A Radiação Solar

Propaganda
Geografia 10º ano – Radiação Solar
A Radiação Solar
Conceitos:
Radiação solar: Quantidade de energia eletromagnética emitida pelo sol, de natureza
variável que se propaga pela atmosfera. Só uma parte é recebida pela superfície da terra ,
cerca de 48%.
Constante solar: Quantidade de energia solar recebida no topo da atmosfera numa superfície
de 1m2, perpendicularmente aos raios solares em cada minuto.
1) Absorção
• Ocorre maioritariamente no ozono estratosférico
que absorve grande parte da radiação ultravioleta
• Também o vapor de água, CO2, poeiras e nuvens
existentes
na
troposfera
retêm
radiações,
(maioritariamente as infravermelhas)
• Em média, apenas 21% da radiação solar é
absorvida pela atmosfera
2) Reflexão
• A radiação solar, ao incidir sobre qualquer corpo, vai, em maior ou menor quantidade,
sofrer uma mudança de direção, sendo reenviada para o espaço por reflexão
• A esta relação dá-se o nome de albedo que varia em função da superfície
Albedo: Razão entre a radiação solar refletida por uma superfície e a radiação total que
sobre ela incide, o albedo varia consoante as características da superfície:
3) Difusão
Geografia 10º ano – Radiação Solar
• A radiação solar dispersa-se pelo espaço uma vez que é refletida em várias direções
• Uma pequena parte desta radiação atinge a Terra:
- De forma indireta – radiação difusa - energia que atinge indiretamente a superfície
terrestre e que se mede em Langley, que corresponde a cerca de 16 % da radiação solar
incidente no topo da atmosfera
- De forma direta – radiação solar direta – radiação que atinge o planeta diretamente e que
corresponde a cerca de 32%
• Radiação solar global (48 %) = radiação direta + radiação difusa
32%
16%
Quando a radiação global é absorvida pela superfície terrestre converte-se em energia
calorífica que é reenviada para a atmosfera – radiação terrestre (Radiação emitida pela
superfície terrestre. Processa-se em grande comprimento de onda – radiação
infravermelha.
Equilíbrio térmico da Terra
• A temperatura mantém-se mais ou menos constante porque:
- A Terra não acumula continuamente a energia solar que recebe
- Pelo contrário, a Terra perde uma quantidade de energia equivalente à que recebe
Radiação solar <=> radiação terrestre
Equilíbrio térmico
• É também permitido pelo efeito de estufa, função natural da atmosfera que evita a perda
de calor para as altas camadas da atmosfera e o intenso arrefecimento noturno, porque o
vapor de água e o CO2 absorvem, na troposfera, a radiação terrestre, devolvendo à Terra
parte da energia que esta refletiu por um fenómeno de contrarradiação, mantendo a
temperatura mais ou menos constante.
A intensidade da radiação solar é variável de lugar para lugar e num mesmo lugar
ao longo do dia devido a fatores como:
- Inclinação dos raios solares/ângulo de incidência
Geografia 10º ano – Radiação Solar
- Massa atmosférica percorrida
- Duração do dia natural
- Duração da insolação
- Latitude
- Relevo
1) Inclinação dos raios solares/ ângulo de incidência
• O ângulo de incidência varia ao longo do dia e ao longo do ano como consequência dos
movimentos de rotação e de translação, determinando:
- Duração do dia e da noite
- Sucessão das estações do ano
Raio A
• Ângulo de incidência máximo: os raios
solares incidem na perpendicular da
superfície terrestre
• A área recetora de energia é pequena
• Há uma maior concentração de energia
recebida por unidade de superfície
Raio B
• O ângulo de incidência é menor que em A e maior que em C
• A área recetor de energia é maior que em A e menor que em C
• Concentração de energia recebida por unidade de superfície é menor que em A e maior
que em C.
Raio C
• Ângulo de incidência menor que em B e A: representa o menor ângulo de incidência =
maior inclinação dos raios solares
• Área recetora de energia mais extensa que em A e B
• Menor concentração de energia por unidade de superfície.
Conclusão: Quanto maior a inclinação dos raios solares, maior a superfície que recebe
radiação, assistindo-se a uma maior dispersão da mesma, do que resulta uma menor
quantidade de energia recebida por unidade de superfície. Pelo contrário, se a inclinação
dos raios solares for reduzida (maioângulo de incidência possível = 90º), a superfície a
receber radiação é menor , logo, a quantidade de energia recebida por unidade de
superfície é maior porque esta se encontra menos dispersa.
2) Massa atmosférica percorrida
Geografia 10º ano – Radiação Solar
• As perdas de energia entre o limite superior da atmosfera e a superfície terrestre são
tanto maiores quanto maior a massa atmosférica a atravessar pelos raios solares
Analisando a figura conclui-se:
• Ângulo de incidência é maior em A do que em B ou C
• Em A, a superfície que recebe energia solar é menor que em B ou C
• Em A, as radiações solares atravessam uma menor quantidade de atmosfera para atingir
a superfície que em B ou C.
Logo:
• As perdas de energia são menores em A porque as radiações:
- Percorrem uma menor quantidade de atmosfera
- Possuem um maior ângulo de incidência
• Em B e C as perdas de energia aumentam porque:
- Aumenta a quantidade de atmosfera percorrida
- Diminui o ângulo de incidência
Conclusão: Quanto maior a inclinação dos raios solares, maior é a espessura da camada
atmosférica percorrida, o que se reflete numa maior perda energética pelos processos de
absorção, reflexão e difusão.
3) Duração do dia natural
• A duração do dia natural é variável ao longo do ano como consequência do movimento
de translação e da inclinação do eixo terrestre
• Esta variação terá influências diretas na variação da intensidade da radiação solar pois:
- Quanto maior a duração do dia natural, maior o período de tempo de receção de radiação
solar pela superfície terrestre
4) Duração da insolação
Geografia 10º ano – Radiação Solar
• Quanto maior a insolação, menor a quantidade de radiação solar perdida na atmosfera,
sendo maior a quantidade de energia que atinge a superfície terrestre
5) Latitude
• O facto de a Terra ser esférica contribui para a diferente inclinação com que os raios
solares atingem a superfície terrestre, diminuindo o ângulo de incidência (porque
aumenta a inclinação dos raios solares) à medida que a latitude aumenta
• À medida que a latitude aumenta, aumenta a inclinação dos raios solares, o que se traduz
numa maior superfície recetora de energia, assim como uma maior espessura da
atmosfera percorrida, resultando numa menor receção de energia
6) Relevo
Altitude
Orientação do relevo
• Com a altitude aumenta a nebulosidade o que se traduz numa menor insolação e, como
consequência, numa menor intensidade da radiação solar recebida
• Em Portugal, o facto de o Norte apresentarem relevo mais acidentado justifica a menor
insolação registada nesta região
• A orientação das vertentes também
influencia a quantidade de radiação solar
recebida
• No caso português, o movimento diurno aparente do sol justifica a diferente distribuição
da radiação solar nas vertentes voltadas a norte ou a sul
Variação diurna e anual da radiação solar global
Geografia 10º ano – Radiação Solar
1) VARIAÇÃO DIURNA DA RADIAÇÃO SOLAR
Consequência de:
• Movimento de rotação
• Inclinação dos raios solares
Provoca:
• Sucessão dos dias e das noites
• Variação do ângulo de incidência
• Variação da massa atmosférica atravessada pelos raios solares
NASCER DO SOL:

Ângulo de incidência nulo

Radiação solar praticamente inexistente
SOL COMEÇA A ELEVAR-SE NO HORIZONTE:

Aumenta o ângulo de incidência

Diminui a massa atmosférica percorrida

Aumenta a radiação solar
MEIO-DIA SOLAR:
 Altura em que os raios solares incidem com menor obliquidade e a massa atmosférica
percorrida é a menor possível
 Intensidade da radiação solar é a mais elevada possível
APÓS O MEIO-DIA SOLAR:
 Sol inicia movimento descendente, o que se traduz em:
 Maior inclinação dos raios solares
 Aumento da massa atmosférica percorrida
 Aumento das perdas de energia
 Diminuição da radiação
CONSEQUÊNCIAS NA TEMPERATURA
Geografia 10º ano – Radiação Solar
•
Temperatura
mínima
atinge-se
imediatamente antes de o sol nascer porque
a Terra atingiu o imite máximo de horas
sem receber radiação solar
•
O meio-dia solar deveria ser a altura
do dia em que a temperatura deveria atingir
o valor máximo, mas tal não acontece
porque:
 Terra continua a absorver calor até atingir a “saturação”, altura em que deixa de
absorver a radiação recebida e começa a irradiar o excedente
 Radiação solar e a radiação terrestre aumentam a temperatura da camada de ar
em contacto com a superfície algumas horas após o meio-dia solar
 Durante a noite a temperatura diminui progressivamente devido à inexistência de
radiação solar e à perda de calor por radiação terrestre.
2) VARIAÇÃO ANUAL DA RADIAÇÃO SOLAR
Consequência de:
• Movimento de translação
• Inclinação do eixo da Terra em relação ao plano da sua órbita
Provoca:
• Variação da duração dos dias e das noites (exceto no Equador)
• Variação da inclinação dos raios solares de lugar para lugar.
SOLSTÍCIO DE JUNHO

Raios solares incidem com menor obliquidade (na perpendicular do Trópico de
Câncer):
• Maior quantidade de energia recebida
• Menor superfície de receção de energia
• Menor espessura de massa atmosférica percorrida
• Maior duração do dia natural
• Período de insolação mais longo
Logo maior quantidade de energia recebida
SOLSTÍCIO DE DEZEMBRO
Geografia 10º ano – Radiação Solar
 Maior inclinação dos raios solares (que incidem na perpendicular do Trópico de
Capricórnio):
• Menor duração do dia natural
• Maior massa atmosférica percorrida
• Maior superfície de receção de energia
• Menor período de insolação
Menor quantidade de energia recebida
EQUINÓCIOS (SETEMBRO E MARÇO)
• Sol incide na vertical do Equador
• Duração do dia igual à da noite = 12 horas
• Obliquidade dos raios solares e massa atmosférica percorrida igual para qualquer lugar
situado à mesma latitude (norte ou sul)
Distribuição da temperatura no território NACIONAL
1) DISTRIBUIÇÃO SAZONAL DA RADIAÇÃO GLOBAL EM PORTUGAL CONTINENTAL
No verão, o máximo de radiação solar ocorre no litoral
algarvio. Segue-se toda a região a sul do Tejo, com
prolongamento para norte, numa faixa oriental ao longo da
fronteira com Espanha, e a região do Porto. Os valores
mínimos registam-se entre os cabos Carvoeiro e Mondego,
prolongando-se, gradualmente e em todas as direções, em
torno desta mancha. Salienta-se ainda a região do Noroeste.
A latitude e a proximidade do mar são os principais fatores que explicam estas
variações. As regiões do Sul recebem sempre maior quantidade de radiação solar, devido
à
menor
inclinação
dos
raios
solares.
A influência da proximidade do mar sobre a nebulosidade – quantidade de céu coberto por
nuvens num dado momento – faz com que as regiões do litoral, sobretudo a norte do Tejo,
recebam a radiação solar com menor intensidade, pois as nuvens refletem e absorvem
parte da radiação solar incidente. Assim, torna-se importante considerar a insolação –
número
de
horas
de
sol
descoberto,
acima
do
horizonte.
A distribuição da insolação reflete também a influência da latitude e da proximidade do
mar, pelo que, em geral, aumenta de norte para sul e de oeste para este.
Geografia 10º ano – Radiação Solar
2) VARIAÇÃO ESPACIAL DA INSOLAÇÃO MÉDIA ANUAL - PORTUGAL CONTINENTAL
A variação espacial da insolação evidencia ainda a influência
da altitude no aumento da nebulosidade e, em consequência,
na redução do número de horas de Sol descoberto. O desenho
das principais serras do território continental revela-se nos
fracos
valores
de
insolação.
A exposição das vertentes também influencia a insolação:
•
As vertentes voltadas a sul estão mais expostas ao Sol
e, como tal, têm maior insolação – encostas soalheiras;
•
As vertentes voltadas a norte têm mais horas de sombra e, por isso, nelas a
insolação é menor – encostas umbrias
3) FATORES JUSTIFICATIVOS DA VARIAÇÃO DA RADIAÇÃO SOLAR:

Latitude: quanto menor a latitude maior a radiação solar porque a inclinação dos
raios solares é menor, logo o sul apresenta uma radiação solar mais elevada que o
norte

Proximidade/afastamento do mar: locais mais próximos do mar apresentam
maior humidade e nebulosidade, o que diminui a intensidade de radiação solar
devido à menor insolação
 Altitude: o aumento da altitude provoca um aumento da nebulosidade e uma
redução da insolação, o que reduz a radiação solar
 Exposição geográfica das vertentes: as vertentes voltadas a sul encontram-se
mais expostas ao sol e recebem radiação solar durante mais tempo enquanto as
vertentes expostas a norte recebem radiação solar por períodos de tempo mais
curtos, aumentando as perdas de energia
 A insolação apresenta uma variação semelhante uma vez que também aumenta de
norte para sul e do litoral para o interior. Os valores mais elevados registam-se no
interior do Alentejo e no Algarve e os valores mais baixos nas montanhas minhotas
5) FATORES EXPLICATIVOS DA VARIAÇÃO DATEMPERATURA
Geografia 10º ano – Radiação Solar
A) LATITUDE

À medida que aumenta a latitude, diminui o ângulo de incidência

No norte, a temperatura média anual é mais reduzida porque:
•
Maior latitude
•
Menor ângulo de incidência
•
Maior massa atmosférica percorrida
Diminuição da radiação solar
Diminuição da temperatura
 No sul, a temperatura média anual é mais elevada porque:
•
Menor latitude
•
Maior ângulo de incidência
•
Menor massa atmosférica percorrida
Maior quantidade de radiação solar recebida
Aumento da temperatura …mas também, a influência das massas de ar quente e seco
provenientes de África fazem aumentar a temperatura nesta região
B) RELEVO
 À escala local, as elevações do solo e respetiva orientação condicionam a
quantidade de radiação solar recebida e a temperatura.
Assim:
⇒ ALTITUDE

À medida que aumenta a altitude diminui a temperatura porque:
 Há uma menor absorção da radiação solar e da radiação terrestre devido à
diminuição do vapor de água, CO2 e partículas sólidas e líquidas
⇒ ORIENTAÇÃO GEOGRÁFICA DAS MONTANHAS EM RELAÇÃO AOS RAIOS SOLARES

Vertentes viradas a sul recebem mais radiação solar, logo registam temperaturas
mais elevadas

Vertentes voltadas a norte recebem menos radiação solar, logo registam
temperaturas mais reduzidas
Geografia 10º ano – Radiação Solar
⇒ ORIENTAÇÃO GEOGRÁFICA DAS MONTANHAS EM RELAÇÃO À LINHA DE COSTA

Relevo concordante: montanhas paralelas à
linha de costa são um obstáculo à passagem de
ventos húmidos

No seu trajeto, os ventos húmidos vão-se
tornando mais secos, o que explica que à
mesma latitude uma região do interior seja
mais quente no verão e mais fria no inverno

Em
Portugal
isto
ocorre
no
noroeste
continental com as Serras Peneda-Gerês

Relevo discordante: montanhas
perpendiculares ou oblíquas à linha de costa
facilitam a entrada de ventos húmidos,
amenizando as temperaturas ao longo do ano
nas regiões do interior

Em Portugal, isto verifica se com a Cordilheira
Central
C) PROXIMIDADE/AFASTAMENTO DO OCEANO CONTINENTALIDADE
 Oceanos exercem influência moderadora sobre a temperatura devido à influência dos
ventos húmidos
 Influência diminui:
• De norte para sul, devido ao traçado da linha de costa que recua para este a sul do
Cabo da Roca
• De oeste para este porque os ventos húmidos vão perdendo humidade, tornando-se
mais secos
 Aumento do afastamento do mar provoca um aumento da amplitude térmica anual.
Assim:
•
Áreas próximas do oceano apresentam uma amplitude térmica mais fraca
•
Regiões do interior sofrem maior influência das massas de ar provenientes do
interior do continente europeu:
Geografia 10º ano – Radiação Solar
 No inverno, as massas de ar frio seco de leste provocam uma diminuição da
temperatura
 No verão, as massas de ar quente e seco de leste provocam um aumento da
temperatura
D) CORRENTES MARÍTIMAS
 Correntes quentes provocam uma maior evaporação da água do mar, aumentando
a humidade, o que provoca um aumento da temperatura

Correntes frias provocam uma fraca evaporação, tornando a atmosfera mais seca,
que conduz a temperaturas mais quentes no verão e mais frias no inverno
Valorização da radiação solar
1) APROVEITAMENTO DA ENERGIA SOLAR
Vantagens:
•
Diminuir a dependência energética do exterior relativamente aos combustíveis
fósseis
•
Diminuir o défice da balança comercial
•
Contribuir para o equilíbrio ambiental porque é uma energia limpa e inesgotável
Condicionamentos:
•
Variação diurna e anual da intensidade da radiação solar e variação em função dos
estados de tempo
•
Dificuldades de captação de energia durante a noite ou em áreas de intensa
nebulosidade
•
Dificuldades de captação de energia em áreas onde o dia natural é muito curto
•
Problemas de armazenamento, pois nem a energia solar nem a eletricidade que
dela provém se podem armazenar em grandes quantidades
FORMAS DE APROVEITAMENTO DA RADIAÇÃO SOLAR
a) Sistemas solares térmicos
•
Consiste no aquecimento de um fluido (líquido ou gasoso) através de coletores
solares para aquecimento de águas de uso doméstico, edifícios, piscinas
•
Forma de utilização mais vulgarizada em Portugal
•
Aproveitamento desta forma de energia tem ficado aquém do desejável devido a:
Geografia 10º ano – Radiação Solar
 Má imagem resultante de algumas más experiências na década de 80,
associadas à falta de qualidade dos equipamentos e, sobretudo, das
instalações
 Falta de informação específica sobre as potencialidades e vantagens desta
tecnologia junto dos potenciais utilizadores
 Elevado custo do investimento inicial
 Barreiras técnicas e tecnológicas à inovação ao nível da indústria de
construção e da instalação de equipamentos térmicos
 Insuficiência e inadequação das medidas de incentivo
b) Sistemas solares passivos
•
Consiste no aproveitamento da energia solar para aquecimento de edifícios
através de uma conceção cuidada e utilização de técnicas de construção
inovadoras, ou seja, baseia-se em soluções de eficiência energética.
•
Pode ser obtida, por exemplo, através de:
 Orientação do edifício
 Isolamento térmico dos edifícios, como:
- Paredes duplas com isolamento intermédio
- Janelas com vidro duplo
- Paredes com inércia térmica, que armazenam o calor e posteriormente irradiam-no
c) Sistemas fotovoltaicos
•
Consiste na produção de energia elétrica por via foto voltaica, produzida
recorrendo a células solares que convertem a radiação solar em eletricidade
Vantagens:
 Em termos ambientais, não liberta gases com efeito de estufa e não produzem
ruído
 Permite o aproveitamento da radiação solar difusa
 Energia elétrica produzida apresenta uma elevada fiabilidade
 Apresenta baixos ou nenhuns custos de manutenção
 Permite a criação de novos postos de trabalho, sobretudo a uma escala local
2) TURISMO
Geografia 10º ano – Radiação Solar
Importância da atividade turística devido:
•
Divisas estrangeiras que gera
•
Permite o equilíbrio da balança comercial
•
Efeitos multiplicadores:
- Criação de postos de trabalho
- Dinamização de atividades de serviços, transportes, construção civil, …
- Dinâmica territorial
- Preservação do património arquitetónico, paisagístico, gastronómico, …
Importância do turismo em Portugal deriva de:
•
Clima
•
Extenso litoral com praias de areia branca
•
Diversidade paisagística
•
Património histórico e cultural
•
Características hospitaleiras da população portuguesa
•
Melhoria das acessibilidades
•
Proximidade geográfica aos países geradores de grandes fluxos turísticos
Desenvolvimento do turismo, em particular turismo balnear
Problemas da atividade turística em Portugal:
•
Caráter sazonal
•
Concentração da oferta num reduzido número de mercados
•
Dependência do produto sol/praia
Solução: aproveitamento dos recursos endógenos através de:
•
Campanha de promoção da imagem de Portugal como destino turístico quer no
mercado interno quer no externo
•
Dinamização e apoio à realização de grandes eventos e congressos internacionais
•
Apoios a programas e parcerias que visem o aumento da taxa de ocupação, de
forma a atenuar a sazonalidade e a promover a procura em áreas turísticas menos
conhecidas
•
Incentivo seletivo ao investimento e à requalificação de infraestruturas hoteleiras
e de apoio e na gestão da exploração de forma a valorizar a oferta nacional
Download