Respostas - Livro: Digital Signal Processing 1 Capı́tulo 2 • 2.1 a) Não é periódico b)N=20 amostras, c)N=5 amostras d)14 amostras. • 2.2 a)0,6 rad/s, −0, 2π rad/s, −0, 15π rad/s e 3π/14 rad/s. b)2,4 rad/s, −0, 8π rad/s, −0, 6π rad/s e 6π/7 rad/s. • 2.3 −π/3 rad/s, 0 rad/s, −π rad/s e π rad/s. • 2.4 ωo = 4 rad/s, θ = 1, 49 rad e A = 4, 99. • 2.12 cod = 4/3, c1d = 0, 33, c2d = 1/3 ◦ ◦ • 2.13 c0d = 3/4, c1d = 0, 56e−j63,4 , c2d = 3/4 e c3d = 0, 56ej63,4 • 2.24 a) Para N > 2, ωo = 2π/N b) ωo = 2M π/N para −N/2 ≤ M < N/2 c) N-1 freqüências. 2 Capı́tulo 3 • 3.12 Xd (ω) = 1, Limitado e contı́nuo. • 3.13 a) Xd (ω) = 2jsen(ωT ) b) e−j0,5ω (2 cos 0, 5ω − 2) c) e−j0,75ω (−2 cos 0, 75ω + cos 0, 25ω) d) A seqüência x[n] diverge porque cresce sem limites quando n→ − ∞ • 3.14 Xd (ω) = 1 1−0,9e−jω • 3.15 Xd (ω) = 1 1+0,9e−jω • 3.16 1 X(ω) = jω+0,2 1 Xd (ω) = 1−0,9048e −j0,5ω A sobreposição na freqüência (aliasing) é significativa. • 3.17 1 X(ω) = jω+0,2 Xd (ω) = 1−0,99e1−j0,05ω A sobreposição na freqüência (aliasing) é insignificante. • 3.18 • 3.20 w = • 3.21 Sim 2π NT 3 Capı́tulo 4 • 4.1 Xd [0] = 4, Xd [1] = 1 e Xd [2] = 1 • 4.2 Xd [0] = 3, Xd [1] = 1 − 2j, Xd [2] = 3 e Xd [3] = 1 + 2j • 4.3 a) Xd [0] = 0, Xd [1] = 1, 732j4 e Xd [2] = −1, 732j b) Xd [0] = 0, Xd [1] = 1.5 + j2, 598 e Xd [2] = 1, 5 − j2, 598 c) Xd [0] = 2, Xd [1] = −3(1 + j), Xd [2] = 0 e Xd [3] = −3(1 − j) • 4.20 x1 = [1 − 2 1] x2 = [1 − 2 1 0] x = [1 − 2 1] • 4.21 x1 = [0 − 1 1] x2 = [0 − 1 0 1] x[−1] = 1, x[0] = 0, x[1] = −1 4 Capı́tulo 5 • 5.1 y[n] = Pn k k=0 (1, 0001) x[n − k], y[n] = 1, 0001y[n − 1] + x[n] • 5.2 h[n] = (1, 0001)n • 5.3 y[n] = 0, 2(x[n] + x[n − 1] + x[n − 2] + x[n − 3] + x[n − 4] + x[n − 5]) e y[n] = y[n − 1] + 0, 2 ∗ (x[n] − x[n − 5]) • 5.4 • 5.5 h[n] = (−1)n u[n], IIR, h[0] = 1, h[1] = −1 e h[n] = 0 para n ≥ 2, FIR z z + 0.5 z−1 , y[n] = 0, 5 − 0, 5(−1)n • 5.8 Y (z) = −0.5 z+1 • 5.9 H(z) = b1 z 2 +b2 z+b3 a1 z 2 +a2 z+a3 , • 5.10 • 5.12 y[n] = 1 + n, A saı́da não é limitada. P P • 5.13 y[n] = −2x[n] + 4/3 nk=0 x[k] + 5/3 nk=0 (−0.5)n−k x[k], y[n + 2] − 0, 5y[n + 1] − 0, 5y[n] = x[n + 2] + x[n], y[n] − 0, 5y[n − 1] − 0, 5y[n − 2] = x[n] + x[n − 2] • 5.15 a) estável, b)Instável, c)Estável, d)Estável, e)Estável, f)Estável 5 Capı́tulo 6 • 6.1 hhp [n] = −sin[(n−no )ωc ] (n−no ) e hhp [no ] = 1 − ωc /π • 6.2 • 6.3 hbp [no ] = ωcuπ−ωcl e o )ωcu ] − hbp [n] = sin[(n−n (n−no )π • 6.4 hbs [no ] = 1 − • 6.5 ωcu −ωcl π sin[(n−no )ωcl ] (n−no )π e hbs [n] = sin[(n−no )ωcl ] (n−no )π − sin[(n−no )ωcu ] (n−no )π • 6.6 H(z) = 0.045(z+1) z−0.91 • 6.7 H(z) = z−1 10z+8 • 6.8 H(z) = 0.0105(z 2 −1) z 2 −1.8586z+0.9801 • 6.9 H(z) = z 2 −1.9999z+1 z 2 −1.9799z+0.9801 • 6.10 H(z) = 6 (z−1)(z−ej2.1 )(z−e−j2.1 ) (z−0.8)(z−0.8ej2.1 )(z−0.8e−j2.1 ) Capı́tulo 7 • 7.1 Retangular: H(z) = 0, 1447 + 0, 2678z −1 + 0, 3183z −2 + 0, 2678z −3 + 0, 1447z −4 Hamming: H(z) = 0, 0116 + 0, 1446z −1 + 0, 3183z −2 + 0, 1446z −3 + 0, 0116z −4 • 7.2 Retangular: H(z) = 0, 0762(1 + z −5 ) + 0, 2117(z −1 + z −4 ) + 0, 3052(z −2 + z −3 ) Hamming: H(z) = 0, 006(1 + z −5 ) + 0, 082(z −1 + z −4 ) + 0, 28(z −2 + z −3 ) • 7.4