FCE - DP – 2010/2 Método de Avaliação: Trabalho a ser entregue na data do 2º encontro de DP Obs.: 1. Só serão aceitos os trabalhos entregues exclusivamente na data estipulada. 2. Só serão aceitos os trabalhos entregues exclusivamente por cada aluno, que deverá assinar a lista de presença. 3. O aluno que não cumprir as determinações 1 e 2 terá lançado NC na P1. LISTA DE EXERCÍCIOS – 1º BIMESTRE (P1) 1) A rede a seguir representa um circuito para alimentação da carga RL de 15 Ω. A fonte V3 deve ser dimensionada de maneira que a corrente na carga IL seja de 2 A. Determine o valor de V3 e calcule a potência e tensão em cada elemento deste circuito. 10 Ohms 10 Ohms 5 Ohms + + V1 55 V - V3 + 10 Ohms 15 Ohms V5 70 V - RL 15 Ohms + - + V4 20 V V2 30 V 2) O circuito a seguir possui três fontes equivalentes de tensão, e representa parte de uma fonte chaveada, utilizada em equipamentos eletrônicos que necessitam de alta estabilidade de tensão. Calcular as correntes de malha, conforme indicadas abaixo. 40 Ohms 50 Ohms Ia 80 Ohms + 10 V - 40 Ohms 50 Ohms - + 30 V Ib Ic + 30 V - 100 Ohms 3) O circuito do exercício anterior alimenta 2 cargas, que são representadas pelos resistores de 50 Ω. Se o objetivo da fonte estabilizada é a alimentação destas cargas, calcular a tensão, a corrente e a potência de cada uma destas cargas, utilizando o método das tensões nos nós. 4) Uma das caracterísitcas dos circuitos lineares é a possibilidade de se fazer sua análise, utilizando-se o conceito de superposição. Utilize este conceito para calcular as tensões e correntes de todos os elementos do circuito a seguir. 3 A 10 Ohms 20 Ohms 30 Ohms 20 Ohms 4 A + + 80 V 10 Ohms 100 V - 5) Os Teoremas de Thevénin o Norton são ferramentas poderosas na análise de circuitos. O primeiro permite substituir o circuito em análise por apenas uma fonte de tensão em série com uma resistência. O segundo, permite o mesmo para uma fonte de corrente em paralelo com a mesma resistência. Obtenha os circuitos equivalentes de Thevénin e Norton, entre o pontos a e b da rede a seguir: 15 Ohms 15 Ohms a + - 30 V 10 Ohms 20 Oms 2 A + 3 A 40 V b 6): Utilize o método das correntes de malha para calcular as correntes e tensões em todos os resistores do circuito a seguir. + - 10 V 15 Ohms + 20 Ohms 20 V - + 10 V 25 Ohms 20 Ohms 7): Utilize o método das tensões nos nós para calcular as correntes em todos os resistores do circuito a seguir: 15 Ohms 20 Ohms 20 Ohms 15 Ohms 20 Ohms 20 Ohms + + 30 V 10 V - - 8): Utilize o método da redução do circuito para calcular a corrente na fonte do circuito a seguir: 25 Ohms 38 Ohms 35 Ohms 15 Ohms 100 Ohms 2,5 Ohms 5 Ohms 180 Ohms + 5 Ohms 60 V 25 Ohms 9): Calcule a corrente no resistor de 20 Ω do circuito a seguir: 10 Ohms 30 Ohms + 40 V - 10 Ohms 40 Ohms 5 Ohms 20 Ohms 10 Ohms + 30 V 2 A 25 Ohms 80 Ohms 10): Utilize o método das correntes de malha para calcular as correntes e tensões em todos os resistores do circuito a seguir. + - 10 V 15 Ohms + 20 Ohms 20 V - + 10 V 25 Ohms 20 Ohms 11): Utilize o método das tensões nos nós para calcular as correntes em todos os resistores do circuito a seguir: 10 Ohms 10 Ohms 10 Ohms 10 Ohms + 20 Ohms 20 V - 15 V + + 15 V - 12): Utilize o método da redução do circuito para calcular a corrente na fonte do circuito a seguir: 80 Ohms 60 Ohms 12 Ohms 80 Ohms 5 Ohms 2,5 Ohms 100 Ohms 20 Ohms + 100 Ohms 60 V 26 Ohms 13): Calcule a corrente no resistor de 20 Ω do circuito a seguir: 2 A 10 Ohms 10 Ohms 40 Ohms 30 Ohms 5 Ohms 20 Ohms 10 Ohms + + 30 V 40 V - 25 Ohms 25 Ohms