Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido Sólidos, Líquidos e Forças intermoleculares #Fases da matéria Fase é qualquer forma na qual a matéria pode existir, sólido, líquido, gás, plasma, dependendo da temperatura e da pressão. É a parte homogênea de um sistema. A compressibilidade de líquidos e sólidos, a mudança do volume devido a mudança da pressão é muito pequena, comparada com gases. Se a amostra acima de N2 for evaporada, 25oC e 1atm, então irá ocupar um recipiente de volume maior que 200L. A condensação das moléculas de N2 é devida as forças intermoleculares. 1 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido #Momento dipolar Moléculas polares experimentam uma força com relação a um campo elétrico, o qual tende a alinhar de acordo com o campo. Numa molécula polar a densidade eletrônica é distorcida. Quando um campo elétrico é criado por um par de terminais carregados, o lado negativo da molécula será atraído pelo terminal positivo e o lado positivo da molécula pelo terminal negativo. A extensão com que as moléculas se alinham com o campo depende do chamado momento dipolar, µ, o qual é definido com o produto da magnitude das cargas parciais (δ+ e δ-) e a distância que separa as cargas. A unidade SI do momento dipolar é o Coulomb-metro, e a unidade mais utilizada é o Debye (D), onde 1D=3,34x10-30C.m). 2 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido #interações entre íons e moléculas com momento dipolar permanente - A força da atração íon-dipolo irá depender de alguns fatores: A distância entre o íon e o dipolo, quanto mais próximo maior a atração A carga do íon, quanto maior a carga do íon maior será a atração A magnitude do dipolo permanente, quanto maior o momento dipolar maior a atração. Exemplo: A água é uma molécula polar. Então se a molécula de água encontra um íon haverá uma força de atração. Quando cargas positivas e negativas são atraídas, energia é liberada na formação do produto da ligação iônica. Íons metálicos ligados a moléculas de água são ditos hidratados. A energia para este processo é chamada de calor ou entalpia de hidratação. Para o caso de um solvente genérico, temos a entalpia de solvatação. No caso da interação íon-dipolo a energia depende da distância e da carga do íon, variando com 1/d2. 3 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido H+ -1090 (H3O)+, íon hidrônio Mg2+ 86pm -1922kJ/mol - tamanho da carga iônica. Mg2+ tem maior carga e menor raio iônico, portanto a energia de hidratação será muito mais negativa. Íon sódio envolvido por moléculas de água, devido a interação íon-dipolo. #Interações entre moléculas de momento dipolar permanente Quando moléculas polares encontram outras moléculas polares, pode ocorrer interação, o lado positivo atrai o negativo e vice-versa. Em geral, energia é liberada nesta interação. 4 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido Condensação do HCl, uma molécula polar, com o abaixamento da temperatura (-85oC) as interações dipolo-dipolo superam as forças repulsivas. #Ligação de Hidrogênio Quando temos um átomo de hidrogênio ligado a um átomo X eletronegativo, a interação entre o dipolo da ligação H-X e as moléculas polares é maior que o esperado para atrações comuns de dipolo-dipolo. Essa forte atração é denominada de Ligação de Hidrogênio. Vejamos as eletronegatividades: N(3,0) O(3,5) e F(4,0), essas são as maiores eletronegatividades, enquanto que H é 2,1. Portanto, as ligações covalentes H-N, HF, e HO são as mais polares. As moléculas de dimetil éter e etanol têm a mesma massa molecular e momentos dipolares próximos. Entretanto, os seus pontos de fusão e ebulição são bastante diferentes, como mostra a tabela abaixo. Momento dipolar (D) Etanol, 1,69 C2H5-OH Dimetil éter, 1,30 CH3-O-CH3 Ponto Ponto de fusão de (oC) ebulição (oC) -114,1 78,29 -141,5 -24,8 Esta variedade de temperaturas de fusão e ebulição pode ser entendida da seguinte forma. Quando líquidos entram em ebulição, forças intermoleculares têm que ser 5 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido rompidas para que as moléculas se separem. Portanto, podemos concluir do fato de que as temperaturas de fusão e ebulição são maiores no etanol do que no éter, significa que as forças intermoleculares no etanol são maiores que no dimetil éter. O etanol tem ligações O-H portanto podemos encontras ligações de hidrogênio em etanol. Se extrapolarmos a linha que passa po H2S, H2Se e H2Te, o ponto de ebulição da água seria de –90oC, ou seja 200oC abaixo do valor. #Água Propriedade Comparação com outras Importância substâncias Calor A maior dos líquidos e sólidos, Previne mudanças bruscas de específico com exceção do NH3 temperatura; troca de calor por movimento da água é bastante grande; à4,181J/g.K mantém a temperatura do corpo. Calor de fusão O maior, com exceção do NH3 Efeito termoestático no ponto de congelamento devido a absorção ou à 333J/g perda de calor Calor de Maior de todos as substâncias Importante na troca de calor e água com a atmosfera vaporização à 2250J/g Tensão Maior de todos os líquidos Importante na fisiologia das células; controla certos fenômenos de superfície e superficial à 9 7,2x10 N/m o comportamento e formação de gotas Condução de Maior de todos os líquidos calor Viscosidade à Menor que outros líquidos a Flui facilmente para igualar a pressão 10-3N.s/m2 mesma temperatura Constante A maior de todos os líquidos Capacidade de manter íons separados em uma solução dielétrica à 80 exceto H2O2 e HCN a 200C 6 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido As densidades da água líquida e sólida são diferentes, assim como em outras substâncias. Entretanto a densidade da água varia com a temperatura de uma maneira diferente das outras substâncias. Quando a água funde a 0oC ocorre um aumento da densidade, e a densidade do líquido aumenta ainda mais até chegar a 4oC onde atinge o máximo. Aumentando ainda mais a temperatura a densidade irá cair, com a ruptura das ligações de hidrogênio. Nos lagos, quando se aproxima o inverno, a água resfria, a densidade aumenta a água gelada vai para baixo e a água quente para cima. Ao atingir 4oC, a densidade máxima é atingida. Abaixando ainda mais a temperatura, como a água mais gelada que 4oC, é menos densa que a água a 4oC, a água mais gelada permanece no topo. Com mais perda de calor o gelo se forma na superfície, flutuando protegendo a água mais inferior de ser congelada. As ligações de hidrogênio são responsáveis da alta capacidade térmica da água, e em parte essa é a razão dos lagos e oceanos terem um enorme efeito no clima. Forças de Dispersão São as forças intermoleculares mais comuns encontradas em todas as substâncias moleculares, tais forças são de natureza eletrostática (cargas), envolvendo dipolos 7 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido induzidos. Um exemplo é o iodo, I2, o qual é não polar e no entanto se solidifica em condições normais, além de ser solúvel na água. #Interação entre moléculas polares e não polares. dipolo permanente – dipolo induzido dipolo/dipolo induzido. O processo de induzir um dipolo é chamado de polarização. O grau em que a nuvem eletrônica de uma espécie pode ser distorcida e o dipolo induzido é chamado de polarizabilidade. #Interação entre moléculas não polares. 8 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido As forças de dispersão geralmente tornam-se mais fortes com o aumento do tamanho e da massa. Forças intermoleculares fortes significam que será necessária uma maior temperatura para romper estas forças e, assim permitir que moléculas deixem o líquido e passem para a fase vapor. 9 Universidade de Brasília Instituto de Química Prof. João Batista Introdução à química de estado sólido 10