (gama) - medidas dos ângulos Â, B e C. ri - raio da circunferência inscrita. rc - raio da circunferência circunscrita. b c B ri a rc C A ha, hb e hc - medidas das alturas traçadas dos vértices A , B e C respectivamente. Ha, Hb e Hc - pés das alturas ha, hb e hc. Hc Hb hb hc ha ma, mb e mc - medidas das medianas traçadas dos vertices A , B e C respectivamente. Ma, Mb e Mc - pés das medianas ma, mb e mc Ha B C A ma Mc Mb mc mb sa, sb e sc - medidas das bissetrizes traçadas dos vertices A , B e C respectivamente. Sa, Sb e Sc - pés das bissetrizes traçadas dos vertices A , B e C respectivamente. B C Ma A sa Sc Sb sb B EBER NUNES FERREIRA sc Sa eber nunes ferreira C 26 desenho geométrico 7.7- PROPRIEDADES DAS MEDIANAS E BARICENTRO O segmento que liga os pontos médios de dois lados de um triângulo é paralelo e de medida igual a metade do terceiro lado. A A ma ma Mc B G mc C B Mc Mb mb Ma ma Mc Mb mb A G mc Mb mb C Ma B G Paralelogramo (lado paralelo 2 A 2) mc C Ma Ma Mb é paralelo ao lado AB. Ma Mb = AB/2 Ma Mc é paralelo ao lado AC. Ma Mc = AC/2 Mb Mc é paralelo ao lado BC. Mb Mc = BC/2 O triângulo MaMb Mc é semelhante ao triângulo ABC . O Baricentro (centro de gravidade do triângulo) divide cada mediana em dois segmentos, onde o segmento que contém o vértice é o dobro do outro. 7.8- RELATIVAS ÀS BISSETRIZES E1 O triângulo ABC tem três bissetrizes internas e seis bissetrizes externas.As noves bissetrizes encontram-se, de três em três,em quatro pontos: E1 ,E2 e E3 . O ponto "I" é denominado INCENTRO. - Os pontos E1 ,E2 e E3 são EX-ICENTROS; são os centros das três circunferências ex-inscritas. - Duas bissetrizes, uma interna e outra externa, com origens no mesmo vértice são perpendiculares entre si. - O triângulo ABC é órtico do triângulo E1 E2 E3 . - A bissetriz do ângulo interno de um triângulo determina sobre o lado oposto dois segmentos proporcionais aos outros dois lados. A E2 90º sa sb 90º B m sc I n 90º C E3 7.9 - RELATIVA AS ALTURAS O triângulo Ha Hb Hc é denominado triângulo órtico. As bissetrizes do triângulo órtico são alturas do triângulo ABC . A Hc ha Hb hb hc B EBER NUNES FERREIRA Ha C eber nunes ferreira 27 desenho geométrico EXERCÍCIOS RESOLVIDOS ER23 - Construir um triângulo equilátero XYZ conhecendo-se o lado. Z x=y=z CONSTRUÇÃO - Sobre uma reta suporte r, traça-se XY . - Com abertura igual ao lado do triângulo, centro em X, descreve-se um arco auxiliar. - Centro em Y, com a mesma abertura, descrevese outro arco que interceptará o primeiro em Z. - A união dos pontos X, Y e Z determina o triângulo desejado. y x r X Y z ER24. Construir um triângulo escaleno ABC conhecendo-se os três lados. a b C c CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB sobre ela. - Centro em A, raio AC, descreve-se um arco auxiliar. - Centro em B, raio BC, descreve-se outro arco, interceptando o primeiro em C. - A união dos pontos A, B e C determina o triângulo desejado. a b r c A B ER25. Construir um triângulo ABC conhecendo-se o lado c e os ângulos A e B. c C A = 45º B = 60º CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB sobre ela. - Em A constroi-se um ângulo de 45º - Em B constroi-se um ângulo de 60º - O prolongamento dos lados dos ângulos determinam o ponto C. - A união dos pontos A, B e C determina o triângulo desejado. 45º A EBER NUNES FERREIRA a b 60º c B eber nunes ferreira 28 desenho geométrico ER26 - Construir um triângulo qualquer ABC, conhecendo-se dois lados e o ângulo entre eles. C b c a b c A CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB sobre - Em A constroi-se o ângulo dado - Sobre o prolongamento do lado deste ângulo transporta-se AC. - A união dos pontos A, B e C determina o triângulo desejado. B ER27 - Construir um triângulo qualquer ABC, conhecendo-se dois lados e a altura relativa a um deles. CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB (lado c) sobre ela. - Traça-se r’// r. distantes a medida de hc. (Após marcar sobre uma perpendicular auxiliar, a altura hn, utilize um processo geométrico para traçar r’// r ). - Centro em A, com abertura igual ao lado btraçase um arco que interceptará r' em C e C'. -- A união dos pontos A, B e C determina o triângulo desejado. (ABC' também é resposta ao exercício) b c hc C' C b' r' a a' b hc hc r c A B ER28 - Construir um triângulo qualquer ABC, conhecendo-se dois lados e a mediana relativa a um deles. mc C b c mc a b r A EBER NUNES FERREIRA c/2 Mc c/2 B CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB sobre ela. - Traça-se a mediatriz de AB determinando Mc. - Centro em Mc, raio mc, descreve-se um arco auxiliar. - Centro em A, raio AC (lado b), descreve-se outro arco que interceptará o primeiro no ponto C. - A união dos pontos A, B e C determina o triângulo desejado. eber nunes ferreira 29 desenho geométrico ER29 - Construir um triângulo isósceles ABC, conhecendo-se a base e o raio da circunferência inscrita. C O T A 1 B 2 CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB sobre ela. - Traça-se a mediatriz de AB, determinando T. - Sobre a mediatriz, transporta-se o raio TO. - Centro em O, descreve-se a cirncunferência inscrita. - Centro em A, raio AT e determina-se o ponto 1 na cirncunferência inscrita. - Centro em B, raio AT e determina-se o ponto 2 na cirncunferência inscrita. - O prolongamento do segmento A1 e B2, encontram-se no ponto C. - A união dos pontos A, B e C determina o triângulo desejado. O r A B T ER30 - Construir um triângulo isósceles ABC, conhecendo-se a base e o ângulo oposto a ela. C triz se Bis do c me ple Su nto CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB sobre ela. - Por uma das extremidades da base constroi-se o ângulo C dado. - Dividi-se o suplemento do ângulo ao meio (bissetriz) obtendo o ângulo da base -Transporta-se este ângulo para a outra extremidade que interceptará a bissetriz no ponto C . - A união dos pontos A, B e C determina o triângulo desejado. de r A B ER31 - Construir um triângulo qualquer ABC, conhecendo-se um lado, a altura a ele relativa e o raio da circunferência circunscrita. hc raio ra io A C' C O 1 r' hc r A EBER NUNES FERREIRA B B CONSTRUÇÃO - Com o raio dado traça-se a circunferência. - Sobre a circunferência, marca-se o ponto A arbitrariamente. - Centro em A, com abertura AB, transporta-se a base AB. - Prolonga-se AB determinando a reta auxiliar r. - Por um ponto qualquer de r levanta-se uma perpendicular marcando sobre a mesma o valor de hc determinando o ponto 1. - Pelo ponto 1 traça-se r'// r, determinando os pontos C e C'. - A união dos pontos A, B e C determina o triângulo desejado. eber nunes ferreira 30 desenho geométrico EXERCÍCIOS PROPOSTOS Observando a notação abaixo, construa os triângulos pedidos de acordo com as informações fornecidas. É de fundamental importância, fazer um esboço de um triângulo genérico para cada exercíco, pois somente assim é que você conseguirá a indentificação dos lugares geométricos a serem utilizados na construção dos mesmos. A A ALFA b c rc I sb mc Sb sc ha C B C Ha EP08 B Ma C B - a, b e ha EP09 - a, b e alfa a a b b b c ha EP11 C Sa a - a, b e gama EP10 sa Sc Mb G hc mb GAMA a - a, b e c EP07 Mc hb A ma Hb H BETA B Hc ri A - a, b e ma EP12 - a, ha e ma a a a b b ha ma ma EP13 - a, ha e beta - a, ha e alfa a a ha ha EP16 EP14 - a, ma e alfa EP15 a ma EP17 a, ma e beta - a, beta e gama a EP18 a - a, beta e alfa a ma EP19 - a, b e mb EP20 - b, alfa e mb EP21 a b a b mb mb - a, mb e mc mc mb EBER NUNES FERREIRA eber nunes ferreira 31 desenho geométrico EP22 - a, ma e mb EP23 - a, hb e beta EP24 - a, hb e b a a a ma hb hb b mb EP25 - a, hb e c EP26 - a, hb e alfa EP27 - a, hb e ma a a a hb hb hb ma c EP28 - a, hb e ha EP29 - a, hb e hc EP30 - a, hb e mb a a a hb hb hb ha hc mb EP31 - Determine o Baricentro, Incentro, Circuncentro e Ortocentro dos triângulos 1,2,3 e 4 respectivamente. C 1 2 B C A A B C C B A B 3 A EBER NUNES FERREIRA 4 eber nunes ferreira 32 desenho geométrico 8 - QUADRILÁTERO 8.1 - Conceitos Quadrilátero é todo polígono de quatro lados. Todo quadrilátero tem: quatro ângulos internos, oito ângulos externos, quatro vértices e duas diagonais. Os quadriláteros são designados por letras maiúsculas ou números, colocados nos vértices, em qualquer sentido, obedecendo a ordem dada. Desta forma os vértices consecutivos limitam os lados e os não consecutivos, as diagonais. C C C D D Diagonais D Lado A A A B B Vértice B 4 Ângulos Internos 8 Ângulos Externos látero adrí Qu 8.2 -Classificação s Trap ézi os Os quadriláteros se classificam em: Parale logramos TRAPÉZIOS - Todo Quadrilátero que possui dois lados paralelos. PARALELOGRAMOS - Todo Quadrilátero que possui lados paralelos dois a dois. RETÂNGULO - Todo Quadrilátero que possui quatro ângulos retos. LOSANGO - Todo Quadrilátero que possui quatro lados iguais QUADRADO - É o conjunto interseção entre o conjunto dos retângulos e o cojunto dos losangos. (possuem quatro ângulos retos e quatro lados iguais). Losangos Quadrados Retângulos TRAPÉZIOS - Os trapézios propriamente ditos, possuem dois lados paralelos (bases) e dois lados não paralelos. A distância entre as bases é chamada de altura do trapézio . Podem ser classificados quanto a natureza de seus ângulos da seguinte forma: TRAPÉZIO RETÂNGULO TRAPÉZIO ISÓSCELES TRAPÉZIO ESCALENO Possui um lado não paralelo perpendicular às bases Os lados não paralelos são congruentes Possui os lados e os ângulos desiguais - Possui dois ângulos retos, um agudo e um obtuso. - Possui os ângulos das bases com os lados iguais entre si. Base Menor Base Menor Base Maior Base Menor Base Maior Base Maior Os lados não paralelos dos trapézios, quando prolongados geram triângulos de mesmo nome. (retângulo, isósceles e escaleno) triângulo retângulo EBER NUNES FERREIRA triângulo isósceles triângulo escaleno eber nunes ferreira 33 desenho geométrico PARALELOGRAMO Propriamente dito C D A C D B A Os lados opostos são iguais e paralelos dois a dois. B C D A As diagonais são diferentes, oblíquas entre si e se cortam ao meio. B Os ângulos opostos são iguais, e os ângulo consecutivos são suplementares. RETÂNGULO C D A C D B A Os lados opostos são iguais e paralelos dois a dois. C D B As diagonais são iguais, oblíquas entre si e se cortam ao meio. 90º 90º 90º 90º A B Os quatro ângulos são retos. LOSANGO D D C A A D 90º 90º 90º 90º C C A B B B Os quatro lados são iguais e paralelos dois a dois. As diagonais são diferentes, perpendiculares entre si e se cortam ao meio. Os ângulos internos opostos são iguais, e os ângulo consecutivos são suplementares QUADRADO C C D 90º 90º A B A Os quatro lados são iguais e paralelos dois a dois Os quatro ângulos são retos. EBER NUNES FERREIRA C D C D 90º 90º 90º APÓTEMA D 90º B A 90º 90º B O apótema corresponde a metade do lado e é o raio da circunferência inscrita. A B As diagonais são iguais, perpendiculares entre si e se cortam ao meio. eber nunes ferreira 34 desenho geométrico EXERCÍCIOS RESOLVIDOS ER32 - Construir um quadrado ABCD, sabendo-se que o lado mede 38 mm. C D CONSTRUÇÃO - Traçam-se a retas auxiliares r e s perpendiculares entre si, no ponto A. - Centro em A, com abertura igual ao lado, e determinam-se os pontos B e D sobre as perpendiculares. - Com a mesma abertura, centro em B e descreve-se um arco. - Repete-se a operação com centro em D e o cruzamento dos arcos determinam o ponto C. - Une-se A,B,C e D e tem-se o quadrado desejado. r A B s ER33 - Construir um retângulo ABCD sabendo-se que os lados medem respectivamente 4,5 e 2,1 cm. D C r A B CONSTRUÇÃO - Traçam-se a retas auxiliares r e s perpendiculares entre si, no ponto A. - Centro em A, com abertura igual ao lado maior, e determina-se o ponto B sobre r. - Centro em A, com abertura igual ao lado menor, e determina-se o ponto D sobre s. -Centro em B, abertura AD, descreve-se um arco. - Centro em D, abertura AB, descreve-se outro arco que interceptará o arco anterior no ponto C. - Une-se A,B,C e D e tem-se o quadrado desejado. s ER34 - Construir um retângulo ABCD conhecendo-se o lado AB = 6,3 cm e sua semi-diagonal que mede 4,0 cm. C D CONSTRUÇÃO - Traça-se uma circunferência de centro O, com raio igual a semi-diagonal. - Determina-se arbitrariamente o ponto A sobre a circunfência. - Centro em A, abertura AB, determina-se o ponto B sobre a ciecunferência. - O prolongamento de AO detemina o ponto C na circunferência. - O prolongamento de BO detemina o ponto D na circunferência. - Une-se A,B,C e D e tem-se o quadrado desejado. O B A ER35 - Construir um losango ABCD sabendo-se que o lado mede 2,8 cm e a sua diagonal AC = 5,2 cm. D A C r CONSTRUÇÃO - Traça-se a reta suporte r e sobre ela transporta-se a diagonal AC. - Centro em A, abertura igual ao lado, descreve-se um arco - Repete-se a mesma operção com centro em C e os cruzamentos dos arcos determinam os pontos B e D. - Une-se A,B,C e D e tem-se o quadrado desejado. B EBER NUNES FERREIRA eber nunes ferreira 35 desenho geométrico ER36 - Construir um losango ABCD conhecendo-se suas diagonais. Dados: AC = 55 mm ; BD = 30 mm. D O A r C CONSTRUÇÃO - Traça-se a reta auxiliar r e transporta-se a diagonal AC sobre ela. - Traça-se a mediatriz de AC determinando o ponto O. - Centro em O, com abertura igual a metade da diagonal BD, e determinam-se os pontos B e D sobre a mediatriz. - Une-se A,B,C e D e tem-se o quadrado desejado. Obs. demonstre geometricamente a divisão do segmento BD. B ER37 - Construir um paralelogramo ABCD conhecendo-se base AB, o ângulo  e a altura. Dados: AB = 45 mm; h = 27 mm ;  = 75° (No paralelogramo o ângulo interno de um vértice é igual ao ângulo externo do vértice consecutivo) C D r' h 75° 75° r CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB sobre ela. - Em A constrói-se o ângulo dado. - Em B constrói-se o mesmo ângulo paralelo ao primeiro. - Constroi-se r // r' distantes 27mm. (Levante uma perpendicular auxiliar para esta operação) - A interseção de r' com os ângulos construídos determinam os pontos C e D. - Une-se A,B,C e D e tem-se o paralelogramo desejado. B A ER38 - Construir um trapézio isósceles ABCD conhecendo-se as duas bases e a altura. Dados: AB = 7 cm ; CD = 3,4 cm ; h = 2,8 cm. D C O r' h r CONSTRUÇÃO - Traça-se a reta suporte r e transporta-se AB sobre ela. - Traça-se a mediatriz de AB e sobre ela transporta-se h determinando O. - Por O traça-se r’// r. - Centro em O, abertura igual a metade de CD, determina-se C e D sobre r’. - Une-se A,B,C e D e tem-se o trapézio desejado.. B A ER39 - Construir um trapézio retângulo ABCD conhecendo-se a base maior, um lado e uma diagonal cujos valores são respectivamente: AB = 4,8 cm ; BC = 3,2 cm ; AC =2,5 cm. Arco-capaz de 90° D C O r A EBER NUNES FERREIRA B CONSTRUÇÃO - Traça-se a reta suporte r e sobre ela transporta-se AB. - Centro em A raio AC descreve-se um arco auxiliar. - Centro em B, raio BC descreve-se outro arco que interceptará o primeiro no ponto C. - Levanta-se uma perpendicular a r pelo ponto A. - Traça-se o arco-capaz de 90° (semi-circunferência) tomando AC por diâmetro. - A intereção do arco com a perpendicular que passa em A, determina o ponto D. - Une-se A,B,C e D e tem-se o trapézio desejado. eber nunes ferreira 36 desenho geométrico EXERCÍCIOS PROPOSTOS EP32 - Construir um quadrilátero ABCD conhecendo-se: AB = 47 mm; BC = 26 mm; B = 120° ; CD = 49 mm; AD = 31 mm. EP33 - Determine o segmento de reta AB concorrente em r e s respectivamente de tal forma que o ponto M seja o Ponto Médio do segmento. r M s EP34 - Construa um trapézio MNOP retângulo sabendo-se que MN = 6,4 cm, MO = 4,0 cm e NO = 3,4 cm. EP35 - Construir um paralelogramo ABCD conhecendo-se: AB = 5 cm, diagonal AC = 5/3 de AB e  = 60°. EP36 -. Pede-se um losango ABCD conhecendo-se o lado AB = 2,5 cm e a semidiagonal AE = 1,5 cm. EP37 - Num trapézio, as bases medem 70 mm e 35 mm, um lado não paralelo, 40 mm, e o ângulo formado pela base maior e o lado não paralelo é 60°.Pede-se o quadrilátero. EP38 - Construir um trapézio conhecendo-se as duas bases e as duas diagonais. Dados: bases AD = 3,0 e BC = 4,0, diagonais AC = 5,6 e BD = 5,3 (ud cm). EP39 - Construa um retângulo ABCD, cuja diagonal mede 5,0 cm, e forma um ângulo de 30° com o lado. EP40 - Construa um quadrado cuja semi-diagonal mede 28 mm. EP41 - Construir um paralelogramo KLMN sendo dadas as suas diagonais KM = 7,3 cm e LN = 3,2 cm e o ângulo formado por elas é de 75°. EP42 - Construir um quadrado cujo perímetro é igual ao do triângulo dado. A B C EP43 - Construir um quadrilátero ABCD sabendo que AB mede 6 cm e a diagonal BD que mede 6,7 cm, forma com o lado AD 60°. O lado BC mede 3 cm e forma com CD ângulo de 45°. EP44 - Construir um losango conhecendo-se o seu lado e um de seus ângulos. AB = 4cm;  = 45°. EP45 - Construir um paralelogramo conhecendo-se dois lados e a altura. AB = 60mm; BC = 29mm e h = 18mm. EBER NUNES FERREIRA eber nunes ferreira 37 desenho geométrico 9 - CIRCUNFERÊNCIA E CIRCULO 9.1 - Conceito: A circunferência é o lugar geométrico dos pontos de um plano, equidistantes de um ponto dado, denominado centro, situado no mesmo plano. A porção deste plano limitada pela circunferência denomina-se CÍRCULO. Daí podemos concluir que a circunferência é o contorno do círculo, sendo aquela uma linha e este uma superfície plana, uma área. f C 9.2 - Elementos: D s d O r B n t A ARCO - A intersecção da circunferência com um ângulo central qualquer (de vértice O), é denominado arco da circunferência.(AB) CORDA - É segmento que une dois pontos distintos de uma circunferência.(CD) DIÂMETRO - É toda corda que passa pelo centro. Um diâmetro é equivalentea dois raios, um situado no prolongamento do outro. (d) FLECHA - É o segmento do raio que une o ponto médio da corda a um ponto da circunferência (f) NORMAL - É a perpendicular à tangente em um ponto da circunferência. (n) RAIO - Qualquer segmento com uma extremidade na circunferência e outra em seu centro. (r) SECANTE - É a reta que possui dois pontos comuns à circunferência. (s) TANGENTE - É a reta que possui um só ponto comum à circunferência. (t) 9.3 - Ângulos da circunferência A circunferência pode apresentar os seguintes ângulos principais; ângulo central, ângulo inscrito; ângulo circunscrito e ângulo segmento. Ângulo Circunscrito Ângulo Central o Tem o vértice no centro da circunferência e os lados são raios EBER NUNES FERREIRA Ângulo Segmento Ângulo Inscrito o Te m o v é r t i c e s o b r e a circunferência e os lados são cordas. o Te m o v é r t i c e f o r a d a circunferência e os lados são tangentes. o Um dos lados é uma corda e o outro é uma tangente. eber nunes ferreira 38 desenho geométrico 9.4 - Elementos do Círculo O círculo é uma porção do plano limitada por uma circunferência. O círculo pode ser dividido em porções. Semicírculo Setor Coroa Circular É a superfície limitada por uma semicircunferência. É a superfície compreendida entre o arco e os dois raios que formam um ângulo central. É a porção do círculo compreendida entre duas circunferências concentricas. Segmento Circular Zona Circular Trapézio Circular É a superfície limitada por uma corda e seu arco correspondente. É a superfície compreendida entre duas cordas paralelas. É a porção da coroa circular compreendida por dois raios. FAÇA OS EXERCÍCIOS A SEGUIR. EP46 - Construir uma coroa circular sabendo-se que o diâmetro maior mede 3.5cm e o diâmetro menor mede 3/5 do maior. EBER NUNES FERREIRA EP47 - Construir um setor circular de uma circunferência cujo ângulo central é igual a 40º. eber nunes ferreira 39 desenho geométrico EP48 - Construir uma zona circular sabendo-se que sua maior corda é também a maior corda da circunferência e cuja medida é igual a 4,5 cm. A corda menor é igual a 3/4 da maior. EP49 - Contruir um segmento circular conhecendo-se a flecha = 1cm. Raio da circunferência é igual a 27mm. A B EP50 - Dado o ângulo segmento abaixo pede-se determinar a circunferência e evidenciar o arco correspodente. 9.5 - DIVISÃO DE CIRCUNFERÊNCIA Atenção: Todos os processos a seguir, necessitam da localização exata do Centro da Circunferência. Quando a circunferência for apresentada sem o centro, você deverá determiná-lo. 1 2 o 3 EBER NUNES FERREIRA Lembre-se que a mediatriz de uma corda da Circunferência passa obrigatoriamente pelo centro da mesma, portanto, basta determinar duas cordas distintas e suas respectivas mediatrizes. O centro será o cruzamento das mediatrizes. eber nunes ferreira 40 desenho geométrico ER40 - DIVISÃO DE CIRCUNFERÊNCIA EM 2, 4, 8, ... ER41 - DIVISÃO DE CIRCUNFERÊNCIA EM 3, 6, 12, ... 2 L6 = r 3 1 L3 r OU 4 6 5 ER42 - DIVISÃO DE CIRCUNFERÊNCIA EM 5, 10, ... 1 1 L5 A C M B A 1 5x 2 C L 10 B M 1 2 5 L5 A C 9 3 B M 10 L 10 A C B M 8 4 3 4 7 5 6 10x ER43 - DIVISÃO DE CIRCUNFERÊNCIA EM 7, 14, 28, ... 1 L7 C 1 7 2 L7 A M B A B 3 6 4 EBER NUNES FERREIRA 5 eber nunes ferreira 41 desenho geométrico ER44 - DIVISÃO DE CIRCUNFERÊNCIA EM 9, 18, 36, ... 1 O1 2 9 L9 L9 O3 3 8 7 4 5 O2 6 ER45 - DIVISÃO DE CIRCUNFERÊNCIA EM 11, 22, 44, ... 1 11 L 11 M A 1 2 L 11 C B 3 10 4 9 5 8 6 7 ER46 - DIVISÃO DE CIRCUNFERÊNCIA EM 13, 26, 52, ... 1 L 13 2 13 3 L 13 ¼ 12 4 11 10 5 9 6 8 7 ER47 - DIVISÃO DE CIRCUNFERÊNCIA EM 15, 30, ... 1 2 3 L 15 15 L 15 14 4 13 5 12 11 6 7 EBER NUNES FERREIRA 8 9 10 eber nunes ferreira 42 desenho geométrico PROCESSOS GERAIS PARA DIVISÃO DA CIRCUNFERÊNCIA ER48 - Dividir uma circunferência em um número n qualquer de partes iguais pelo método geral devido a BION. - Em uma circunferência de centro conhecido, dividi-se o diâmetro em n partes (quantas se deseja dividir a circunferência). Por exemplo em 7. Com a abertura igual ao diâmetro e com centro nas extremidades do próprio diâmetro, traçam-se dois arcos que se cruzam em P. - O prolongamento do segmento P2 determina o ponto A na própria circunferência. - 0A é aproximadamente igual a uma das n partes em que se quer dividir a circunferência. - Com o auxílio do compasso transporta-se o arco 0A dividindo assim a circunferência em n partes. 0 1 L7 A 2 3 P 4 5 6 7 ER49 - Dividir uma circunferência em um número n qualquer de partes iguais pelo método geral devido a RINALDINI. Em uma circunferência de centro conhecido, dividi-se o diâmetro em n partes (quantas se deseja dividir a circunferência). Por exemplo em 7. Com a abertura igual ao diâmetro e com centro nas extremidades do próprio diâmetro, traçam-se dois arcos que se cruzam em P e P’. - Os prolongamentos dos segmentos P2, P4 e P6 concorrem com a semi-circunferência, do lado contrário ao ponto P, em pontos que dividem-na em partes aproximadamente iguais. - Os prolongamentos dos segmentos P’2, P’4 e P’6 concorrem com a semi-circunferência, do lado contrário ao ponto P’, em pontos que dividem-na em partes aproximadamente iguais. Você também pode optar por ligar somente os pontos P e P’ aos números ímpares. 1 1 7 2 2 3 P P' 4 3 6 5 6 Polígonos - Exercícios EP51EP52EP53EP54EP55- 4 7 5 Construir um quadrado conhecendo-se seu apótema, OM = 20mm. Construir um pentágono regular sabendo-se que o raio da circunferência inscrita mede 2,5 cm. Construir um hexágono regular conhecendo-se seu apótema, OM = 18mm. Construir um dudecágono inscrito em uma circunferência de raio = 4cm. Construir um hexágono sabendo-se que o valor do lado mede 1,4cm. EBER NUNES FERREIRA eber nunes ferreira 43 desenho geométrico POLIGONAL DE DELAISTRE Este processo permite a construção de polígonos conhecendo-se o lado. ER50 - Construir um eneágono, cujo lado AB mede 25mm (portanto, N = 9) CONSTRUÇÃO: - Sobre a reta suporte r, transporta-se AB. - Com abertura do compasso igual a AB, traça-se a mediatriz de AB, determinando o ponto 6. (AB6 é um triângulo equilátero) - Divide-se AB em seis partes iguais. (utilize preferencialmente, um segmento auxiliar congruente a AB, para não congestionar o exercício) - Sobre a mediatriz, à partir do ponto 6, transfere-se 1/6 de AB para baixo determinando-se os pontos 5, 4 e 3. - Sobre a mediatriz, à partir do ponto 6, transfere-se 1/6 de AB para cima determinando-se os pontos 7, 8, 9, ... e assim sucessivamente até alcançar o número desejado que corresponda ao valor de N. - Neste momento você tem construída a escala poligonal de Delaistre. - Centro em N (neste exemplo N = 9), raio NA, traça-se a circunferência pedida. - Sobre a circunferência, à partir de A e/ou B, transfere-se AB, obtendo-se os vértices do polígono desejado. A B Para qualquer valor de N, o lado do polígono deverá ser dividido em 6 partes F E G 12 12 1/6 1/6 1/6 1/6 11 1/6 H 10 1/6 9 D 11 10 9 1/6 1/6 8 8 1/6 1/6 7 7 1/6 1/6 RAIO 6 5 4 6 5 C I r A EBER NUNES FERREIRA B r A B eber nunes ferreira 44 desenho geométrico 9.6 - RETIFICAÇÃO DA CIRCUNFERÊNCIA Consiste em determinar um segmento de reta cujo comprimento seja igual ao comprimento de uma circunferência dada. ER51 - PROCESSO 1 (Não é muito preciso) Dada circunferência, inscrever na mesma um triângulo equilátero e um quadrado. O comprimento da circunferência será a somatória de duas vezes o lado do quadrado mais duas vezes o lado do triângulo. C = 2 .(AB + DE) A B O D E ER52 - PROCESSO 2 1 - Traçamos a circunferência de diâmetro AB e levantamos por B uma perpendicular. 2 - Com centro em B e raio BO traçamos o arco OC. 3 - Traçamos a mediatriz de BC e obtemos o ponto D sobre a perpendicular. 4 - Marcamos DE = 3 vezes o raio 5 - Unimos E a A e tomamos AE como metade do comprimento da circunferência. Portanto, 2. (EA) é igual ao comprimento da mesma. A O C M B E D ER53 - PROCESSO 3 1 - Traçamos a circunferência de diâmetro AB e levantamos 2 - Divide-se AB em 7 partes iguais. 3 - O comprimento da circunferência será o segmento cuja medida é 3 vezes o diâmetro mais 1/7 do diâmetro. AB O A AB AB/7 AB B Comprimento da Circunferência = 3AB + AB/7 9.7 - RETIFICAÇÃO DE ARCO DE CIRCUNFERÊNCIA Consiste em determinar um segmento de reta cujo comprimento seja igual ao comprimento do arco de uma circunferência dada. ER54 - PROCESSO PARA ARCOS MENORES OU IGUAL A 90º E E B B A O EBER NUNES FERREIRA C D 1- Traçamos o diâmetro AC e tomamos CD = 3/4 do raio da circunferência. 2 - Levantamos por A umaperpendicular ao diâmetro. 3 - Unimos D ao ponto B e obtemos E na perpendicular traçada. AE é aproximadamente o comprimento do arco dado. A O C eber nunes ferreira D 45 desenho geométrico 10 - TANGÊNCIA 10.1 - Conceito: Diz-se que uma reta é tangente a uma circunferência quando tem um só ponto comum com esta circunferência ou seja, quando sua distância ao centro da mesma é igual ao raio. Assim, teremos sempre a tangente perpendicular ao raio no seu ponto de tangência. TANGÊNCIA: operação que nos permite traçar tangentes. Eassim podemos traçar: a - Retas tangentes a circunferências dadas. b - Circunferências tangentes a retas dadas. c - Circunferências tangentes entre si. 10.2 - Traçados: ER55 - Traçar uma tangente a uma circunferência dada, passando por um ponto T nela situado. t T O T O - Traça-se a circunferência de centro O, marcando nela um ponto qualquer T. - Une-se O a T, prolongando-o por T. - Traça-se t perpendicular a OT, que será a tangente pedida. ER56 - De um ponto P situado fora de uma circunferência dada, traçar duas tangentes a ela. Dados: r = 2 cm , OP = 5,4 cm. T' P M O P O T - Una o ponto P ao ponto O e determine o ponto médio M do segmento PO. - Centro em M e raio MO traça-se um arco auxiliar que cortará a circunferência em T e T’, pontos de tangência. - Une-se P a T’, e P a T prolongando-os, e temos as tangentes pedidas. EBER NUNES FERREIRA eber nunes ferreira 46 desenho geométrico ER57 - Traçar tangentes exteriores e comuns a duas circunferências sabendo-se que seus centros, (OO’) distam 6,0 cm, e possuem os respectivos raios: r = 2,5 cm, r’ = 1,2 cm. A r 1 C r M O x O' r' r'' 2 r - r' = r'' r' D B - Sobre uma reta auxiliar x, derterminam-se os centros O e O’ distantes 6cm. - Traçam-se as respectivas circunferências de raios r e r’. - Com centro em O traça-se uma circunferência auxiliar de raio r’’ = r - r’ (obtido graficamente), - Centro em M, ponto médio de OO’, traça-se um arco que irá cortar a circunferência auxiliar em 1 e 2. - Une-se O a 1 e O a 2, prolongando-os e determinando A e B (pontos de tangência na circunferência O). - Por O’ traça-se uma paralela a OA e a OB, determinando C e D (pontos de Tangência na circunferência O’). - Unindo A a C, e B a D tem-se as tangentes pedidas. ER58 - Traçar tangentes interiores e comuns a duas circunferências de raios diferentes. Dados: r = 2,8 r’ = 1,5 OO’ = 6,0 (centímetros). 1 A C r M O O' r' r'' r r' r + r' = r'' D B 2 - A construção é idêntica à anterior, mudando apenas o raio da circunferência auxiliar EBER NUNES FERREIRA r” = r + r’ . O’C // O2 e O’D // OA. eber nunes ferreira 47 desenho geométrico ER59 - Traçar uma circunferência de raio r= 15mm tangente aos lados de um ângulo dado. x x' x T' y' O r T y y - Traça-se x’ // x e y’ // y na distância r (raio dado), determinando no cruzamento de x’ com y’ o ponto O. - Traça-se OT perpendicular y e OT’ perpendicular x - Centro em O e raio r, traça-se a circunferência pedida. - T e T’ são os pontos de tangência. ER60 - Traçar uma circunferência que passe por um ponto P e que seja tangente a uma reta no ponto M. P situa-se fora da reta. y O P P M M x - Pelo ponto M levanta-se y, perpendicular a reta dada. - Traça-se x, mediatriz de MP, determinando o ponto O na perpendicular. - Centro em O e raio OM, traça-se a circunferência pedida. ER61 - Traçar uma circunferência de raio r = 1,5 cm, que seja tangente simultaneamente a uma reta r e uma outra circunferência dada, de tal forma que o ponto P, seja o ponto de tangência entre as circunferências. A O O P P O' r r B - Une-se O a P, prolongando-o. - Pelo ponto O levanta-se um perpendicular a reta r, determinando o ponto A sobre a circunferência. - Une-se A a P, prolongando-o até determinar B sobre r. - Traça-se a mediatriz de PB que irá cruzar com o prolongamento de AP determinando O’. - Centro em O’ e raio O’P, traça-se a circunferência pedida. EBER NUNES FERREIRA eber nunes ferreira 48 desenho geométrico ER62 - Traçar duas circunferências de raio = 1 cm, que sejam tangente interior e exterior respectivamente a uma circunferência , em um ponto P dado. r O' P O O'' P O - Prolonga-se a união dos pontos O e P, determinando a reta r. - Centro em P, abertura igual a 1cm, determina-se os potos O’ e O” sobre r. - Centro O’, raio = 1 cm, traça-se a circunferência interna pedida. - Centro O”, mesma abertura, traça-se a circunferência externa pedida. ER63 - Traçar três circunferências tangentes entre si cujos raios são respectivamente: a = 2,3 cm, b = 1,3 cm c = 1,5 cm. a X Y b b a - Construa um triângulo XYZ, cujos lados sejam iguais à soma dos raios dados dois a dois, ou seja: XY = a + b; YZ = b + c e XZ = a + c. - Os vértices X, Y e Z do triângulo são os centros das circunferências tangentes entre si. c c a b a c b Z c EBER NUNES FERREIRA eber nunes ferreira 49 desenho geométrico 11 - CONCORDÂNCIA 11.1 - Conceito. Concordar duas linhas, de mesma espécie ou de espécies diferentes, é reunilas de tal forma, que se possa passar de uma para a outra, sem ângulo, inflexão nem solução de continuidade. Exemplos: O O' O 11.2 - Princípios. Como veremos nos problemas que se seguirão, a concordância entre arcos de círculo e retas, e entre arcos e arcos, se baseiam em dois princípios fundamentais: a - Para que uma reta e um arco estejam em concordância é necessário que: b - Para que dois arcos estejam em concordância é necessário que: 1º - O centro do arco e o ponto de concordância entre eles estejam sobre uma mesma perpendicular. 2º - A reta seja tangente ao arco no ponto de concordância. Exemplo: 1º - Seus centros e o ponto de concordância estejam sobre uma mesma linha reta. 2º - Sejam tangentes entre si no ponto de concordância. Exemplo: S O O' C O r D E r R 11.3 - Traçados. ER64 - Concordar um segmento de reta AB, em B, com um arco de círcunferência de raio r = 20 mm. s O A A B B - Levanta-se uma reta s perpendicular pelo ponto B. - Sobre s, a partir de B, transporta-se o raio dado, determinando o centro O. -Centro em O e raio OB = r, traça-se o arco pedido. EBER NUNES FERREIRA eber nunes ferreira 50 desenho geométrico ER65 - Concorde um arco de circunferência com a semi-reta Ax no ponto A, de tal forma que ele contenha um ponto B qualquer, não pertencente a semi-reta. O B B x x A A - Por A levanta-se uma reta r perpendicular a Ax. - Traça-se a mediatriz de AB, determinando O em r. - Centro em O e raio OA, traça-se o arco pedido. ER66 - Concordar um arco de circunferência de raio = 15 mm com duas retas perpendiculares entre si. y y O F F x x G G - Com raio r, e centro no ponto de concorrência das perpendiculares, traça-se um arco auxiliar que determinará 1 em x e 2 em y. - Centro em 1 e 2, mesmo raio, determina-se O. - Centro em O, mesmo raio, traça-se o arco 12, fazendo a concordância pedida. ER67 - Concordar um arco de circunferência de raio dado r = 1,5 cm, com duas retas que se cruzam a 120º. r x' O y' x r - Traçam-se as retas x e y, formando um ângulo de 120°. - Traçam-se x’ // x e y’ // y na distância r (raio dado), as quais se cruzam em O. - Por O traçam-se perpendiculares às retas dadas, determinando C e C’, que serão os pontos de concordância. - Centro em O, raio OC, descreve-se o arco CC’, fazendo a concordância pedida C C' EBER NUNES FERREIRA y eber nunes ferreira 51 desenho geométrico ER68 - Concordar duas semi-retas //, de origens diferentes e sentidos contrários, por meio de dois arcos iguais. Sabendo-se que os pontos de concordância entre as semi-retas e os arcos não se encontram no mesmo alinhamento. A x A x O' r M s O y B y B - Por A e B tiram-se perpendiculares, r e s. - Une-se A a B e determina-se M, ponto médio de AB - Determina-se mediatriz de AM que cortará r em O’. - Determina-se mediatriz de MB que cortará sr em O. - Cento em O e O’, raio OA descreve-se os arcos das curvas pedidas OBSERVAÇÃO: - A união dos centros O e O’ passa obrigatoriamente pelo ponto de concordância dos arcos, ponto M. ER69 - Concordar dois segmentos paralelos de medidas diferentes por meio de duas curvas concordantes e de mesmo sentido. (Também conhecido como arco aviajado). B B 1 O O' A A - Pelos pontos A e B, traçam-se perpendiculares aos segmentos. - Traçam-se as bissetrizes dos ângulos retos A e B, que se cruzarão no ponto 1. - Por 1, traça-se uma reta paralela aos segmentos , determinando O e O’ sobre as perpendiculares. - Centro em O, raio OB = O1, traça-se o arco B1. - Centro em O’, raio O’A = O’1, e traça-se o arco A1. ER70 - Concordar duas retas convergentes/divergente por meio de dois arcos de circunferência concordantes entre si e de mesmo sentido. Dados: Pontos de concordância: Ponto A sobre a reta x Ponto C sobre a reta y. R x x A A x A O' O C s r 1 B y B y y B S - Pelas extremidades A e B de x e y, levantam-se as perpendiculares r e s . - Centro em A, raio qualquer, determina-se o ponto O sobre r. - Centro em B, mesma abertura, determina-se o ponto 1 em s. - Traça-se a mediatriz de O1, que cortará a reta s em O’. - Une-se O’ a O prolongando-se. - Centro em O’, raio O’B, descreve-se um arco que encontrará o prolongamento de OO’ no ponto C (ponto de concordância entre os arcos). - Centro em O, raio OC = OA, completa-se a concordância com o arco CA. EBER NUNES FERREIRA OBSERVAÇÕES: - Este mesmo processo é válido para as extremidades divergentes (pontos R e S) - Se no exercício anterior, a distância entre as retas paralela for menor que a distância entre as perpendiculares levantadas pelas extremidades este processo também solucionará o exercício. - Em todos estes casos, o primeiro centro pertencerá a perpendicular levantada pela extremidade mais avançada. eber nunes ferreira 52 desenho geométrico Traçar um arco de circunferência de raio r” dado, concordante com duas circunferências de raios r e r’, conhecidos. Dados r” =5,3 cm, r = 2,0 cm, r’ = 1,0 cm e OO’ = 6,2 cm. ER71 - Concordância externa - Traçam-se as circunferências dadas com centros O e O’, distantes 6,2 cm. - Centro em O, raio r”- r, descreve-se um arco auxiliar. - Centro em O’ e raio r”- r’, descreve-se outro arco que cortará o primeiro em O”. - Une-se O” a O e O” a O’, prolongando-os até cortarem as circunferências em A e B. - Centro em O”, e raio O”A = O”B, traça-se o arco AB, que é a concordância pedida. A r B r' O' O r' - r'' r'' - r r O'' r' O' O B A r'' + r r' + r'' ER72 - Concordância interna. - O processo de construção é idêntico ao caso anterior. - Modificando-se apenas o seguinte: O ponto O” é determinado pelo cruzamento dos arcos de centros O e O’ e raios r” + r e r” + r’. A O'' r r' O' O B r' + r'' r'' - r ER73 - Concordância interna e externa. - O processo de construção é idêntico ao 1º caso, modificando-se apenas o seguinte: O ponto O” é determinado pelo cruzamento dos arcos de centros O e O’ e raios r” - r e r” + r’. O'' EBER NUNES FERREIRA eber nunes ferreira 53 EBER NUNES FERREIRA r O r' O' O O 3 O 9 1 CONSIDERE OS PONTOS DADOS NA EXTREMIDADE DE CADA SEGMENTO 7 O O O 6 4 - Concorde os pontos 1 e 3 através de DOIS ARCOS IGUAIS E DE SENTIDOS CONTRÁRIOS - Concorde os pontos 4 e 6 através de DOIS ARCOS DE MESMO SENTIDO sabendo-que o arco que nasce no ponto 6 tem 25 mm de raio. - Concorde os pontos 7 e 9 através de DOIS ARCOS DE MESMO SENTIDO. - Concorde UM ARCO com as circunferências dadas, determinando os pontos 10 e 11. ATENÇÃO: OS PONTOS 2, 5 e 8 SÃO PONTOS DE CONCORDÂNCIA E DEVEM SER IDENTIFICADOS, BEM COMO OS CENTROS DOS ARCOS ER74 - Exercício / Autódromo desenho geométrico eber nunes ferreira 54 EBER NUNES FERREIRA 11 r r' 10 O O' r'' - r r' - r'' O O'' RESPOSTA DO EXERCÍCIO ANTERIOR O O 3 O 2 9 1 O' 8 O O' 7 O O O O P 6 4 O 5 desenho geométrico eber nunes ferreira 55 º 30 30 º 30º D C C D C º 30 30º 30º B B B 9 5 11 7 B 8 4 6 C 3 12 10 D A 1 2 Usar Curva Francesa A A A D ER77 - Construir uma Elipse, dados os eixos AB = 20 e CD = 14cm. 30º 30º º 30 ER77 - Construir um Óvulo, dado o eixo menor CD = 15cm. º 30º ER76 - Construir uma Oval, dado o eixo menor CD = 16cm. º 30 EBER NUNES FERREIRA 30 ER75 - Construir uma Oval, dado o eixo maior AB = 20cm. desenho geométrico eber nunes ferreira 56 desenho geométrico EP57 - EP58 - 02 01 02 01 0102 = 7,5mm EP59 - EP60 03 03 02 01 02 01 010203 = Triângulo Equilátero de 10mm EP61 - EP62 04 03 03 04 01 02 02 01 01020304 = Quadrado de 10mm D D C 4 11 10 9 8 7 6 5 4 3 2 1 G 6 x G 0 11 10 EBER NUNES FERREIRA H 3 4 5 6 7 8 9 10 11 11 L x 12 10 9 I I J A 2 8 9 K 1 7 H 8 EP63 - 2 1 6 0 7 L 3 5 5 2 1 A B 4 3 12 F F B C E E Diâmetro = 15 cm K J EP64 eber nunes ferreira 57 desenho geométrico EP65 - x B O' O A C x EP66 - x EBER NUNES FERREIRA eber nunes ferreira 58