Aula 2 - WordPress.com

Propaganda
Matéria: Biologia Professora: Mariana Bregalda de Castro
Aula 2 - Capítulo 2. Introdução a genética clássica
2.1. Fundamentos da genética clássica
A genética corresponde ao estudo da
hereditariedade. Um ser humano ou outro animal,
tem o material genético nuclear constituído por
filamentos de cromatina, que se condensam
durante a divisão celular, formando os
cromossomos. Metade dos cromossomos de cada
célula tem origem paterna e a outra metade tem
origem materna. O DNA mitocondrial é de origem
exclusivamente
materna,
pois
todas
as
mitocôndrias são procedentes do óvulo e não do
espermatozóide.
No ser humano, há 46 cromossomos
dispostos em 23 pares. Um par é sexual e os
demais 44 cromossomos são denominados
autossômicos. Na mulher, há dois cromossomos
sexuais X (XX); no homem há um cromossomo X
e um Y (XY). Genes localizados nesses
cromossomos são responsáveis pela herança
autossômica.
Ao longo do cromossomo, dispõem-se
inúmeros genes, responsáveis pela expressão de
características do indivíduo. Alelos são genes que
ocupam a mesma posição (Locus) em
cromossomos homólogos e são responsáveis pela
determinação da mesma característica. Exemplo:
em relação a cor do pelo de cobaias, há duas
variações: o alelo B condiciona pelo preto e o
alelo b determina o branco. O cobaia pode ter o
alelo BB, possuindo pelo preto. Caso a cobaia
possua dois alelos b (bb), seu pelo será branco.
Um cobaia Bb tem pelo preto, não é cinza nem é
“menos preto” do que uma cobaia BB. Isso
significa que o alelo B é dominante em relação ao
alelo b, ou seja, o alelo b é recessivo, só expressa
suas características quando está em duplicidade
(bb), por exemplo).
A carga genética que o indivíduo apresenta
constitui seu genótipo. A característica que ele
manifesta é o seu fenótipo. Assim o genótipo BB
corresponde ao fenótipo pelo preto; o genótipo bb
determina o fenótipo pelo branco. O indivíduo Bb
tem o fenótipo preto. O fenótipo depende da
interação entre genótipo e ambiente. Um
indivíduo com a carga genética para estatura
elevada, sem a nutrição adequada, terá a estatura
mais reduzida.
Em relação ao genótipo das cobaias, há
dois tipos de indivíduos:


Puros ou homozigotos: tem os dois alelos
iguais, como é o caso do BB e do bb.
Híbridos ou heterozigotos: tem alelos
diferentes, como ocorre com o Bb.
Gametas:
Na reprodução dos animais, os gametas
representam o elo entre uma geração e outra.
Gametas de animais são gerados por meiose,
processo que reduz à metade o número de
cromossomos. Evidentemente, isso interfere nos
alelos, que se separam. Um indivíduo heterozigoto
(Bb) produz dois tipos de gametas: B e b, com
50% de cada tipo. Um indivíduo BB só gera
gametas B; um homozigoto recessivo bb produz
apenas gametas b.
Cruzamento:
A partir da formação dos gametas, é
possível representar cruzamentos de maneiras
organizadas. Veja alguns casos mais importantes,
revelando os possíveis descendentes e sua
proporção esperada.
Pais homozigotos BB e bb, geram gametas
B e b, respectivamente. O descendente será 100%
Bb (Fig. 1).
Pai heterozigoto Bb e mãe heterozigoto
Bb, geram gametas B e b; e B e b
respectivamente. O descendente será 75% Bb e
25% bb (Fig. 3).
Fig. 1 Cruzamento BB x bb
Pai heterozigoto Bb e mãe homozigota bb,
geram gametas B e b; e b respectivamente. O
descendente será 50% Bb e 50% bb (Fig. 2).
Fig. 3 Cruzamento Bb x Bb
Fig. 2 Cruzamento Bb x bb
Cruzamento mendeliano:
Nos trabalhos de Mendel, os cruzamentos foram realizados na sequência: geração parental (P),
primeira geração filial (F1) e segunda geração filial (F2). A geração P envolve o cruzamento entre
homozigoto dominante com homozigoto recessivo. A geração F1 resultante é constituída por indivíduos
heterozigotos. O cruzamento dos heterozigotos produz a geração F2, com distribuição de 3:1, ou seja, ¾
portadores de fenótipos dominantes e ¼ portadores de fenótipos recessivos (Fig. 4).
Fig. 4 Cruzamento mendeliano. Representação resumida da sequência de cruzamentos nas gerações P, F1, F2.
2
Heredograma:
Heredograma são diagramas que representam gerações de indivíduos de grupos familiares.
Constituem uma forma organizada de visualizar e compreender padrões hereditários. São também
denominados genealogias ou pedigrees.
Há certas convenções adotadas para a construção de heredogramas. As gerações são representadas
com algarismos romanos (I, II, III, IV etc.); os indivíduos de cada geração são indicados por algarismos
arábicos (1,2,3,4 etc.) da esquerda para a direita, colocando na ordem de nascimento por casal. Indivíduos do
sexo feminino são representados por círculos e masculinos por quadrados; quando o sexo não é informado
representa o indivíduo por triângulo ou losango. Um traço horizontal entre o circulo e o quadrado significa
cruzamento; dois traços horizontais e paralelos significam cruzamento consangüíneo (há parentesco entre os
componentes do casal). Outra característica é o preenchimento ou sem preenchimento, indicando
características opostas.
Fig 5. Principais construções adotadas na construção de heredograma.
Definição de genótipo: cruzamento teste
Cobaias de pelo branco são portadoras de genótipos bb; o portador de fenótipo recessivo é sempre
puro (homozigoto). No entanto, cobaias de pelo preto podem ser homozigotos (BB) ou heterozigoto (Bb).
Para determinar o genótipo de indivíduos portador de fenótipo dominante (preto), realiza-se o chamado
cruzamento teste. Um macho com genótipo desconhecido é cruzado com fêmea branca, que certamente tem
genótipo bb. Com a obtenção de grande número de descendentes é possível elucidar o problema (Fig. 6).
3
Fig. 6 Cruzamento teste para elucidar o fenótipo de macho de cobaia com pelagem preta (pode ser BB ou Bb). Esse macho é
cruzado com uma fêmea de pelagem branca (bb). Dependendo do fenótipo dos descendentes é possível determinar o fenótipo do
macho.
Há dois resultados possíveis:
a)
Todos os descendentes são pretos. Sendo assim, o macho preto não possui o alelo b; se ele tivesse o
alelo, haveria algum descendente branco (bb). Assim o indivíduo preto é BB.
b)
Há descendentes de dois tipos: pretos e brancos. Isso significa que o macho preto possui o alelo b;
um descendente branco é bb - recebeu um alelo b da mãe e outro do pai, o qual apresenta genótipo Bb.
2.2. A primeira Lei de Mendel
A primeira Lei de Mendel considera um par de alelos situados em cromossomos homólogos. E com
isso a 1º lei diz “Cada característica é determinada por dois fatores que se separam na formação dos
gametas, onde ocorrem em dose simples”, isto é, para cada gameta masculino ou feminino encaminha-se
apenas um fator. Aplicando a Lei de Mendel no caso das cobaias utilizadas, obtém dois alelos: o dominante
(B), que condiciona o preto, e o recessivo (b), responsável pela determinação de pelo branco. Assim, em um
indivíduo heterozigoto, a pelagem é preta. Esse indivíduo gera dois tipos de gametas (B e b), nas mesmas
proporções (50% cada) (Fig. 7).
Fig 7. Representação da Primeira Lei de Mendel. São mostrados dois cromossomos homólogos e um par de alelos.
Pelo quadrado de Punnet, fica fácil identificar os gametas e montar os cruzamentos. O quadro
corresponde aos tipos de gametas masculinos e femininos formados no cruzamento (Fig. 8).
Fig 8: Quadro de Punnet
2.3. Dominância e Codominância
Como visto em cobaias, o heterozigoto Bb tem pelagem preta, pois o alelo dominante B expressa-se
e o alelo recessivo b não se manifesta-se. Realizando cruzamentos é possível saber se o fenótipo se expressa
por dominância. Como no caso do pelo das cobaias.
4
O aspecto do pelo das cobaias é determinado por um par de alelos. Ha cobaias com pelo liso ou com
pelo arrepiado. Fazendo cruzamentos de macho do pelo liso com fêmea do pelo liso gera descendentes de
pelo liso. Esse procedimento repetido por varias gerações assegura que o indivíduo é homozigoto. E o
mesmo acontece com os pais de pelo arrepiado, gerando descendentes de pelo arrepiado. No entanto se fizer
cruzamento de macho de pelo arrepiado homozigoto com fêmea de pelo liso homozigota, os descendentes
são de pelo arrepiado e obrigatoriamente heterozigoto. Com isso pode-se concluir que o alelo de pelo
arrepiado (L) é dominante em relação ao alelo que condiciona pelo liso (l).
Outro caminho pode ser cruzando um casal com o mesmo fenótipo e pelo menos um dos
descendentes ser de fenótipo diferentes dos pais. Por exemplo se não conhecesse a dominância em relação
ao tipo de pelo de cobaia, poderíamos estabelecer o alelo dominante com um casal de pelo arrepiado, com
descendentes de pelo liso (Fig. 9).
Fig. 9 No caso de o cruzamento gerar alguns descendentes com pelo liso (fenótipo diferente dos pais), pode-se afirmar que estes
serão homozigotos recessivos (ll) e os pais heterozigotos (Ll)
No caso da flor de maravilha, há dois alelos para a cor das flores: V para vermelho e B para branco.
Indivíduos homozigotos VV tem flores vermelhas; homozigotos BB tem flores brancas. O heterozigoto VB
tem flores róseas, cor intermediaria entre o vermelho e o branco. Esse é um caso de dominância incompleta,
no qual o heterozigoto apresenta fenótipo intermediário.
Em uma sequência típica de cruzamento mendeliano, a geração parental (P) é constituída por
indivíduos de flores vermelhas cruzados com indivíduos de flores brancas. A F1 resultante tem apenas
descendetes com flores róseas. Com a autofecundarão de F1, obtem-se a F2, constituída por indivíduos com
3 fenótipos: flores vermelhas (25%), flores rosas(50%) e flores brancas (25%). A proporção fenotípica de F2
é portanto, de 1:2:1 (Fig. 10).
5
Fig 10. Cruzamento entre indivíduos de Mirabilis jalapa (flor maravilha) produtores de flores vermelhas com produtores de flores
brancas resulta em descendentes de flores róseas (heterozigoto). O cruzamento entre heterozigotos produz descendentes com três
tipos de fenótipos (flores vermelhas, róseas e brancas) em uma proporção de 1:2:1.
No sistema sanguíneo ABO, o indivíduo de sangue AB é heterozigoto em alelo que condiciona tipo
A e alelo que condiciona tipo B. No entanto, não se pode caracterizar o tipo AB como sendo um fenótipo
intermediário entre o tipo A e o tipo B; é um fenótipo com características próprias. Nesse caso, o termo
adequado para a herança é codominância e não dominância incompleta.
2.4.
Probabilidade
Probabilidade é definida como relação entre o número de eventos favoráveis e o número de eventos
igualmente possíveis. Ou seja, é a chance que um evento tem de ocorrer, entre dois ou mais eventos
possíveis. Por exemplo, ao lançarmos uma moeda, qual a chance dela cair com a face “cara” voltada para
cima? E em um baralho de 52 cartas, qual a chance de ser sorteada uma carta do naipe ouros?
Probabilidade = P = números de eventos favoráveis / números de eventos igualmente possíveis
Eventos como obter “cara” ao lançar uma moeda, sortear um “ás” de ouros do baralho, ou obter “face 6” ao
jogar um dado são denominados eventos aleatórios porque cada um deles tem a mesma chance de ocorrer
em relação a seus respectivos eventos alternativos.

A probabilidade de sortear uma carta de espadas de um baralho de 52 cartas é de ¼

A probabilidade de sortear um rei qualquer de um baralho de 52 cartas é de 1/13.

A probabilidade de sortear o rei de espadas de um baralho de 52 cartas é de 1/52.
A formação de um determinado tipo de gameta, com um outro alelo de um par de genes, também é
um evento aleatório. Um indivíduo heterozigoto Aa tem a mesma probabilidade de formar gametas
portadores do alelo A do que de formar gametas com o alelo a (1/2 A: 1/2 a).
2.5.
Regra da adição e da multiplicação
A teoria das probabilidades diz que a probabilidade de dois ou mais eventos independentes
ocorrerem conjuntamente é igual ao produto das probabilidades de ocorrerem separadamente. Esse
princípio é conhecido popularmente como regra do “e”, pois corresponde a pergunta: qual a probabilidade
de ocorrer um evento E outro, simultaneamente?
Suponha que você jogue uma moeda duas vezes. Qual a probabilidade de obter duas “caras”, ou
seja, “cara” no primeiro lançamento e “cara” no segundo? A chance de ocorrer “cara” na primeira jogada é,
como já vimos, igual a ½; a chance de ocorrer “cara” na segunda jogada também é igual a1/2. Assim a
probabilidade desses dois eventos ocorrer conjuntamente é 1/2 X 1/2 = 1/4.
Aplicando na genética, um casal quer ter dois filhos e deseja saber a probabilidade de que ambos
sejam do sexo masculino. Admitindo que a probabilidade de ser homem ou mulher é igual a ½, a
probabilidade de o casal ter dois meninos é 1/2 X 1/2, ou seja, ¼.
6
Outro princípio de probabilidade diz que a ocorrência de dois eventos que se excluem mutuamente é
igual à soma das probabilidades com que cada evento ocorre. Esse princípio é conhecido popularmente
como regra do “ou”, pois corresponde à pergunta: qual é a probabilidade de ocorrer um evento OU outro?
Por exemplo, a probabilidade de obter “cara” ou “coroa”, ao lançarmos uma moeda, é igual a 1,
porque representa a probabilidade de ocorrer “cara” somada à probabilidade de ocorrer “coroa” (1/2 + 1/2
=1). Para calcular a probabilidade de obter “face 1” ou “face 6” no lançamento de um dado, basta somar as
probabilidades de cada evento: 1/6 + 1/6 = 2/6.
O mesmo raciocínio se aplica aos problemas da genética. Por exemplo, qual a probabilidade de um
casal ter dois filhos, um do sexo masculino e outro do sexo feminino? Como já vimos, a probabilidade de
uma criança ser do sexo masculino é ½ e de ser do sexo feminino também é de ½. Há duas maneiras de um
casal ter um menino e uma menina: o primeiro filho ser menino E o segundo filho ser menina (1/2 X 1/2 =
1/4) OU o primeiro ser menina e o segundo ser menino (1/2 X 1/2 = 1/4). A probabilidade final é 1/4 + 1/4 =
2/4, ou ½
2.6.
Exercícios de Revisão:
1) Defina genética.
2) O ser humano possui 46 cromossomos, dispostos em 23 pares. Um dos pares, designados como sexual,
determina o sexo. Qual a denominação dos demais 44 cromossomos?
3) “A carga genética que o indivíduo apresenta constitui seu genótipo. A característica que ele manifesta é o
seu fenótipo”.
a) O que é fenótipo?
b) DÊ um exemplo de fenótipo influenciado pelo meio ambiente
4) Defina os termos homozigoto e heterozigoto.
5) Qual a porcentagem de descendentes Aa nascidos de uma mãe Aa e um pai aa?
6) Um casal com olhos castanhos (dominante) tem dois filhos com olhos azuis (recessivo). Qual é a
probabilidade de, em uma gestação, nascer uma criança com olhos castanhos?
7) Monte um cruzamento com os pais: BB x bb; Bb x bb e Bb x Bb. Colocando a probabilidade de
ocorrência de BB, Bb e bb em cada caso.
8) (UFRN) A planta maravilha Mirabilis jalapa apresenta duas variedades para coloração das flores: a Alba
(flor branca) e a rubra (flor vermelha). Cruzando-se as duas variedades, obtem-se F1, somente flores
róseas. Do cruzamento entre duas plantas heterozigotas, a porcentagem fenotípica para a cor rósea é de:
a) 25%
b) 50%
c) 75%
d) 30%
9) (Puccamp 2005) A maioria das populações é composta de pessoas que manifestam perda progressiva da
lactose intestinal após o desmame. Em conseqüência da falta dessa enzima, essas pessoas perdem a
capacidade de digerir o açúcar do leite, a lactose.
A alergia do leite pode ser hereditária, causada pela deficiência da enzima lactose. Essa característica é
autossômica e, nas populações, ocorrem três fenótipos relacionados à atividade da enzima: indivíduos
sem atividade de lactose, indivíduos com atividade de lactose e indivíduos com atividade parcial de
lactose. Essa distribuição é característica de um padrão de herança:
a) Recessiva
7
b) Dominante
c) Epistática
d) codominante
10) (UECE) Um grupo de coelhos de mesmo genótipo foi mantido junto em uma gaiola e produziu 27
animais de coloração escura para 9 de coloração clara. Admitindo-se para C o gene dominante e c para o
gene recessivo, qual o genótipo dos animais, respectivamente para machos e fêmeas?
a) CC x cc
b) Cc x CC
c) cc x cc
d) CC x CC
11) (Enem 2009) Em um experimento, preparou-se um conjunto de plantas por técnica de clonagem a partir
de uma planta original que apresentava folhas verdes. Esse conjunto foi dividido em dois grupos, que foram
tratados de maneira idêntica, com exceção das condições de iluminação, sendo um grupo exposto a ciclos de
iluminação solar natural e outro mantido no escuro. Após alguns dias, observou-se que o grupo exposto à luz
apresentava folhas verdes como a planta original e o grupo cultivado no escuro apresentava folhas
amareladas. Ao final do experimento, os dois grupos de plantas apresentaram.
a) os genótipos e os fenótipos idênticos.
b) os genótipos idênticos e os fenótipos diferentes.
c) diferenças nos genótipos e fenótipos
d) o mesmo fenótipo e apenas dois genótipos diferentes.
e) o mesmo fenótipo e grande variedade de genótipos
8
Download