Lista de Exercícios Aluno(a):_______________________________________Nº.____ Pré Universitário Uni-Anhanguera Professor: Fabrízio Gentil Série: 1o ano Disciplina: Física – Leis de Newton e Energias TRABALHO DE RECUPERAÇÃO - 2o SEMESTRE 1- Um corpo de massa 4,0 kg encontra-se inicialmente em repouso e é submetido a ação de uma força cuja intensidade é igual a 60 N. Calcule o valor da aceleração adquirida pelo corpo. 2- Uma pessoa que na Terra possui massa igual a 80kg, qual seu peso na superfície da Terra? E na superfície da Lua? (Considere a aceleração gravitacional da Terra 9,8m/s² e na Lua 1,6m/s²). 3- (UF-MT) A ordem de grandeza de uma força de 1000N é comparável ao peso de: a) um lutador de boxe peso pesado. b) um tanque de guerra. c) um navio quebra-gelo d) uma bola de futebol e) uma bolinha de pingue-pongue 4- (FAAP-SP) Um carro com massa 1000 kg partindo do repouso, atinge 30m/s em 10s. Supõem-se que o movimento seja uniformemente variado. Calcule a intensidade da força resultante exercida sobre o carro. 5- Um corpo de massa 3 kg, inicialmente em repouso, está sobre uma superfície horizontal perfeitamente lisa. Uma força horizontal de intensidade constante igual a 4,5 N atua no corpo durante 20 s, calcule: a) Qual a aceleração adquirida pelo corpo durante o tempo em que a força atua? b) Qual a velocidade do corpo quando a força deixa de atuar? c) Qual a distância percorrida pelo corpo até que a força deixe de atuar? 6- Dois corpos de massas mA = 6 kg e mB = 4 kg estão sobre uma superfície horizontal perfeitamente lisa. Uma força horizontal de intensidade constante igual a 25 N é aplicada de forma a empurrar os dois corpos. Calcule a aceleração adquirida pelo conjunto e a intensidade da força de contato entre os corpos. 1 7- Dois blocos de massas mA = 0,35 kg e mB = 1,15 kg estão sobre uma superfície horizontal perfeitamente lisa, os blocos estão ligados por um fio ideal. Uma força horizontal de intensidade constante igual a 15 N é aplicada puxando os dois blocos. Calcule a aceleração adquirida pelo conjunto e a tensão no fio que liga os blocos. 8- No sistema da figura ao lado, o corpo A desliza sobre um plano horizontal sem atrito, arrastado por B que desce segundo a vertical. A e B estão presos entre si por um fio inextensível, paralelo ao plano, e que passa pela polia. Desprezam-se as massas do fio e da polia e os atritos na polia e no plano. As massas de A e B valem respectivamente 32 kg e 8 kg. Determinar a aceleração do conjunto e a intensidade da força de tração no fio. Adotar g = 10 m/s2. 9- No sistema da figura ao lado, o corpo B desliza sobre um plano horizontal sem atrito, ele está ligado atrvés de um sistema de fios e polias ideais a dois corpos A e C que se deslocam verticalmente. As massas de A, B eC valem respectivamente 5 kg, 2 kg e 3 kg. Determinar a aceleração do conjunto e a intensidade das forças de tração nos fios. Adotar g = 10 m/s2. 10- Um homem de massa m= 70 kg está num elevador, este se move com aceleração a= 2 m/s2 determinar: a) A força com que o homem atua no chão do elevador, se o elevador está descendo; b) A força com que o homem atua no chão do elevador, se o elevador está subindo; c) Para qual aceleração do elevador a força do homem sobre o chão do elevador desaparecerá? Adote g = 10 m/s2 para a aceleração da gravidade 11- (PUC-RIO) 2 Dois blocos A e B cujas massas são m A= 5,0 kg e mB= 10,0 kg estão posicionados como mostra a figura ao lado. Sabendo que a superfície de contato entre A e B possui o coeficiente de atrito estático μ = 0,3 e que B desliza sobre uma superfície sem atrito, determine a aceleração máxima que pode ser aplicada ao sistema, ao puxarmos uma corda amarrada ao bloco B com força F, sem que haja escorregamento do bloco A sobre o bloco B. Considere g = 10,0 m/s2. 12- (PUC-RIO 2008) Uma caixa cuja velocidade inicial é de 10 m/s leva 5s deslizando sobre uma superfície até parar completamente. Considerando a aceleração da gravidade g = 10 m/s², determine o coeficiente de atrito cinético que atua entre a superfície e a caixa. 13- Uma mola de constante elástica igual a 20 N/m, sofre uma deformação de 0,2m. calcule a energia potencial acumulada pela mola. 14- O gráfico representa a intensidade da força aplicada em uma mola, em função da deformação. Determine: a) a constante elástica da mola b) a energia adquirida pela mola quando x = 8cm 15- (Olimpíada Brasileira de Física) No experimento da figura abaixo, são desprezados os atritos entre as superfícies e a resistência do ar. O bloco, inicial em repouso, com massa igual a 4,0 kg, comprime em 20 cm uma mola ideal, cuja constante elástica vale 3,6.103 N/m. O bloco permanece apenas encostado na mola. Liberando-se a mola, esta é distendida, impulsionando o bloco que atinge a altura h. 3 Determine: a) o módulo da velocidade do bloco imediatamente após a sua liberação da mola; b) o valor da altura h (Dado g = 10m/s²) 16- (UF Lavras-MG) Em uma estação ferroviária existe uma mola destinada a parar sem dano o movimento de locomotivas. Admitindo-se que a locomotiva a ser parada tem velocidade de 7,2 km/h, massa de 7.10 kg, e a mola sofre uma deformação de 1m, qual deve ser a constante elástica da mola? a) 28.104 N/m b) 362.104 N/m c) 28.104 J d)362.104 W e) 362.104 J 17- (FUVEST – SP ) No rótulo de uma lata de leite em pó lê-se “valor energético: 1509kj por 100g (361kcal)”. Se toda energia armazenada em uma lata contendo 400g de leite fosse utilizada para levantar um objeto de 10kg, a altura máxima atingida seria de aproximadamente (g = 10m/s²) 18- Uma mola é deslocada 10cm da sua posição de equilíbrio; sendo a constante elástica desta mola equivalente à 50N/m, determine a energia potencial elástica associada a esta mola em razão desta deformação. 19- Um bloco de massa igual a 1kg encontra-se preso sobre uma mola vertical que está deformada 10cm com relação à sua posição de equilíbrio. Após o bloco ser solto, ele é arremessado verticalmente para cima. Sendo o sistema livre de forças dissipativas e a constante elástica da mola equivalente à 50N/m, determine a altura máxima que o bloco alcançará em cm. (obs.: considere a massa da mola desprezível). 20- (UCSA) Uma partícula de massa constante tem o módulo de sua velocidade aumentado em 20%. Orespectivo aumento de sua energia cinética será de: a) 10% 4 b) 20% c) 40% d) 44% e) 56% 21- Um corpo de massa 3,0kg está posicionado 2,0m acima do solo horizontal e tem energia potencial gravitacional de 90J. A aceleração de gravidade no local tem módulo igual a 10m/s 2. Quando esse corpo estiver posicionado no solo, sua energia potencial gravitacional valerá: a) zero b) 20J c) 30J d) 60J e) 90J 22- Um corpo de massa m se desloca numa trajetória plana e circular. Num determinado instante t 1, sua velocidade escalar é v, e, em t2, sua velocidade escalar é 2v. A razão entre as energias cinéticas do corpo em t2 e t1, respectivamente, é: a) 1 b) 2 c) 4 d) 8 e) 16 23- Considere uma partícula no interior de um campo de forças. Se o movimento da partícula for espontâneo, sua energia potencial sempre diminui e as forças de campo estarão realizando um trabalho motor (positivo), que consiste em transformar energia potencial em cinética. Dentre as alternativas a seguir, assinale aquela em que a energia potencial aumenta: a) um corpo caindo no campo de gravidade da Terra; b) um próton e um elétron se aproximando; c) dois elétrons se afastando; d) dois prótons se afastando; e) um próton e um elétron se afastando. 24- (ITA) Um pingo de chuva de massa 5,0 x 10 -5kg cai com velocidade constante de uma altitude de 120m, sem que a sua massa varie, num local onde a aceleração da gravidade tem módulo igual a 10m/s 2. 5 Nestas condições, a intensidade de força de atrito F do ar sobre a gota e a energia mecânica E dissipada durante a queda são respectivamente: a) 5,0 x 10-4N; 5,0 x 10-4J; b) 1,0 x 10-3N; 1,0 x 10-1J; c) 5,0 x 10-4N; 5,0 x 10-2J; d) 5,0 x 10-4N; 6,0 x 10-2J; e) 5,0 x 10-4N; E = 0. 25- Um atleta de massa 80kg com 2,0m de altura, consegue ultrapassar um obstáculo horizontal a 6,0m do chão com salto de vara. Adote g = 10m/s 2. A variação de energia potencial gravitacional do atleta, neste salto, é um valor próximo de: a) 2,4kJ b) 3,2kJ c) 4,0kJ d) 4,8kJ e) 5,0kJ 26- (UNIFOR) Três esferas idênticas, de raios R e massas M, estão entre uma mesa horizontal. A aceleração local de gravidade tem módulo igual a g. As esferas são colocadas em um tubo vertical que também está sobre a mesa e que tem raio praticamente igual ao raio das esferas. Seja E a energia potencial gravitacional total das três esferas sobre a mesa e E' a energia potencial gravitacional total das três esferas dentro do tubo. O módulo da diferença (E' - E) é igual a: a) 4 MRg b) 5 MRg c) 6 MRg d) 7 MRg e) 8 MRg 27- (FUND. CARLOS CHAGAS) Uma mola elástica ideal, submetida a ação de uma força de intensidade F = 10N, está deformada de 2,0cm. A energia elástica armazenada na mola é de: a) 0,10J b) 0,20J c) 0,50J d) 1,0J e) 2,0J 28- (FUVEST) Um ciclista desce uma ladeira, com forte vento contrário ao movimento. Pedalando vigorosamente, ele consegue manter a velocidade constante. Pode-se então afirmar que a sua: 6 a) energia cinética está aumentando; b) energia cinética está diminuindo; c) energia potencial gravitacional está aumentando; d) energia potencial gravitacional está diminuindo; e) energia potencial gravitacional é constante. 29- Um corpo é lançado verticalmente para cima num local onde g = 10m/s 2. Devido ao atrito com o ar, o corpo dissipa, durante a subida, 25% de sua energia cinética inicial na forma de calor. Nestas condições, pode-se afirmar que, se a altura máxima por ele atingida é 15cm, então a velocidade de lançamento, em m/s, foi: a) 1,0 b) 2,0 c) 3,0 d) 4,0 e) 5,0 30- (PUC-RIO) Sabendo que um corredor cibernético de 80 kg, partindo do repouso, realiza a prova de 200 m em 20 s mantendo uma aceleração constante de a = 1,0 m/s², pode-se afirmar que a energia cinética atingida pelo corredor no final dos 200 m, em joules, é: 7