A Questão 1. (3,0) a) Calcule, caso existam, os seguintes limites: √ i) lim+ √ 3 x→2 x−2 √ = lim x2 + 1 − 3 5 x→2+ √ x−2 = lim+ p √ √ √ √ 3 2 + 1)2 + 3 x2 + 1 3 5 + 3 52 (x x−2 √ p √ √ √ √ 3 3 3 x2 + 1 − 3 5 (x2 + 1)2 + 3 x2 + 1 3 5 + 52 p √ √ √ 3 3 (x2 + 1)2 + 3 x2 + 1 3 5 + 52 √ = lim+ x→2 x→2 p √ √ √ 3 3 (x2 + 1)2 + 3 x2 + 1 3 5 + 52 (x − 2)(x + 2) x→2 √ √ p p √ √ √ √ 3 3 3 x − 2 ( 3 (x2 + 1)2 + 3 x2 + 1 3 5 + 52 ) (x2 + 1)2 + 3 x2 + 1 3 5 + 52 √ √ √ = lim+ = +∞, x→2 x − 2 x − 2 (x + 2) x − 2 (x + 2) p 3 pois lim+ x−2 = lim+ x2 − 4 x→2 √ √ √ √ √ 3 (x2 + 1)2 + 3 x2 + 1 3 5 + 52 3 3 25 = x+2 4 e 1 3 √ x 2 + cos x + √ 2x + cos x + 3 x x x = lim ii) lim x→+∞ x→+∞ 1 x + sen x x 1 + sen x x 1 3 pois lim = lim √ = 0, |cos x| ≤ 1 e |sen x| ≤ 1. x→+∞ x x→+∞ x 1 lim+ √ = +∞ x→2 x−2 1 3 2 + cos x + √ 2 x x = lim = = 2, 1 x→+∞ 1 1 + sen x x b) Verifique se a função f (x) = √ x2 − 2x + 1 , se x 6= 1 x2 − 3x + 2 + 2(x − 1) cos (x − 1) 1, se x = 1 é contı́nua em x = 1. Justifique. p √ x2 − 2x + 1 (x − 1)2 lim f (x) = lim 2 = lim x→1 x→1 x − 3x + 2 + 2(x − 1) cos (x − 1) x→1 (x − 1)(x − 2) + 2(x − 1) cos (x − 1) |x − 1| x→1 (x − 1) [(x − 2) + 2 cos (x − 1)] = lim (x − 1) 1 lim+ = lim+ =1 x→1 (x − 1) [(x − 2) + 2 cos (x − 1)] x→1 (x − 2) + 2 cos (x − 1) −(x − 1) −1 lim− = lim− x→1 (x − 1) [(x − 2) + 2 cos (x − 1)] x→1 (x − 2) + 2 cos (x − 1) =⇒ f não é contı́nua em x = 1. = −1 =⇒6 ∃ lim f (x) x→1