Fórmulas trigonométricas p 1 2 sin = ; sin = 6 2 3 2 sin 0 = 0; cos 0 = 1; tan 0 = 0 p p 3 3 cos = ; tan = 6 2 6 3 1 1 sec x = ; csc x = cos x sin x sin 2x = 2 sin x cos x 2 sin2 x cos 2x = 1 2 cos 2x = 2 cos x 1 sin 1 1 + tan2 x = cos2 x 1 1 + cot2 x = sin2 x 2 2 sin x + cos x = 1 p 2 cos = ; tan = 1 4 2 4 6 p 3 2 ; = sin 2 =1 arccos 0 = 2 arccos 1 = 0 arctan( 1) = arctan( 1) = p 1 cos = ; tan = 3 3 2 3 arctan 0 = 0 cos arcsin( 1) = = 0; tan 2 2 =1 arcsin 0 = 0; arctan 1 = arccos( 1) = ; arcsin 1 = 4 3 2 4 2 tan (arctan x) = cot (arccot x) = x sin (arcsin x) = cos (arccos x) = x p sin (arccos x) = cos (arcsin x) = 1 tan (arcsin x) = cot (arccos x) = p x2 x sin (arctan x) = cos (arccot x) = p 1 + x2 1 sin (arccot x) = cos (arctan x) = p 1 + x2 tan (arccos x) = cot (arcsin x) = p x 1 x2 1 x2 1 tan (arccot x) = cot (arctan x) = x Outras Fórmulas ln A + ln B = ln AB ln A ln 1 = 0; ln(+1) = +1 ln e = 1; e0 = 1 ln B = ln A B A ln B = ln B A ln 0+ = 1 A e 1 = 0; e+1 = +1 2 b) = a2 (a p 2ab + b2 p b2 = (a b) (a + b) a3 b3 = (a b) a2 + ab + b2 a3 + b3 = (a + b) a2 e = eA B eB p p n An = A p p A A=B = p B p 3 p A =A A eA eB = eA+B a2 A + B 6= AB = p A+ p B p p A B A+B A B = + C C C A A A 6= + B+C B C ab + b2 p m An = An=m Algumas regras de derivação 0 (un ) = nun 0 1 0 0 0 (sin u) = u0 cos u 0 (arcsin u) = p 0 (ku) = ku0 u2 (log u) = u0 sin u (cos u) = u0 1 0 (eu ) = u0 eu u 2 0 (arctan u) = u0 1 + u2 0 (uv) = u0 v + uv 0 1 u0 u u0 cos2 u u0 0 (cot u) = sin2 u 0 (tan u) = u v 0 = u0 v uv 0 v2 x Regras de primitivação P ku = kP u P xn = P1 = x 1 = ln jxj x0 u P = log juj + c u P un+1 P un u 0 = +c n+1 P ex = ex P eu u0 = eu + c P au u0 = 1 x2 1 = arcsin x = u0 u = arcsin = a a2 u2 0 u P = arctan u + c 1 + u2 Pp au +c log a P cos x = sin x P u0 cos u = sin u + c P sin x = cos x P u0 sin u = cos u + c u0 P 2 = cot u + c sin u Pp xn+1 +c n+1 P arccos x + c arccos u +c a Pp Primitivação por Partes: u0 = arcsin u = 1 u2 1 = arctan x + c P 1 + x2 P P u0 sec u = log jsec u + tan uj + c u0 = tan u + c cos2 u arccos u + c u0 1 u = arctan + c 2 2 a +u a a P u0 csc u = log jcsc u P u0 v = uv cot uj + c P uv 0 Primitivação por Substituição Função com x = g (t) p a2 p a2 + x2 p x2 ekx lnk x x2 a2 g 0 (t) 1 (x) x x = a sin t x0 = a cos t t = arcsin a x x = a tan t x0 = a sec2 t t = arctan a x x = a sec t x0 = a sec t tan t t = arcsec a 1 ex ln t t et et ln x 2 t=g