FORÇA CENTRÍPETA — REVISÃO

Propaganda
FÍSICA - 1o ANO
MÓDULO 24
FORÇA CENTRÍPETA —
REVISÃO
Fixação
1) Um pêndulo é abandonado na posição A e atinge a posição E, como mostra a figura abaixo.
Assinale a alternativa que melhor indica a direção e o sentido da força que age sobre a
massa pendular, no instante que ela passa pelo ponto B.
a)
A
E
D
B
C
b)
c)
d)
Fixação
2) Com relação à questão anterior, assinale a alternativa que melhor indica a direção e o sentido
da força resultante sobre a massa pendular, no instante que ela chega ao ponto E.
a)
b)
c)
d)
Fixação
3) Ainda com relação à questão 1, assinale a alternativa que melhor indica a direção e o sentido
da resultante sobre a massa pendular ao passar pelo ponto C.
a)
b)
d)
d)
Fixação
4) Um pequeno bloco de massa m = 2,0kg, preso à extremidade de um fio, descreve, sobre
uma mesa lisa, uma circunferência horizontal de raio R = 0,60m, com velocidade escalar
constante v = 6,0m/s. Sendo g = 10m/s2, determine a intensidade da força de tração que o fio
exerce no bloco.
Fixação
5) Uma pequena esfera de massa 0,3kg está presa a um fio de comprimento 0,6m e gira num
plano vertical, descrevendo uma trajetória circular. Ao passar pelo ponto mais baixo, a velocidade escalar da esfera é 7,0m/s e, no ponto mais alto, é 5,0m/s.
Determine a intensidade da força de tração no fio, nas duas posições em questão. É dado
g = 10m/s2.
Fixação
6) A figura representa um trecho de rodovia. Os raios de curvatura nos pontos A e B são iguais
a 100m.
Um automóvel de massa 1000kg percorre o trecho com velocidade escalar constante de
36km/h. Determine as intensidades das forças normais que a pista aplica no automóvel nos
pontos A e B.
É dado g = 10m/s2.
Fixação
7) Um bloco de massa 1,0kg descreve um movimento circular numa mesa horizontal lisa,
preso a uma mola de constante elástica 1,0.25 N/m2. Sabendo-se que a mola não deformada
tem comprimento 0,75m, determine a deformação que a mola sofre, quando o bloco gira com
velocidade escalar de 5,0m/s.
Fixação
8) Um automóvel, de dimensões desprezíveis e de massa m = 1 000kg, percorre com velocidade
escalar constante de 10m/s uma circunferência de raio 100m, contida num plano horizontal.
Esse movimento ocorre numa pista sobrelevada, isto é, a margem externa é mais elevada que a
margem interna. Determine a tangente do ângulo θ de sobrelevação da pista com a horizontal,
para que o automóvel consiga efetuar a curva independentemente da força de atrito.
Considere g = 10m/s2.
Proposto
1) (CESGRANRIO) Uma esfera de aço suspensa por um fio descreve uma trajetória circular de
centro O em um plano horizontal no laboratório. As forças exercidas sobre a esfera (desprezando-se a resistência do ar) são:
0
a)
c)
b)
d)
e)
Proposto
2) Um carrinho de massa 2,0kg, amarrado na extremidade de uma corda de 0,70m de comprimento, descreve uma trajetória circular sobre uma mesa horizontal lisa. Se a intensidade da
força de tração máxima que a corda pode aguentar, sem romper-se, é de 140N, qual será o
módulo da velocidade máxima do carrinho, nesse dispositivo?
Proposto
3) Na figura a seguir, os dois corpos de massas iguais a 0,20kg, ligados por fios de 1,0m de
comprimento cada, giram num plano horizontal, sem atrito, com velocidade angular constante
de 2,0rad/s, em torno do ponto fixo O.
Determine as intensidades das trações nos fios.
0
1m
A
1m
B
Proposto
4) Um pêndulo simples possui comprimento l = 0,80m e a massa da esfera pendular é m =
0,40kg. Ao passar pelo ponto mais baixo da trajetória, a velocidade escalar da esfera é v = 2,0m/s.
Sendo g = 10m/s2, determine a intensidade da força que traciona o fio na posição mais baixa.
Proposto
5) Uma pequena esfera de massa m = 0,20kg está presa a um fio de comprimento l = 0,80m e
gira num plano vertical, descrevendo uma circunferência. Ao passar pelo ponto mais baixo A,
a velocidade da esfera é vA = 5,0m/s e pelo ponto mais alto, B é vB = 3,0m/s.
Determine as intensidades das trações nos fios, nos pontos A e B.
Proposto
6) (FUVEST) Um objeto A de 8kg, preso na extremidade de uma corda de 1m de comprimento
e de massa desprezível, descreve um movimento circular uniforme sobre uma mesa horizontal.
A tração na corda é 200N.
A
1m
Com relação ao objeto determine:
a) o valor da aceleração;
b) o valor da velocidade.
Proposto
7) Um caminhão transporta em sua carroceria, uma carga de 2,0 toneladas. Determine a intensidade da força normal exercida pela carga sobre o piso da carroceria, quando o veículo, a
30m/s, passa pelo ponto mais baixo de uma depressão com 300m de raio. Considere g = 10m/s2.
Proposto
8) Um bloco de massa m = 2,0kg, preso a uma mola, descreve um movimento circular numa
mesa horizontal lisa. A mola, quando não deformada, tem comprimento x0 = 0,50m. Sabendo
que, quando o bloco gira com velocidade escalar v = 3,0m/s, o raio da trajetória é R = 0,90m,
determine a constante elástica k da mola.
Proposto
9) Um carro de dimensões desprezíveis, desloca-se com velocidade escalar constante, descrevendo uma circunferência contida num plano horizontal. O raio da trajetória é de 50m e o
ângulo de sobrelevação é de 27° (tg 27° = 0,51). Determine a velocidade escalar que o veículo
deve ter, a fim de que possa efetuar a curva, independentemente da força de atrito.
Dado g = 10m/s2.
Proposto
10) Numa estrada, existe uma curva circular plana de raio 150m. O coeficiente de atrito lateral
entre o pneu e a estrada é 0,15 (g = 10m/s2). Determine a maior velocidade com que o carro
pode percorrer a curva sem derrapar.
Proposto
11) Um toca discos tem o prato na posição horizontal e realiza 3 revoluções em 3 segundos.
Colocando-se uma pequena moeda sobre o prato, ela deslizará se estiver a mais de 10cm do
centro. Então, o coeficiente de atrito estático entre a moeda e o prato é de:
a) 0,12
d) 0,48
b) 0,24
e) 0,60
c) 0,36
Proposto
12) Um motociclista descreve uma circunferência vertical num “globo da morte” de raio 4m.
Que força é exercida sobre o globo no ponto mais alto da trajetória, se a velocidade da moto,
ali, é de 12m/s?
A massa total (motociclista + moto) é de 150kg.
a) 1 500N
b) 2 400N
c) 3 900N
d) 5 400N
e) 6 900N
Proposto
13) O “rotor” é um brinquedo que existe em parques de diversões. Ele é constituído de um
cilindro oco provido de um assoalho. As pessoas entram no cilindro e ficam em pé encostadas
na parede interna. O cilindro começa a girar em torno de seu eixo vertical e, a partir de uma
velocidade angular mínima, o assoalho é retirado e as pessoas ficam “presas” à parede do
cilindro. Sendo R = 2,0m o raio do cilindro, g = 10m/s2 a aceleração da gravidade e m = 0,20 o
coeficiente de atrito entre as pessoas e o cilindro, determine a velocidade angular mínima que
o cilindro deve ter para que as pessoas não escorreguem.
Download