Programação imperativa sobre matrizes

Propaganda
Computação e Programação 2006/07
Aula Prática 4
Programação imperativa sobre matrizes
1. Defina a função Mediamatriz que recebe como argumento uma matriz e devolve a média dos seus
elementos. No caso da matriz vazia devolve uma mensagem de erro.
2. Defina a função IgualmatrizQ que recebe como argumento duas matrizes de igual dimensão e
devolve verdadeiro se ambas as matrizes são iguais elemento a elemento e falso caso contrário.
3. Defina a função MenormatrizQ que recebe como argumento duas matrizes M1 e M2 de igual
dimensão e devolve verdadeiro se todos os elementos da primeira matriz são menores que os
elementos na mesma posição da segunda matriz, i.e., M1<M2 se para todo i,j M1(i,j)<M2(i,j).
4. Defina a função Pimatriz que recebe como argumento duas matrizes M1 e M2 de igual dimensão e
calcula a soma dos M1(i,j)*M2(i,j) para todo i e todo o j.
5. Defina a função Matrizdiagonal que recebe como argumento um vector V de comprimento L e
devolve a matriz LxL em que na diagonal principal ocorrem os elementos de V e nas restantes
posições ocorrem zeros.
6. Defina a função Colunasnm que recebe como argumento uma matriz NxM e devolve um vector de
dimensão M em que na i-ésima posição ocorre 1 se na i-ésima coluna ocorre um elemento maior
que N*M e 0 caso contrário.
7. Defina a função Linhapar que recebe como argumento um vector de inteiros e devolve verdadeiro
se a soma dos elementos é par e falso caso contrário. Generalize esta função de modo a receber
como argumento uma matriz e a devolver um vector em que na i-ésima posição ocorre 1 se a linha
satisfizer Linhapar e 0 caso contrário.
8. Defina a função Triangsupinf que recebe como argumento uma matriz quadrada e devolve 1 se esta
for triangular superior, 2 se for triangular inferior, 3 se for triangular superior e inferior (ou seja, se
for matriz diagonal) e 0 caso contrário.
Download