Geografia Cartografia Organizadores Sonia Maria Vanzella Castellar Elvio Rodrigues Martins Elaboradores Rosemeire Morone Carlos Tadeu Gamba Nome do Aluno 3 módulo GOVERNO DO ESTADO DE SÃO PAULO Governador: Geraldo Alckmin Secretaria de Estado da Educação de São Paulo Secretário: Gabriel Benedito Issac Chalita Coordenadoria de Estudos e Normas Pedagógicas – CENP Coordenadora: Sonia Maria Silva UNIVERSIDADE DE SÃO PAULO Reitor: Adolpho José Melfi Pró-Reitora de Graduação Sonia Teresinha de Sousa Penin Pró-Reitor de Cultura e Extensão Universitária Adilson Avansi Abreu FUNDAÇÃO DE APOIO À FACULDADE DE EDUCAÇÃO – FAFE Presidente do Conselho Curador: Selma Garrido Pimenta Diretoria Administrativa: Anna Maria Pessoa de Carvalho Diretoria Financeira: Sílvia Luzia Frateschi Trivelato PROGRAMA PRÓ-UNIVERSITÁRIO Coordenadora Geral: Eleny Mitrulis Vice-coordenadora Geral: Sonia Maria Vanzella Castellar Coordenadora Pedagógica: Helena Coharik Chamlian Coordenadores de Área Biologia: Paulo Takeo Sano – Lyria Mori Física: Maurício Pietrocola – Nobuko Ueta Geografia: Sonia Maria Vanzella Castellar – Elvio Rodrigues Martins História: Kátia Maria Abud – Raquel Glezer Língua Inglesa: Anna Maria Carmagnani – Walkyria Monte Mór Língua Portuguesa: Maria Lúcia Victório de Oliveira Andrade – Neide Luzia de Rezende – Valdir Heitor Barzotto Matemática: Antônio Carlos Brolezzi – Elvia Mureb Sallum – Martha S. Monteiro Química: Maria Eunice Ribeiro Marcondes – Marcelo Giordan Produção Editorial Dreampix Comunicação Revisão, diagramação, capa e projeto gráfico: André Jun Nishizawa, Eduardo Higa Sokei, José Muniz Jr. Mariana Pimenta Coan, Mario Guimarães Mucida e Wagner Shimabukuro Cartas ao Aluno Carta da Pró-Reitoria de Graduação Caro aluno, Com muita alegria, a Universidade de São Paulo, por meio de seus estudantes e de seus professores, participa dessa parceria com a Secretaria de Estado da Educação, oferecendo a você o que temos de melhor: conhecimento. Conhecimento é a chave para o desenvolvimento das pessoas e das nações e freqüentar o ensino superior é a maneira mais efetiva de ampliar conhecimentos de forma sistemática e de se preparar para uma profissão. Ingressar numa universidade de reconhecida qualidade e gratuita é o desejo de tantos jovens como você. Por isso, a USP, assim como outras universidades públicas, possui um vestibular tão concorrido. Para enfrentar tal concorrência, muitos alunos do ensino médio, inclusive os que estudam em escolas particulares de reconhecida qualidade, fazem cursinhos preparatórios, em geral de alto custo e inacessíveis à maioria dos alunos da escola pública. O presente programa oferece a você a possibilidade de se preparar para enfrentar com melhores condições um vestibular, retomando aspectos fundamentais da programação do ensino médio. Espera-se, também, que essa revisão, orientada por objetivos educacionais, o auxilie a perceber com clareza o desenvolvimento pessoal que adquiriu ao longo da educação básica. Tomar posse da própria formação certamente lhe dará a segurança necessária para enfrentar qualquer situação de vida e de trabalho. Enfrente com garra esse programa. Os próximos meses, até os exames em novembro, exigirão de sua parte muita disciplina e estudo diário. Os monitores e os professores da USP, em parceria com os professores de sua escola, estão se dedicando muito para ajudá-lo nessa travessia. Em nome da comunidade USP, desejo-lhe, meu caro aluno, disposição e vigor para o presente desafio. Sonia Teresinha de Sousa Penin. Pró-Reitora de Graduação. Carta da Secretaria de Estado da Educação Caro aluno, Com a efetiva expansão e a crescente melhoria do ensino médio estadual, os desafios vivenciados por todos os jovens matriculados nas escolas da rede estadual de ensino, no momento de ingressar nas universidades públicas, vêm se inserindo, ao longo dos anos, num contexto aparentemente contraditório. Se de um lado nota-se um gradual aumento no percentual dos jovens aprovados nos exames vestibulares da Fuvest — o que, indubitavelmente, comprova a qualidade dos estudos públicos oferecidos —, de outro mostra quão desiguais têm sido as condições apresentadas pelos alunos ao concluírem a última etapa da educação básica. Diante dessa realidade, e com o objetivo de assegurar a esses alunos o patamar de formação básica necessário ao restabelecimento da igualdade de direitos demandados pela continuidade de estudos em nível superior, a Secretaria de Estado da Educação assumiu, em 2004, o compromisso de abrir, no programa denominado Pró-Universitário, 5.000 vagas para alunos matriculados na terceira série do curso regular do ensino médio. É uma proposta de trabalho que busca ampliar e diversificar as oportunidades de aprendizagem de novos conhecimentos e conteúdos de modo a instrumentalizar o aluno para uma efetiva inserção no mundo acadêmico. Tal proposta pedagógica buscará contemplar as diferentes disciplinas do currículo do ensino médio mediante material didático especialmente construído para esse fim. O Programa não só quer encorajar você, aluno da escola pública, a participar do exame seletivo de ingresso no ensino público superior, como espera se constituir em um efetivo canal interativo entre a escola de ensino médio e a universidade. Num processo de contribuições mútuas, rico e diversificado em subsídios, essa parceria poderá, no caso da estadual paulista, contribuir para o aperfeiçoamento de seu currículo, organização e formação de docentes. Prof. Sonia Maria Silva Coordenadora da Coordenadoria de Estudos e Normas Pedagógicas Apresentação da área Eu sou de Guainases. E eu da Cidades Tiradentes. Onde fica a Vila Prudente? Eu nasci em Guarulhos, mas meu pai veio de Pernambuco. Eu moro na zona Leste, mas trabalho na Freguesia do Ó. E assim poderíamos continuar a citar os diferentes lugares. Um de morada, outro de trabalho. Um de origem outro de chegada. De onde se veio e de onde se vive. Um aqui e um lá, que nos faz deslocar de ônibus, trem, metrô, e dependo da distância, até mesmo de navio, ou de avião. Às vezes longe, às vezes perto. E, às vezes, quando vamos, voltamos, e por outra ficamos, mudamos de lugar. E no deslocamento, na hora que nos movimentamos, olhamos pela janela a paisagem se movendo, como quem se movesse fosse ela e não nós. Casas, prédios, avenidas, carros, caminhões, pontes, viadutos, praças, estações, pessoas, muitas pessoas, árvores, postes, semáforos, placas (vende-se, compra-se, aluga-se...), anúncios em cartazes vendendo de hambúrguer a cigarro, de carro a jeans, e por aí vai o desfile das paisagens. É a cara da geografia em que vivemos. A geografia da cidade. Para quem não sabe, tudo parece confuso, no máximo familiar, mas caótico, bagunçado mesmo. E é onde vivemos. Mas porque isso? Porque uma coisa é perto e outra é longe? Por que eu moro aqui e meu trabalho fica em outro lugar? Porque eu sou daqui e meu pai veio de outro lugar? Periferia, o que é isso? Ser da periferia é ser periférico a que? Onde está o centro? E é centro de que? Afinal, por que as coisas estão localizadas onde estão, distribuídas desse jeito? A gente ouve e por vezes fala: “sou da periferia”, “o Brasil é um país periférico”, e nos perguntamos, que lugar é este, a periferia? Ser de um determinado lugar significa o quê? Tem vezes que a gente diz: olha, ele é carioca e ele é cearense. Daí estamos a falar sem perceber o que cada pessoa é, pois parece que o lugar de onde elas vieram diz muito do que elas são. Pode ser até que isso seja um exagero, mas observe como fazemos isso no dia-a-dia. Pelo menos dá para concluir que muito do que somos depende do lugar de onde vivemos. De qualquer maneira, existe como responder a todas as perguntas que fizemos aqui. Quem é capaz de responder isso tudo para nós é a Geografia. E é por isso que temos que estudar essa matéria, pois assim podemos responder um tanto quem somos nós. Nesta apostila você vai encontrar um conhecimento que permite a compreensão da sua localização na cidade, no Brasil e no Mundo. Vai compreender a que geografia você pertence ou qual geografia faz parte de você. Também vai descobrir o quanto esta geografia é importante nas nossas vidas, e o quanto é necessário conhecê-la, pois é bem provável que ela necessite ser transformada, modificada, e, quem sabe, até revolucionada. Agora, para começar, pergunte-se: que Geografia é essa? Se ela está bagunçada, faça como Jorge Ben, chame o síndico, mas neste caso chame o professor de geografia. Não se perca, se oriente rapaz, use o mapa. Tá difícil? Não tem erro, estamos aqui para isso, já que o leste fica aqui, vamos dar o rumo. Bom estudo, ou boa viagem... Apresentação do módulo Neste módulo, você entrará em contato com uma das ferramentas mais importantes para o auxílio na compreensão da geografia em geral. Trata-se da cartografia, ou seja, formas gráficas de representação que costumamos chamar de “mapas”. Trata-se de um conhecimento que está presente no nosso cotidiano diário, como por exemplo no mapa das estações de metrô, no guia de ruas da cidade, ou mesmo nos noticiários de televisão. A cartografia, como toda linguagem, nos permite entrar em contato com determinados tipos de informação. Neste caso, a informação que está nos mapas nos alimenta sobre informações de diferentes lugares, tanto no que diz respeito à Sociedade bem como da Natureza. Como qualquer linguagem, necessitamos conhecer o seu “abc”, ou seja, precisamos de uma alfabetização na linguagem da cartografia para que assim saibamos ler um mapa. Ao longo desta apostila, você encontrará os elementos necessários para que você entre em contato com os aspectos básicos da cartografia. Também vai compreender a evolução desta linguagem, adquirindo um conhecimento mais profundo desta ferramenta que são os mapas, comumente chamadas de cartas. Unidade Introdutória A inserção das representações cartográficas no cotidiano Organizadores Sonia Maria Vanzella Castellar Elvio Rodrigues Martins Elaborador Rosemeire Morone Carlos Tadeu Gamba O homem tem uma grande necessidade de conhecer o espaço que habita. Desde as épocas mais remotas, tem se preocupado em representar esse espaço, utilizando diferentes formas de representação, dos mais rudimentares desenhos da paisagem até os mapas mais modernos e sofisticados. Uma prova disso pode ser encontrada em Bedolina, no norte da Itália. Calcula-se que o mapa mais antigo já encontrado tenha sido confeccionado em 2300 a.C. Fonte: Oliveira, C. de. Curso de Cartografia Moderna. Rio de Janeiro: IBGE, 1988. Este mapa de origem babilônia é apenas uma das muitas evidências de como é antigo o uso dos mapas para o conhecimento do território. Há pesquisadores que afirmam que os mapas são uma das mais antigas formas de comunicação, pois alguns povos elaboravam mapas antes mesmo de estabelecerem uma linguagem escrita. As representações também não se limitaram a materiais impressos. Os polinésios, por exemplo, utilizavam pequenas varetas de bambu para elaborar as suas cartas náuticas. Outros materiais, como conchas e hastes de coqueiro, também tiveram grande utilidade na confecção destas cartas. - O tempo foi passando e a habilidade do homem para interpretar seu entorno foi ficando cada vez mais sofisticada. Inicialmente, havia uma preocupação com a própria sobrevivência, mas à medida que a sociedade sentia necessidade de conhecer espaços mais distantes, o uso e a divulgação dos mapas ia gradativamente aumentando. O homem passou a ver na Cartografia não só a possibilidade de explorar e dominar seu próprio território, mas também territórios alheios. O desenvolvimento da bússola por chineses e árabes teve contribuição importante neste processo. Assim, os mapas serviram e servem tanto para a administração e defesa do próprio território, como para estratégias de guerra, submissão de territórios e conseqüentemente dos povos que o habitam. Existem na História muitos exemplos de como o conhecimento do campo de batalha foi um grande diferencial no desfecho de batalhas e guerras. A aplicação dos mapas para a sistematização do conhecimento estratégico é habitual ainda em nossos dias, mas não é a única. Hoje, utilizamos essas representações nas mais variadas atividades humanas relacionadas ao espaço. Além dos administradores e militares, os mapas tem auxiliado diversos profissionais que se interessam pelo espaço ou necessitam de dados sobre fenômenos espaciais: geólogos, biólogos, arqueólogos e engenheiros são alguns desses profissionais. Isso que dizer que ao lermos um mapa, terminamos por ler ou interpretar uma informação ou uma dada situação representada; por exemplo, as ruas de uma cidade, a concentração da população de um país, seus acidentes geográficos, os fenômenos climáticos na superfície da Terra ou ainda as estrelas e os planetas. Para a Geografia, os mapas têm sido uma rica fonte de informações e um recurso imprescindível na análise do espaço geográfico. Isso explica a estreita relação que sempre existiu entre a Geografia e a Cartografia. A Cartografia é a ciência que se preocupa com a elaboração de mapas e outros recursos gráficos que visam representar fenômenos naturais ou sociais no espaço, bem como o uso desses produtos. Devido à ampliação do uso das representações gráficas por diversos profissionais, ao longo dos últimos anos multiplicaram-se os tipos de mapas. Inicialmente, seu uso foi disseminado nas ciências ou ramos do conhecimento que têm interesse no espaço terrestre, porém a sociedade atual expandiu ainda mais o uso e divulgação dessas representações. Nossa sociedade está tão imersa em mapas e representações gráficas que muitas vezes utilizamos estes recursos sem perceber. Basta um olhar mais apurado ao nosso redor e percebemos o quanto eles estão presentes em nosso cotidiano: jornais e revistas lançam mão de mapas e gráficos para complementar as notícias; propagandistas os usam para vender seus produtos e serviços. Os mapas a seguir foram extraídos de jornais, revistas e anúncios publicitários. Fonte: Folha de São Paulo, 4 de Julho de 2001. In: Almeida, LMA e Rigolin, TB. Geografia. Série novo ensino médio. São Paulo: Ática, 2003. p.74. Fonte: Folha de São Paulo, 14 de Agosto de 1990. in Garcia, HC. Geografia. Ensino médio. São Paulo: Scipione, 2000.p.263. Hoje temos efetivamente um acesso cada vez maior às informações sobre o mundo e tem-se privilegiado as informações visuais, como as contidas nos produtos cartográficos. Conhecer o mundo em que se vive é imprescindível para o exercício da cidadania, portanto, cabe ao cidadão do século XXI aprender a extrair essas informações de mapas e outras representações gráficas. Não é sempre que conseguimos essas informações. Aqueles que não estão habituados a esse tipo de representação, conseguem captar apenas uma pequena parte delas. Unidade 1 Conhecendo a Terra Organizadores Sonia Maria Vanzella Castellar CAR ACTERÍSTIC AS DA T ERR A ARA CTERÍSTICAS ERRA Idade: aproximadamente 4,6 bilhões de anos Massa: 6 x 1021 toneladas Elaborador Rosemeire Morone 3 Volume: 1.083.319.780.000 km Diâmetro equatorial: 12.756 km Diâmetro polar: 12.710 km Círculo equatorial: 40.075 km Círculo polar: 40.008 km Superfície total: 510,1 milhões km2 Superfície emersa: 148,3 milhões km2 ou 29% do total Superfície da água: 360,8 milhões km2 ou 71% do total Altitude terrestre máxima: Monte Everest, Ásia (+ 8 848 km) Depressão terrestre máxima: Mar Morto, Ásia (– 395m) Depressão oceânica máxima: Fossa Mariana, oceano Pacífico (– 11.022m) Rotação da Terra: 23h, 56min, e 4,09s ou 1 dia sideral Translação da Terra: 365 dias, 6h, 9min e 9,54s ou 1 ano Distância média Terra-Sol: 149 509 000 km Distância média Terra-Lua: 384 365 km Fonte: Bochicchio, 2003 Elvio Rodrigues Martins Carlos Tadeu Gamba 1. Os movimentos da Terra em torno do Sol Para a Geografia interessa, neste momento, principalmente conhecer os movimentos da Terra e sua interferência nos fenômenos presentes na superfície terrestre. A melhor maneira de se fazer isso é copiando os nossos antepassados, ou seja, observando. Se olharmos para o céu no decorrer de 1 dia (24 horas) veremos que o Sol nasce num ponto, percorre uma trajetória durante o dia até alcançar uma altura máxima, ao meio-dia, e depois declina até se pôr num ponto oposto. À medida que o Sol se põe, as estrelas começam a aparecer no lado oposto e vão descrevendo, com o passar das horas, uma trajetória semelhante à do Sol. Este ciclo se repete consecutivamente, determinando o dia e a noite. Esse movimento dos astros é chamado de aparente e assim o designamos porque é o que vemos, mas não o que acontece. Na realidade é a Terra que gira em torno de si mesma, realizando o que chamamos de movimento de rotação da Terra. Nós, os observadores, parados num ponto da Terra é que ora estamos voltados para o Sol, sendo iluminados por ele e ora voltados para o universo infinito. Com as estrelas acontece a mesma coisa: nós é que nos movimentamos em relação a elas e o fato de não as vermos durante o dia ocorre porque a luz do Sol ofusca a nossa visão. A ROTAÇÃO DA TERR A ERRA A Terra gira em torno de si mesma de Oeste para Leste, como se estivesse girando em torno de um eixo imaginário, representado na ilustração pela linha pontilhada. Os pontos extremos deste eixo imaginário recebem o nome de Pólo Norte e Pólo Sul. Na metade do caminho entre estes pólos foi criada uma outra linha imaginária, o Equador, que divide a terra em duas partes. A parte que vai do Equador ao Pólo Norte é chamada de Hemisfério Norte ou Hemisfério Boreal. Num sentido oposto, do Equador ao Pólo Sul temos o Hemisfério Sul ou Hemisfério Austral. Atividades 01. É razoável de se supor que a alternância periódica de tempo claro e escuro tenha orientado a vida social mesmo dos mais primitivos seres humanos. A associação da claridade com o Sol e o da escuridão à sua ausência não deve ter sido muito difícil. Assim, a noção de Dia atava-se à presença, quase sempre, fulgurante do Sol no Céu, e a noção de Noite era ligada à sua falta e ao aparecimento de Estrelas. Para as poucas necessidades sociais existentes, a contagem do tempo era feita pelo cômputo de ‘sóis’ passados” (Boczko, R., Conceitos de Astronomia, Editora Edgar Blücher Ltda, 1984) Qual o movimento da Terra que provoca este ciclo de claro e escuro. Como ele acontece? 02. A medição do tempo como a conhecemos hoje teve sua origem através da observação do ciclo dos astros ao longo de determinado período. Explique como surgiram o mês e o ano. 03. O dia 29 de fevereiro existe somente de quatro em quatro anos, nos anos bissexto. Explique como isso acontece. - 2. A Terra e seus sistemas de referência Na maioria dos mapas é comum encontrarmos um conjunto de linhas paralelas e perpendiculares formando uma trama. Este conjunto, descreve uma rede de linhas orientadas de norte para sul e de leste para oeste e faz-se necessário para que possamos ter medidas precisas de um determinado lugar. O sistema completo dessas linhas, chamadas de meridianos e paralelos compõe o que conhecemos como sistema de coordenadas terrestre. Todas as linhas são círculos ou partes de círculos que representam a curvatura da terra e por isso, têm suas medidas apresentadas em graus (o). Legenda – Imagine a Terra como se fosse uma laranja. Se você a cortasse em gomos, obteria as partes que representam os meridianos. Se ela fosse cortada em fatias, você obteria as partes que representam os paralelos. 2.1. OS PARALELOS Suponhamos que você pegasse uma bola e traçasse sobre ela, uma série de linhas horizontais paralelas que a circundassem. Se por ventura a bola fosse cortada no sentido destas linhas, teríamos uma série de fatias com tamanhos diferentes e aquelas fatias mais próximas ao meio da bola, com certeza seriam maiores. Se observarmos um globo terrestre, observaremos que ele também é dividido por uma série de linhas como estas. Elas são conhecidas como paralelos. Em cada linha, todos os pontos se situam à mesma distância de um dos pólos. O Equador é o paralelo traçado sobre uma linha eqüidistante aos dois pólos, ou seja, ele divide o globo bem ao meio. Estas linhas são sempre paralelas e orientadas no sentido horizontal. Considerando-se o equador como 0º, os paralelos são numerados para o norte e para o sul até os pólos. A distância entre o Equador e um dos pólos é de ¼ de círculo, ou 90º. Os paralelos são importantes porque definem a latitude de um lugar, ou seja, a distância de norte ou sul, em relação ao Equador. Esta distância é expressa em graus e geralmente é apresentada nas margens laterais dos mapas. Além destas medidas, a latitude também é importante para determinarmos as zonas climáticas da terra. 2.2. OS MERIDIANOS Num sentido contrário, se traçássemos uma linha de um pólo (sul ou norte) ao outro do globo, atravessando qualquer parte do Equador, obteríamos uma linha que chamamos de meridiano. Cada meridiano é descrito por uma semicircunferência, pois percorre metade do globo entre um pólo e outro. Eles são importantes pois permitem a medição das distâncias no sentido horizontal. A distância em graus entre qualquer lugar, a leste ou a oeste, e o primeiro meridiano é conhecida como longitude (tomando sempre o ponto inicial como o centro da Terra). Por um acordo internacional, o Meridiano de Greenwich, um distrito de Londres (Inglaterra) foi escolhido como meridiano primo. Ele também é chamado de principal e foi classificado como 0º. Todos os outros meridianos são numerados em graus leste e oeste, em relação ao meridiano primo, até 180º, (positivos para leste e negativos para oeste) e seus valores geralmente aparecem nos limites superiores e inferiores dos mapas. Os meridianos também são importantes, pois nos ajudam a construir os fusos horários, responsáveis diretos pela determinação das horas no mundo. 2.3. OS FUSOS HORÁRIOS Se nos guiássemos pela rotação efetiva da Terra, em torno do seu eixo imaginário, haveria muita confusão: em cada lugar do planeta a hora seria diferente. Em 1828, o astrônomo inglês Sir John Herchel sugeriu a adoção de um sistema em que os relógios marcassem todos o mesmo horário em uma região que fosse muito mais extensa que o tamanho de uma só cidade. Havia nascido a idéia do fuso horário. O fuso horário corresponde a cada uma das 24 faixas que dividem o globo terrestre através dos meridianos em que se adota, por convenção, o mesmo horário. Lembre-se que os meridianos são linhas imaginárias – semicírculos máximos – que ligam o pólo norte ao pólo sul da Terra. Eles delimitam os fusos horários e estão distribuídos em intervalos de 15º, o equivalente ao ângulo que a Terra gira em uma hora, totalizando ao final de um dia, 360º. Uma Conferência Mundial com a presença de 41 delegados de 25 nações, reunidos em Washington, Estados Unidos, em 1884, resolveu adotar um único marco zero, um meridiano de referência mundial: o Meridiano de Greenwich, que recebe esse nome porque passa sobre o Observatório de Greenwich, na Inglaterra. Daquela data em diante, todos os países que concordaram com a convenção ajustaram seus relógios seguindo a nova regra: os territórios que estivessem no primeiro fuso a leste do Meridiano de Greenwich, marcariam uma hora a mais; os no segundo fuso a leste, duas a mais e assim sucessivamente. Os que estivessem no primeiro fuso a oeste de Greenwich marcariam uma hora a menos e assim sucessivamente. Antes da adoção dos fusos horários, a Europa tinha 27 horários diferentes (hoje são três) e a América, 74 (hoje são cinco). - No Brasil, os motivos para a adoção do sistema de fusos eram mais ou menos os mesmos do restante do mundo: uma perigosa confusão de horas locais, que prejudicavam as relações comerciais, as comunicações por telégrafo e colocavam em risco o tráfego nas estradas de ferro. No dia 18 de junho de 1913, o Congresso Nacional aprovou a lei n° 2.784 que estabeleceu os quatro fusos horários no Brasil e a sua hora legal. Atividades 01. Leia abaixo o texto da lei n° 2.784 aprovada do dia 18 de junho de 1913, pelo Congresso Nacional e que estabeleceu os quatro fusos horários no Brasil e a sua hora legal. Lei No 2.784 DE 18 DE JUNHO DE 1913 Determina a Hora Legal O Presidente da Republica dos Estados Unidos do Brazil: Faço saber que o Congresso Nacional decretou e eu sancciono a resolução seguinte: Art. 1º Para as relações contractuaes internacionaes e commerciaes, o meridiano de Greenwich será considerado fundamental em todo o território da Republica dos Estados Unidos do Brazil. Art. 2º O território da republica fica dividido, no que diz respeito à hora legal, em quatro fusos distinctos: a. O primeiro fuso, caracterizado pela hora de Greenwich “menos duas horas”, comprehende o archipelago Fernando de Noronha e a ilha Trindade; b. O segundo fuso, caracterizado pela hora de Greenwich “menos tres horas”, comprehende todo o litoral do Brazil e os Estados interiores (menos Matto-Grosso e Amazonas), bem como parte do Estado do Pará delimitada por uma linha que, partindo do monte Crevaux, na fronteira com a Guyana Franceza, vá seguindo pelo alveo do rio Pecuary até o Javary, pelo alveo deste até o Amazonas e ao sul pelo leito do Xingú até entrar no estado de Matto-Grosso; c. O terceiro fuso, caracterizado pela hora de Greenwich “menos quatro horas”, comprehenderá o Estado do Pará a W da linha precedente, o Estado de Matto-Grosso e a parte do Amazonas que fica a E de uma linha (círculo maximo) que partindo de Tabatinga, vá a Porto Acre; (incluidas essas duas localidades no terceiro fuso) d. O quarto fuso, caracterizado pela hora de Greenwich “menos cinco horas”, comprehenderá o territorio do Acre e os cedidos recentemente pela Bolivia, assim com a área a W da linha precedentemente descripta. Art. 3º Ficam revogadas as disposições em contrario. Rio de Janeiro, 18 de junho de 1913, 92º da Independência e 25º da Republica. HERMES R. DA FONSECA Pedro de Toledo Responda: a) O que são os meridianos? b) O que é o fuso horário? a) Porque houve a necessidade de se estabelecer os fusos horários, não só no Brasil? c) O que é a hora de Greenwich e onde está localizado. d) Tendo a circunferência da Terra 360°, quanto vale em graus 1 hora? f) Quantos meridianos passam pelo Brasil? Quantos fusos horários existem no Brasil? 02. (UFPE) Observe: 01. Pelo sistema de fusos horários, o globo terrestre foi dividido em 24 fusos, cada um equivalendo a 15 graus no sentido das longitudes. 02. O Equador é o círculo máximo que marca o início da contagem das horas. 03. Quando, o meridiano de Greenwich marcar 19h, hora legal, num ponto situado a uma longitude de 30 graus W, a hora legal será de 21h. 04. O Brasil possui 4 fusos horários, todos situados ao oeste de Greenwich 05. Um avião, ao cruzar a linha internacional (da data), no sentido oesteleste, retrocede 1 (um) dia no calendário. Estão corretos apenas os itens: a) 2, 4 e 5 b) 1, 3 e 4 c) 3, 4 e 5 d) 1, 4 e 5 e) 1, 2 e 4 03. (UFMA) A intersecção das linhas correspondentes a um paralelo e um meridiano: a) localiza um ponto na superfície terrestre. b) define os hemisférios norte e sul ou oriental e ocidental. c) delimita uma área geográfica qualquer. d) orienta quanto à situação geográfica. e) situa uma área em relação ao Equador. 04. (UFRN) Se, no fuso horário 45 graus leste, são 3 h, nos fusos 75 graus oeste e 90 graus leste, serão, respectivamente: a) 6h e 18 h. b) 6h e 19 h. c) 7h e 18 h. d) 18h e 6 h. e) 19h e 6 h. - 3. A terra e sua relação com o Sol Observando o Sol durante o dia verifica-se que de manhã o Sol está próximo ao horizonte. Conforme as horas passam ele se movimenta de modo a se afastar cada vez mais do horizonte, aproximando-se do zênite do local, para em seguida se aproximar novamente do horizonte, mas do “lado” contrário àquele em que ele estava de manhã. A esse movimento que o Sol parece ter, para um observador na Terra durante a parte clara do dia chamamos Movimento Diurno Aparente do Sol. Esse movimento é produto de um outro que a Terra realiza. Ao longo de um ano, para um determinado lugar, o Sol nasce e se põe em pontos diferentes. Pode-se perceber esse movimento na nossa rotina diária observando-se como o Sol vai iluminando a casa diferentemente ao longo do ano. Esse é o movimento aparente do Sol durante o ano e é ocasionado pelo movimento de translação da Terra em torno do Sol. Para quem estuda a Terra é muito importante conhecer como o Sol a ilumina e aquece, pois isto não só determina o dia e a noite, mas também, as estações do ano. Além disso a maneira como o Sol ilumina diferentemente as zonas da Terra é um dos fatores determinantes para o entendimento de como funciona o clima do planeta. 3.1. ORIENTAÇÃO Legenda - O movimento aparente do Sol para um observador localizado em diferentes latitudes do planeta. O movimento de rotação da Terra determina alguns pontos de orientação para nos localizarmos na Terra. Vejamos: Horizonte – é o lugar onde vemos o céu e a terra se unirem. É bem perceptível quando estamos num lugar plano e sem elevação, por toda a nossa volta a nossa visão será limitada por um imenso plano circular; Pontos cardeais – o Sol parece surgir sempre no mesmo lado do horizonte, o leste, de onde sobe até atingir uma posição elevada e em seguida desce para um ponto no horizonte, o oeste. Se nos colocarmos de tal modo que o leste esteja à direita e o oeste à esquerda, teremos à nossa frente o norte e, atrás, o sul. À medida que nos aproximamos dos pólos, norte ou sul, já não é possível a determinação dos pontos cardeais usando o Sol como referência (ver zonas da terra e movimento aparente do Sol). Zênite - se imaginarmos que uma linha perpendicular à Terra, sai da cabeça do observador em pé e vai em direção ao céu, o zênite localizase no ponto onde a linha imaginária parece perfurar o céu. É o ponto mais elevado do firmamento. Nadir - é o ponto oposto ao zênite. A ROSA DOS VENTOS O principais pontos de orientação são o norte, sul, leste e oeste. Porém, muitas vezes, a necessidade de orientação obriga a citação de direções intermediárias, por exemplo entre norte e leste, sul e oeste, etc. Para isso, estabeleceram-se outras direções, que tomam seu nome dos pontos cardeais entre os quais se situam. Por esse motivo, surgiu a rosa-dos-ventos, que corresponde à volta completa do horizonte. Divide-se em 360 partes iguais, os graus. Cada grau, tem 60 minutos; cada minuto, 60 segundos. Assim, praticamente todos os pontos na linha do horizonte podem ser localizados com máxima exatidão. Pontos Cardeais: Norte (N), Sul (S), Leste ou Este (L ou E) e Oeste ou West (O ou W) Pontos Colaterais: Nordeste – ND (entre o norte e o Leste) Sudeste – SE (entre o Leste e o Sul) Sudoeste – SO (entre o sul e o Oeste) Noroeste – NO(entre o Norte e o Oeste) Pontos Subcolaterais: Nor-nordeste – NNE (entre o Norte e o Nordeste) Este-nordeste – ENE (ente o Este e o Nordeste) Este-sueste – ESE ( entre o Este e Sueste ou sudeste) Su-sueste – SSE (entre o Sul e o Sueste ou sudeste) Su-sudoeste – SSO (entre o Sul e o Sudoeste) Oeste-sudoeste – OSO (entre o Oeste e o sudoeste) Oeste-noroeste – ONO (entre o oeste e o noroeste) Nor-noroeste – NNO (entre o norte e o noroeste) 3.2. AS ESTAÇÕES DO ANO Observe a figura ao lado. Ao mesmo tempo em que gira em torno de si mesma no período de um dia, a Terra também gira em torno do Sol no período de um ano, mais precisamente 365 dias e 6 horas. Ao descrever esse movimento, o planeta passa por quatro estações climáticas distintas: verão, outono, inverno e primavera. No entanto, ao contrário do que muitos pensam, a variação da temperatura não está relacionada à distância do Sol e sim à inclinação em que a Terra se encontra. Ela gira inclinada a um ângulo de 23º27’ em relação ao Sol, sempre apontando para o mesmo ponto no Universo. Isso faz com que a Terra não receba igualmente, luz e calor do Sol durante todo o ano. Ao momento em que os raios solares incidem mais diretamente num hemisfério do que no outro damos o nome de solstício. Ele marca o início do verão ou do inverno. Ao momento em que a Terra recebe igualmente a incidência de raios solares, no hemisfério norte e sul, damos o nome de equinócio, que marca o início da primavera ou do outono. DATA 21 de junho 21 de dezembro H EMISFÉRIO EST AÇÃO STAÇÃO norte solstício de verão sul solstício de inverno norte solstício de inverno sul solstício de verão DATA 21 de março H EMISFÉRIO EST AÇÃO STAÇÃO norte equinócio de primavera sul equinócio de outono 21 de setembro norte equinócio de outono sul equinócio de primavera - A figura mostra o momento do solstício de verão para o hemisfério norte e solstício de inverno para o hemisfério sul ilustrando a inclinação dos raios solares em relação à Terra num ângulo de 23º27’. A iluminação da Terra no solstício, tanto de inverno como de verão delimita os círculos polares ártico e antártico, bem como os trópicos de Câncer e Capricórnio. O solstício representa o momento de maior iluminação do hemisfério e este momento chega, quando os raios solares incidem perpendicularmente sobre a superfície dos trópicos, ou seja, quando o sol, está no zênite. Ele também determina a mudança de uma estação do ano para outra. Quando ele está no zênite no hemisfério norte, começa o inverno no sul. Seis meses depoisa luz solar passa a estar no zênite no hemisfério sul e aí começa o nosso verão. A zona intertropical é a zona da Terra que em algum momento do ano vai ter o sol no zênite. A área polar, dos círculos até os pólos, nunca vão ter o sol no zênite. Legenda – A figura mostra o momento dos solstícios. Reparem que nas linhas dos trópicos, a incidência dos raios solares é exatamente perpendicular e com isso delimita o solstícios de verão no hemisfério norte (à esquerda) e sul (à direita). 3.3. AS ZONAS DA TERRA Um outro fator que impede a Terra de receber igualmente os raios solares por todo o globo, se deve à sua forma. Essa característica determinou a criação de zonas climáticas terrestres. Observe o mapa: · A parte da superfície do globo terrestre compreendida entre o Trópico de Câncer e o Trópico de Capricórnio é denominada Zona Tropical. · A zona limitada pelo Círculo Polar Ártico e o Pólo Norte é denominada Zona Polar Ártica. · A zona limitada pelo Círculo Polar Ántártico e o Pólo Sul é denominada Zona Antártica. · Entre as zonas Tropical e Polar, estende-se a Zona Temperada. A variação da duração dos dias e das noites durante o ano é diferente para cada zona da Terra. Na Zona Tropical os dias e noites praticamente não variam próximo ao Equador. Podemos dizer, nesse caso, que não existe variação entre as estações do ano. Essa variação aumenta à medida que nos aproximamos dos trópicos. Nas zonas temperadas a diferença entre o dia e a noite nos solstícios de verão e de inverno são grandes. Vem daí a origem das estações do ano como as conhecemos: na primavera, as flores; no verão, o calor; no outono, as frutas; no inverno o frio e eventualmente a neve. Nas zonas polares, o Sol torna-se periodicamente visível ou invisível. Para um observador no Pólo Sul, ele aparece no horizonte no primeiro dia da primavera (23 de setembro, aproximadamente) e permanece visível até o primeiro dia do outono (20 de março, aproximadamente), quando então desaparece abaixo do horizonte por um período de seis meses. O período durante o qual o Sol permanece acima do Horizonte chama-se dia polar. Tanto no Pólo Norte quanto no Sul, o dia polar deveria durar 6 meses e a noite polar os outros 6 meses. Em conseqüência do fenômeno do crepúsculo, a noite polar completa reduz-se a cerca de 4 meses somente, ficando o período em que há luminosidade (dia polar + duração do crepúsculo) com os 8 meses restantes. O HORÁRIO DE VERÃO No verão, principalmente nas zonas temperadas, o dia começa mais cedo e a noite mais tarde. Adiantando-se os relógios em uma hora a luminosidade natural do Sol pode ser aproveitada para promover a economia de fontes de energia. Para o Brasil, hoje, seu principal objetivo é diminuir a demanda máxima durante a hora de ponta de carga do sistema elétrico interligado. Em outras palavras: como a distribuição da energia elétrica é interligada no País inteiro, se todo mundo ligar as luzes em casa e tomar banho no mesmo intervalo de tempo em que as indústrias ainda estão funcionando, todos estarão consumindo a sua carga máxima de energia no mesmo horário – é o que os técnicos chamam “horário de ponta”. Durante o verão, nas regiões mais quentes, o consumo de energia elétrica também é aumentado pelo uso de aparelhos de ar condicionado. O risco nesse período é o de não haver energia suficiente para tanto banho e para tanta gente ao mesmo tempo resultando num risco de “apagão”. Como o Brasil está situado tanto na zona tropical como na temperada, o horário de verão só funciona em determinados lugares. Seu efeito é significativo apenas para os Estados mais ao Sul do País. Nas regiões Norte e Nordeste, a duração do período claro do dia não se altera muito, devido à maior proximidade da Linha do Equador. Além de o consumo de energia elétrica ser maior durante o verão, as regiões mais próximas dos trópicos já apresentam duração da luminosidade solar muito maior no verão do que no inverno, reunindo condições excelentes para a implantação da medida. Atividades 01. Observe a ilustração. O zênite é o ponto mais elevado do firmamento. O Sol passa exatamente sobre este ponto, aproximadamente no dia 21 de junho, primeiro dia de verão para o Hemisfério Norte, e no dia 21 de de- - zembro, primeiro dia de verão para o Hemisfério Sul, definindo duas linhas imaginárias. Quais são elas? 02. O anúncio oferece um apartamento para venda no município de São Paulo. A expressão “Face Norte” indica que o apartamento: APTO. COBERTURA R$ 190.000 – 2 Grs. Novo, 2 Stes. Americanas, Living, Lavabo, Face Norte, Piscina, Churrasqueira. Local tranqüilo. Confira. Z 3 – T: 531-XX00 a) deve ter boa luminosidade por estar voltado para o norte. b) deve ter boa luminosidade pela manhã e à tarde graças à longitude de São Paulo. c) está na Zona Norte, área muito valorizada, pois fica próxima aos mananciais do município. d) deve ter boa luminosidade pela manhã e à tarde, pois fica na fachada frontal do prédio. e) está na Zona Norte, próximo à Serra da Cantareira, em local elevado e livre de enchentes. 03. (Fuvest-SP) a) Identifique e relacione as figuras I, II e III às estações do ano no Hemisfério Sul. b) Explique as variações do período de iluminação para as cidades de São Paulo e Belém, relacionando-as com o “horário de verão”. 04. (UFSC) Apresente a resposta como a soma das alternativas corretas. 01. O Brasil é o único país sul-americano que tem suas terras distribuídas por três hemisférios: o Norte, o Sul e o Oeste. 02. Santa Catarina está situada totalmente ao sul do Trópico de Capricórno, o que influencia na sua caracterização climática. 04. O ponto “A “ tem como coordenadas geográficas 0º grau de longitude e 60° graus de latitude oeste. 08. O Norte e o Nordeste são as duas únicas regiões do Brasil totalmente localizadas em zona intertropical. 16. O Brasil faz fronteiras com todos os países da América do Sul, com exceção do Chile e do Equador. Unidade 2 Representando a Terra Organizadores Sonia Maria Vanzella Castellar Elvio Rodrigues Martins Elaborador Rosemeire Morone Carlos Tadeu Gamba 1. Da realidade ao mapa Quando falamos em produção cartográfica temos, inevitavelmente, de pensar numa fonte de dados. É como uma lista de presença da sua sala: tem um número total de alunos e cada pessoa tem um nome diferente. Se perguntássemos a idade das pessoas ou o bairro onde moram, poderíamos formar vários grupos. Os mapas também exigem essa coleta de informações. O que acontece é que, devido às características do fenômeno que estamos mapeando, as informações nem sempre são obtidas da mesma maneira. Por exemplo, se fôssemos fazer um mapa com o número de habitantes que residem numa rua, bastaria que batêssemos de porta em porta, perguntando quantas pessoas moram em cada casa. Com isso teríamos o número total de habitantes e quantas pessoas habitam a mesma residência. O IBGE já faz isso – chama-se censo demográfico –, mas em vez de abranger apenas uma rua, envolve o país inteiro. Por outro lado, poderíamos, em vez do número de habitantes, mapear o comprimento da rua, ou mesmo o tamanho do terreno das casas. Isso também não seria difícil, bastaria uma fita métrica ou um barbante e rapidamente teríamos estas dimensões. No entanto, quando o nosso interesse refere-se à superfície terrestre, essa situação torna-se pouco mais complicada. Isso acontece porque a Terra possui forma arredondada e quando queremos desenhá-la, obrigatoriamente temos de representá-la numa configuração plana. Esta transferência de uma forma para outra exige que levemos em conta alguns princípios. 1.2. A ESCALA Podemos dizer que a escala é a relação entre uma dimensão representada no mapa e a dimensão real, na natureza. Na prática, ela tem a função de contar quanto do espaço real foi diminuído para caber dentro do mapa. Ela é muito importante para entendermos a dimensão de um determinado fenômeno ou lugar em relação ao todo. Vamos imaginar que estamos num helicóptero, decolando de uma praça. Conforme o helicóptero começa a subir verticalmente em direção ao céu, a altitude vai aumentando e a praça parece diminuir de tamanho. Ao mesmo tempo, vamos conseguindo ver o entorno da praça. Perceba que existe uma relação entre a altitude, o tamanho dos objetos que vemos e a porção do espaço que conseguimos captar. Os mapas pretendem captar a mesma relação que obteríamos se estivéssemos sobrevoando o local observado. Assim, quando o helicóptero sobe, os objetos diminuem e a escala di- - minui. Por outro lado, quando o helicóptero desce, os objetos aumentam e a escala aumenta. É a escala que permite ao mapa essa aproximação da realidade, num tamanho que caiba no papel, num globo ou na tela de um computador; ela possibilita, enfim, que o mapa seja manuseado sem perder precisão e qualidade. A escala de um mapa é expressa em valores numéricos e pode ser apresentada de duas maneiras diferentes: numérica ou gráfica. Sempre que possível deve acompanhar a representação, pois em caso de redução ou ampliação, ela serve de parâmetro para o cálculo. Escala numérica Quando observamos um mapa e verificamos que sua escala é expressa de uma forma semelhante a esta: 1:12.500, 1:2.000.000 ou 1:15.500.000; dizemos que o mapa possui uma escala numérica. Na escala numérica, os valores são representados numa fração matemática em que o numerador corresponde à realidade representada no mapa e o denominador, à realidade no terreno que estamos representando. Dessa forma, quando vemos 1:1.000 temos 1/1.000. Ou seja, uma unidade no mapa corresponde a 1.000 unidades no terreno. Assim sendo, um centímetro no mapa corresponde a 1.000 centímetros no terreno. Como cada metro possui 100 centímetros, dividindo-se 1.000 por 100, temos 10 metros no terreno. Este método de apresentar a escala é interessante pois independe do sistema de medidas que estamos trabalhando. Se estivéssemos trabalhando com um mapa norte-americano, onde as unidades estão em polegadas, teríamos para cada unidade no mapa 1.000 polegadas no terreno. Também devemos saber que quanto maior o denominador da fração, ou seja, o número à direita, menor será a escala. É possível constatar isso fazendo-se o seguinte cálculo: 1:100 = 1/100 = 0,01 1:500 = 1/500 = 0,002 Assim, 0,01 > 0,002. Portanto, a escala de 1:100 é maior que a escala 1:500. Escala gráfica Quando a escala é representada por um segmento de reta graduado, dizemos que a escala é gráfica. Neste caso, as distâncias correspondentes no mapa são representadas numa régua que contém os valores das distâncias na realidade. Esta régua pode ser construída com duas partes distintas: uma primária, onde os valores são apresentados inteiros; e uma fracionária, também chamada de talão, onde o número inteiro é subdividido. Assim sendo, temos: O interessante desta escala é a facilidade na medição das distâncias. Não há a necessidade de se fazer os cálculos, pois a medida representada por cada segmento corresponde diretamente à medida no mapa. Imagine que você pegasse um pedaço de barbante e o colocasse sobre um mapa, acompanhando o curso de um rio. Bastaria ver quantas vezes o barbante se repete na régua da escala e você teria aproximadamente a extensão do rio. Medindo a escala de um mapa A melhor maneira de calcularmos as distâncias presentes num mapa é pela regra de três. Imagine que você tenha que calcular a distância entre dois pontos num mapa com escala 1:5.000.000. Usando uma régua, meça a distância entre os dois pontos. Suponhamos que a distância tomada seja de 7,8 centímetros: 1 unidade no mapa = 5.000.000 de unidades no terreno 7,8 cm no mapa = x Então, X = 7,8 x 5.000.000 = 39.000.000. Como você mediu em centímetros, temos 39.000.000 cm. Se você for passar esta medida para metros, basta dividir por 100, afinal um metro é igual a 100 centímetros. Com isso, teríamos 390.000 metros. Como sabemos que um quilômetro é igual a 1.000 metros, concluímos que a distância é de 390 km. A escala também poderia estar apresentada graficamente: 1 cm = 40 Km Bastaria então transformar os quilômetros em centímetros: 1 km = 1.000 metros 40 km = 40.000 metros Como em cada metro temos 100 centímetros, teríamos: 40.000 x 100 = 4.000.000 Atividades 01. (UFPE) Observe: 1. Cartografia é a arte de representação gráfica da superfície da Terra, em parte, ou no seu todo, de acordo com a escala. 2. A representação de uma superfície esférica num plano (a exemplo do mapa) traz forçosamente deformações que podem ser de distâncias, de áreas e de ângulos. 3. Nos mapa de grandes escalas, as deformações são muito sensíveis, enquanto nas cartas de pequenas escalas as deformações se tornam cada vez menos importantes. 4. As curvas de nível são linhas imaginárias que ligam os pontos situados na superfície da terra a igual altitude. 5. Em toda elevação as cotas das curvas de nível diminuem para o centro, segundo uma proporção constante. Estão corretos apenas os itens: a) 1, 2 e 3 b) 2, 3 e 4 c) 1, 2 e 4 d) 3, 4 e 5 e) 2, 3 e 5 02. (Cesgranrio-RJ) Considere dois mapas do Brasil, sendo que o mapa A está na escala 1:10.000.000 e o mapa B, na escala 1:50.000.000. Assinale a alternativa correta: - a) b) c) d) e) Os mapas apresentam a mesma riqueza de detalhes. O mapa A apresenta menor riqueza de detalhes que o mapa B. O mapa A apresenta maior riqueza de detalhes que o mapa B. O mapa B é proporcionalmente cinco vezes maior que o mapa A Os dois mapas possuem o mesmo tamanho. 03. (UnB-DF) Apresente a resposta como a soma das alternativas corretas. Para a leitura de mapas, é necessário o conhecimento de escalas, de localizações de pontos por sistemas de coordenadas azimutes e de formas de representação do relevo. Quanto a esse tema, julgue os itens a seguir: (0) A leitura da escala 1 cm por 10 km é representada, na sua forma fracionária, por 1/1 000 000. (1) Os mapas em escala de 1:10 000 representam áreas duas vezes menores que os mapas em escala 1:20 000. (2) A eqüidistância entre curvas de nível é a distância vertical que separa duas curvas sucessivas. (3) A partir apenas da identificação da escala de um mapa, não é possível determinar áreas e fazer comparações de tamanhos. 03. (Unesp-SP) Sobre um mapa, na escala de 1:500 000, tenciona-se demarcar uma reserva florestal de forma quadrada apresentando 7 cm de lado. A área da reserva medirá no terreno: a) 12,25 km2. b) 1.225 km2. c) 12.250 km2. d) 122,5 km2. e)12.255 km 2. 04. A figura ao lado é um trecho, em escala, da planta da cidade de São Paulo, nas vizinhanças da Avenida Paulista. Escolha a melhor estimativa das distâncias, em metros, entre as ruas transversais à Avenida Paulista, indicadas por algarismo romanos. a) b) c) d) e) I II III IV V I 250 840 990 1190 II 250 590 740 940 III 840 590 300 500 IV 990 740 300 200 V 1190 940 500 200 - 05. No mapa abaixo a distância, em linha reta, entre as cidades de Araçatuba e Campinas é de 1,5 cm. Na realidade, esta distância é de aproximadamente: a) b) c) d) e) 150 167 188 250 375 km km km km km 2. AS PROJEÇÕES CARTOGRÁFICAS Mais do que qualquer outro tipo de mapa, o globo é a representação que mais se assemelha à forma da Terra. Ele só não constitui uma representação idêntica pois a Terra não é uma esfera perfeita – possui uma forma irregular à qual damos o nome de geóide. No entanto, o globo oferece uma vantagem por permitir que representemos a superfície do planeta sem distorções. Embora os globos representem os melhores mapas-múndi para diversas finalidades, eles apresentam algumas desvantagens. Uma delas é que apenas cerca de metade da superfície terrestre pode ser vista de cada vez. A outra é que, para ser manuseável, o globo é pequeno demais para dar informações suficientes sobre qualquer país ou região. Para facilitar este trabalho de leitura, o homem foi ao longo de sua história desenvolvendo técnicas que permitissem representar a superfície num formato plano, pois nessa forma a leitura do mapa é facilitada e a representação não necessita de um objeto esférico para ser confeccionada. Os cartógrafos solucionaram este problema projetando a superfície do globo sobre formas geométricas diferenciadas, dando origem ao que hoje chamamos de projeções cartográficas. Matematicamente, esse processo significa transferir as coordenadas esféricas da terra para um plano correspondente. Acontece que é impossível transferirmos um desenho de forma arredondada para uma forma plana sem que ocorram distorções. Isso fez com que as projeções fossem classificadas não só de acordo com a figura geométrica de referência, como também o tipo de deformação. 2.1. TIPOS DE PROJEÇÃO SEGUNDO A SUA DEFORMAÇÃO Transferir um desenho de uma esfera para uma superfície plana implica, automaticamente, em deformações. a) Projeção equivalente de Mollweide b) Projeção azimutal eqüidistante c) Mapa-múndi - Os cartógrafos sempre souberam disso e em muitas vezes se utilizaram deste artifício em benefício próprio. Os esquimós, por exemplo, desenhavam seus mapas com base no tempo do percurso. Assim, regiões montanhosas, que demandavam longos períodos para serem percorridas, eram representadas com deformações horizontalmente para que houvesse uma correspondência com a duração do percurso. Hoje em dia as projeções, também possuem deformações, embora sejam bem diferentes das existentes nos antigos mapas. Ainda assim, elas continuam sendo feitas para atender alguns de nossos interesses. Quando queremos representar uma determinada área sem que haja alteração das dimensões do terreno, utilizamos a projeção denominada equivalente. Cartas náuticas, por exemplo, utilizam-se de projeções onde os ângulos são preservados para permitir que os navegadores possam tomar as direções corretas. Esta propriedade geométrica é chamada de conforme e dá origem a um tipo de projeção muito utilizado hoje em dia, pois além de preservar os ângulos, também permite que as escalas sejam as mesmas em qualquer ponto do mapa. Outra característica importante é que na projeção conforme não há deformação das dimensões quando se trata de áreas pequenas. Alguns mapas são feitos com o intuito de não apresentar deformações nas distâncias. Assim, a escala permanece inalterada numa linha reta. Este tipo de projeção é chamado eqüidistante e é muito comum nas representações das regiões polares. A projeção do tipo afilática é aquela que não possui nenhuma das características anteriores, ou seja, áreas, ângulos e distâncias são deformados ao longo do mapa. ANAMORFOSES As anamorfoses são mapas em que a superfície dos países ou dos continentes é deformada com o intuito de se representar proporcionalmente uma determinada quantidade. Este tipo de representação é muito utilizado na comparação de dados estatísticos entre países. a) População b) Produto Interno Bruto 2.2. TIPO DE PROJEÇÃO SEGUNDO A SUA FORMA As projeções necessitam de uma figura geométrica de referência para serem construídas e por isso são classificadas em função desta figura. As principais formas geométricas geradoras de projeções são o cilindro, o cone e o plano, que dão origem às projeções cilíndrica, cônica e plana, respectivamente. a) Projeção Cilíndrica c) Projeção Plana ou Azimutal b) Projeção Cônica No entanto, as projeções não se limitam a estas formas e podem variar dentro da mesma categoria em virtude das deformações que apresentam. A projeção “DYMAXION” de Fuller, por exemplo, utiliza como base um poliedro, figura que reduz distorções habituais e fornece uma visão mais precisa das dimensões relativas dos continentes. As projeções cilíndricas Este tipo de projeção é aquele em que a esfera terrestre é envolvida por um cilindro. Como resultado, temos os meridianos e paralelos apresentados como retas perpendiculares. No entanto, em virtude das deformações, podemos ter projeções cilíndricas diferentes. Um exemplo disso é a projeção de Peters. Embora originária da mesma base geométrica (o cilindro), a projeção de Peters é uma projeção equivalente, pois deforma as medidas de ângulo e mantém as proporções de área. Disso resulta um mapa onde os continentes sofrem um achatamento no sentido horizontal e nas regiões polares. Diferentemente desta, a de Mercator, idealizada pelo belga Gerhard Kremer (1512-1594), produz um resultado inverso, e com isso as massas continentais no Hemisfério Norte são bem maiores que no Hemisfério Sul. Nesse caso, as medidas dos ângulos são mantidas e as áreas dos continentes são deformadas. Em razão disso, ela é chamada de projeção cilíndrica conforme. Ao preservar os ângulos, a projeção de Mercator passou a ser intensamente utilizada na navegação aérea e marítima, por permitir o traçado de rotas com precisão. Também ganhou grande notoriedade por servir de base para o desenvolvimento do sistema UTM (Universal Tranversa de Mercator), que é largamente utilizado em todo o mundo, particularmente para a elaboração de cartas topográficas de grande escala. As projeções cônicas As projeções cônicas são aquelas em que o plano de projeção é representada por um cone que envolve a esfera terrestre ou parte dela. Neste caso, os meridianos são linhas que convergem para os pólos, enquanto os paralelos são círculos concêntricos a este. Apesar de serem mais apropriadas à elaboração de representações cartográficas das altas latitudes, é uma projeção indicada para qualquer latitude, sendo propícia para representar grandes superfícies continentais. A projeções planas Também conhecidas como azimutal ou zenital, são aquelas onde o plano de projeção é tangente à esfera terrestre, tomado a partir de um ponto qualquer da Terra, que é o centro da projeção. Quando este centro localiza-se exatamente sobre um pólo (Norte ou Sul) ela passa a ser chamada de projeção - polar. Assim, quando observamos um mapa da terra vista do pólo, logo concluímos que se trata desse tipo de projeção. Nestas representações, os meridianos são retas convergentes para os pólos e os paralelos são círculos concêntricos a estes, como na projeção cônica. Esta projeção também é utilizada em representações do globo que apresentam os dois hemisférios. Atividades 01. Toda representação da superfície terrestre sobre o plano – mapa – contém distorções. É, pois, necessário escolher adequadamente a projeção cartográfica em função do tema a ser representado. Assim, indique a relação correta entre os temas e as projeções que seguem: I – Navegação marítima II – Áreas de ocorrência da floresta tropical e da taiga III – Regiões agricultáveis e desérticas a) b) c) d) e) Projeção de Peters Projeção de Mercator I II e III II I e III I e II III I e III II II e III I 02. (FGV-SP) Toda representação da superfície terrestre em um plano acaba ocasionando distorções nas formas e dimensões das terras emersas e dos oceanos e mares. Dentre as projeções conhecidas, que atacam as distorções de formas diferentes, identifique a que foi utilizada na figura abaixo. a) Projeção Mollweide, com paralelos horizontais e eqüidistantes e os meridianos formando elipses. O Equador e o meridiano principal são retas perpendiculares. Diminuem a deformação das terras nos pólos. b) Projeção azimutal, com todos os paralelos circulares e meridianos convergentes em direção a um centro. Muito usada para a representação das áreas polares. c) Projeção de Peters, mantém as proporções das áreas das terras e dos oceanos e mares, mas alonga as formas dos continentes. Usada principalmente para dar destaque às terras das baixas latitudes. d) Projeção policônica, vários cones tangentes à esfera. Os meridianos são linhas retas e convergentes e os paralelos círculos concêntricos. Usada mais para representar as terras de latitudes médias. e) Projeção cilíndrica, com paralelos retos e meridianos retos e eqüidistantes, amplia muito as dimensões das terras polares e circumpolares. 03. (UFBA) Apresente a resposta como a soma das alternativas corretas. A análise das projeções acima e os conhecimentos cartográficos permitem afirmar: (01) Na projeção I, os paralelos e os meridianos cruzam-se, formando ângulos retos. (02) A deformação das áreas localizadas em altas latitudes constitui um sério inconveniente na projeção I. (04) A projeção II corresponde à azimutal, bastante objetiva e com a peculiaridade de não apresentar deformações. (08) A projeção II é, dentre as destacadas, a mais indicada para a representação do globo terrestre. (16) a projeção III corresponde à cônica e, nela, os países localizados nas regiões temperadas apresentam pequenas deformações. 3. Os levantamentos de base Os levantamentos de base são aqueles cujo objetivo é obter informações que permitam representar a Terra numa configuração plana. Dessa maneira, levam em consideração a forma arredondada da Terra e as suas dimensões. Os mapas originários destes levantamentos são chamados de mapas de base e sempre vêm acompanhados de uma malha quadriculada com informações sobre a latitude e a longitude; por esse motivo, permitem a localização exata de um ponto ou de um determinado fenômeno na esfera terrestre. Estes mapas também são de grande importância por servirem para a construção de outros tipos de mapa e para serem produzidos requerem uma série de referências obtidas na superfície terrestre. Para entendermos a dimensão do problema, precisamos usar um pouco de imaginação. Suponhamos que você tivesse de assentar azulejos numa grande bola. Você teria de encaixá-los de maneira que, quando você terminasse, não sobrasse e nem faltasse espaço para outro azulejo. Para que isso desse certo, os azulejos deveriam estar assentados da mesma maneira, ou seja, num mesmo ponto de equilíbrio, visto que eles estão sendo assentados numa superfície curva. Acontece que a terra não é uma esfera perfeita, ela possui uma superfície rugosa e irregular, onde as altitudes variam. Quando os cartógrafos fazem os levantamentos de base eles também precisam fazer este exercício, pois precisam encontrar um ponto na superfície do globo que permita que os mapas se encaixem. Este ponto de referência chama-se datum e além de outras informações como a latitude e a longitude, ele possui informações sobre a altitude. Graças a ele, uma série de informações, como as curvas de nível, traçados de rios, sistemas de coordenadas, etc. podem ser inseridas dentro de um mapa. Atualmente este trabalho está muito mais fácil, pois além de dispormos de uma infinidade de mapas de base, existem vários destes pontos de referência espalhados pelo globo. Os levantamentos de base, quando feitos com o intuito de recobrir áreas extensas, são chamados de geodésicos. Quando a escala aumenta e a área a ser mapeada é menor, eles são chamados de topográficos. Isso ocorre porque numa área menor, os efeitos da curvatura da terra são bem menores. É como se, ao invés de azulejos, estivéssemos agora assentando pastilhas. Esta diferença é importante - porque os levantamentos podem ser feitos com equipamentos bem mais simples, como uma bússola, um nível, um altímetro, um teodolito ou um GPS. Os levantamentos topográficos são importantes pois neles encontramos as curvas de nível, linhas imaginárias que unem pontos de igual valor altimétrico na superfície terrestre. Estas linhas, criadas em 1730 pelo holandês Cruquins, permitem que interpretemos a forma do relevo. Imagine que a superfície fosse cortada em uma série de planos horizontais da mesma espessura: teríamos então uma série de camadas sobrepostas que representariam os diferentes níveis do terreno. Essa “espessura” a qual nos referimos é chamada de eqüidistância e constitui a variação da distância vertical de uma curva de nível para outra. Como na carta topográfica o relevo é observado por cima, podemos identificar as formas onde a declividade ou a inclinação do terreno é maior ou menor. Isso porque estas cartas oferecem informações sobre a variação da distância, tanto no sentido vertical, através das curvas de nível, como no sentido horizontal, através do sistema de coordenadas. Com isso, quanto maior for a distância de uma curva para outra, menor será a sua variação vertical, ou seja, menor será a inclinação do terreno. Por outro lado, quanto menor for a distância de uma curva para outra, maior será a sua variação vertical e conseqüentemente, maior será a inclinação do terreno. Isso também poderia ser observado se em vez de cima estivéssemos olhando o terreno de lado. Apesar de ser impossível fazermos isto com a carta, podemos transferir as informações para uma outra representação, chamada perfil topográfico. As curvas de nível também nos permitem diferenciar as partes mais altas do relevo das partes mais baixas, pois possuem cotas que descrevem a variação da altitude em metros. Essa informação nos permite identificar o sentido da drenagem. Como o traçado dos rios corta perpendicularmente as curvas, a água dos rios sempre seguirá de um ponto mais alto para um mais baixo. Outra relevância das curvas de nível é que elas nos fornecem uma série de outros mapas, como os hipsométricos, feitos para representar as altitudes das superfícies emersas, e os batimétricos, feitos para representar as superfícies imersas. É muito comum observarmos estes tipos de mapas nos atlas. Eles se utilizam das cores para representar estas diferenças. O PERFIL T OPOGRÁFIC O OPOGRÁFICO Fazer um perfil topográfico é o mesmo que fazer um corte no relevo, como se cortássemos um bolo, expondo a divisão do seu recheio. Se por um lado as curvas representam o relevo visto de cima, o perfil representa o relevo visto de lado. Ele nos permite observar as variações e os acidentes do relevo que nas cartas topográficas só podemos interpretar. O S AP ARELHOS GPS (SISTEMA DE POSICIONAMENT O GLOB AL) APARELHOS OSICIONAMENTO OBAL Os GPS (do inglês Global Position System) são aparelhos receptores que fornecem informações precisas sobre a nossa localização em qualquer parte do planeta. Estes receptores podem ser mais sofisticados ou não, variando de acordo com a finalidade do seu uso. Alguns deles são semelhantes a um telefone celular e cabem no bolso. Seu princípio de funcionamento é semelhante ao de uma televisão que funciona com antena parabólica. Quando ligamos nosso aparelho televisor, recebemos através da antena os sinais enviados pelo satélite que, por sua vez, recebe sinais da antena da emissora, localizada na superfície. Estes sinais chegam na forma de filmes, telejornais e programas diversos. No caso do GPS, as antenas localizadas na superfície fornecem aos satélites informações sobre sua localização sobre um ponto na superfície. Os satélites, então, retransmitem esses dados para um usuário que esteja em terra, no mar ou no ar. A diferença é que os sinais, ao contrário de imagens, trazem informações sobre latitude, longitude e altitude. 3.1. OS LEVANTAMENTOS POR SENSORIAMENTO REMOTO Você já deve ter se deparado, ao observar a previsão do tempo na televisão, com uma série de imagens animadas mostrando o movimento das nuvens sobre a América do Sul. Ou então, com uma fotografia aérea mostrando a cidade de Bagdá, numa reportagem sobre a guerra no Iraque. O que você diria que estas imagens têm em comum? Tanto uma como a outra foram feitas à distância, seja a bordo de um satélite ou a bordo de um avião, e nos permitem mapear uma determinada área, região e até mesmo o planeta inteiro. Por permitir a obtenção de imagens do local à distância, esta técnica recebeu o nome de sensoriamento remoto. Ela é atualmente uma das técnicas mais utilizadas pela Cartografia para aquisição de informações sobre a superfície da Terra. É difícil encontrarmos algo que tenha produzido tamanha revolução na produção de mapas como o sensoriamento remoto. A base desta técnica é a utilização de sensores que, como nossos olhos, podem observar um determinado objeto ou fenômeno mesmo estando distante dele. Os primeiros produtos obtidos por sensoriamento remoto foram as fotografias aéreas e seu uso remonta à época da Segunda Guerra Mundial, período em que a fotografia aérea teve grande impulso. Com a conquista do espaço, a partir década de 1960, uma nova linha de produtos, o das imagens de satélite, passou a se utilizada. Atualmente ambos são largamente utilizados no mapeamento de cidades, do relevo, de florestas, de atividades agrícolas, de fenômenos climáticos, pois além de mapear, também permitem que haja um controle e uma atualização constante destes fenômenos. A diferença entre a escolha de um e de outro é que, enquanto a fotografia é utilizada para mapear áreas pequenas, as imagens de satélite são utilizadas para grandes extensões territoriais. Os desmatamentos na Amazônia, por exemplo, são monitorados por imagens de satélite. Além das imagens de satélite e das fotografias aéreas, existe também um outro importante produto: as imagens de radar. Elas são utilizadas basicamente para mapear o relevo, tanto que o mapa atual das unidades do relevo brasileiro foi feito com base em estudos sobre imagens de radar dentro do projeto RADAM BRASIL. - SISTEMAS DE INFORMAÇÕES GEOGRÁFICAS Os Sistemas de Informações Geográficas, também chamados de SIG, são sistemas desenvolvidos com o intuito de abrigar o maior número de informações geográficas de uma região, que podem ser apresentadas num mapa. A diferença em relação à Cartografia tradicional é que as informações ficam arquivadas dentro do computador e são utilizadas de acordo com os nossos interesses. Além disso, os SIG podem incluir uma série de recursos multimídia. Suponhamos que exista um sistema de informações geográficas de seu bairro. Ele provavelmente terá arquivado o número de habitantes, moradias, estabelecimentos comerciais e industriais, além das informações sobre o relevo, a vegetação, o clima, o sistema viário etc. Dessa forma, seria possível gerarmos um mapa de seu bairro, conjugando quaisquer destes fenômenos acima citados, utilizando diferentes formas de apresentação. Atividades 01. (Fuvest-SP) Analisando a representação das diferentes altitudes e da hidrografia da área mapeada, podemos inferir que, no local assinalado pela letra A, temos: a) um lago. b) altitudes acima de 800m. c) altitudes abaixo de 500m. d) rebaixamento do relevo e desaguadouro de rios. e) maiores altitudes e nascentes dos rios. 02. (UFMS) Apresente a resposta como a soma das alternativas corretas. Compare as duas seqüências de figuras abaixo. Sobre as mesmas, é correto afirmar: 01. as figuras I, II, e III representam curvas de nível ou isoípsas, com eqüidistância de 100m. 02. quanto menor a eqüidistância entre as curvas, mais plano é o terreno. 04. a figura I relaciona-se à figura C. 08. figura II relaciona-se à figura A. 16. As figuras A, B e C são denominadas de perfis topográficos. 03. Considerando três níveis de coleta de dados: 1. Orbital – feito através de satélites. 2. Aéreo – feito com o auxílio de aviões. 3. Campo/laboratório – realizado no local de estudo. Assinale a seqüência de escalas que mais se encaixam a estes níveis: a) 1 – 1:500.000; 2 – 1:1.000; 3 – 1:5.000. b) 1 – 1:500; 2 – 1:1.000; 3 – 1:200.000. c) 1 – 1:5.000.000; 2 – 1:1.000; 3 – 1:10.000. d) 1 – 1:50.000; 2 – 1:10.000; 3 – 1:500. e) 1 – 1:5.00.000; 2 – 1:1.000.000; 3 – 1:500.000. Unidade 3 Analisando o espaço geográfico Organizadores Sonia Maria Vanzella Castellar Elvio Rodrigues Martins Elaborador Rosemeire Morone Carlos Tadeu Gamba 1. A linguagem gráfica O mapa é uma representação gráfica, reduzida e generalizada da superfície terrestre, que contém informações sobre essa realidade e tem por objetivo transmiti-las a quem se interessar em conhecê-la. Por isso, pode-se dizer que essa representação é também um meio de comunicação, pois sua função é a transmissão de informações àquele que o utiliza, seu usuário. Entretanto, para que essa comunicação ocorra de maneira satisfatória, são necessárias algumas precauções, tanto do cartógrafo que elabora o mapa quanto do usuário que o interpreta. O mapa deve permitir ao leitor sua exploração e uma fácil compreensão da realidade retratada; para que isso ocorra, algumas regras devem ser cumpridas em sua elaboração. A qualidade é avaliada por meio de fatores como precisão, confiabilidade e legibilidade, atributos que lhe garantem uma maior eficácia como meio de comunicação. A precisão de um mapa está na exatidão de suas informações. A localização e a distribuição dos símbolos deve seguir rigorosamente o que se quer representar da realidade. O grau de confiabilidade é medido pela qualidade das informações representadas, ou seja, a confiabilidade das fontes de informação, que devem ser citadas no mapa pelo cartógrafo. A legibilidade é percebida pela facilidade com que lemos o mapa: ele deve destacar as informações mais relevantes para o tema estudado e eliminar as desnecessárias, evitando assim uma grande quantidade de dados que só atrapalham a compreensão do tema. Um mapa que tenha sido elaborado considerando essas preocupações certamente será eficaz, permitindo que a transmissão de seus dados ocorra fluentemente. Contudo, o usuário de mapas, como receptor dessas informações, também interfere na comunicação. Essa forma de comunicação, assim como outras, possui uma linguagem específica que precisa ser aprendida, para otimizar a transmissão das informações. Da mesma forma que fomos alfabetizados na linguagem escrita para ler e interpretar textos, que aprendemos a linguagem matemática para compreender as expressões numéricas ou a linguagem musical para ler partituras, precisamos também aprender a linguagem cartográfica para ler e interpretar mapas, gráficos e outras representações. - Ao elaborar mapas, o cartógrafo emprega símbolos para representar objetos ou fenômenos reais. Esses símbolos são o alicerce da linguagem cartográfica, assim como a letra para a escrita, o número para a matemática ou a nota musical para a música. Assim, o cartógrafo tem algumas decisões a tomar quanto à escolha da base cartográfica, à escala, ao modo de expressão e ao seu conteúdo. A principal preocupação deve ser sobre a linguagem cartográfica, para que a informação mapeada seja transmitida de maneira eficaz. Os dados podem ser representados em um mapa de três modos: por pontos, linhas e áreas, que podem ser diferenciados pela forma, tamanho, orientação, cor, valor e granulação; são as chamadas variáveis visuais, que podem ser aplicadas sozinhas ou combinadas no mesmo mapa. As regras para melhor utilização dessa linguagem foram sistematizadas por Bertin em 1967 (1986). Conhecer essas regras é fundamental para a leitura e interpretação dos mapas temáticos, e conseqüentemente para a análise do espaço geográfico. Representar o espaço geográfico significa representar os objetos que existem neste espaço, mas também as relações que existem entre o espaço e os objetos ou entre os objetos. Assim temos a questão da localização que relaciona os objetos e o espaço, a qualificação desses objetos ou sua diferenciação em relação a outros objetos, a quantificação que nos permite classificá-los e compará-los, além das relações de proporção. As variáveis visuais possuem propriedades de percepção que podem e devem ser usadas para representar essas relações. Cabe ao cartógrafo escolher a variável visual mais adequada para representar o tema estudado. A boa utilização dessas regras facilita a leitura e interpretação dos mapas. 2. Leitura e interpretação de mapas Para adentrarmos este universo, vamos primeiro conhecer os tipos de mapas mais utilizados: os topográficos e os temáticos. Os mapas topográficos são representações da superfície terrestre, precisas e detalhadas, com informações sobre fenômenos naturais e artificiais. Nestes mapas temos as coordenadas; a hidrografia; a altitude através das curvas de nível; detalhes planimétricos como rodovias, ferrovias, limites, casas e edifícios diversos; a cobertura vegetal, natural ou plantações; a nomenclatura toponímica, além das informações indispensáveis a qualquer mapa como título, legenda, escala e projeção. Mapas temáticos são aqueles em que se representa um determinado fenômeno ou aspecto do espaço mapeado. Utiliza-se um mapa de base, geralmente um mapa topográfico, onde são implantados símbolos que representam o tema estudado. Os temas podem ser os mais variados: econômicos, agrícolas, demográficos, climáticos, pedológicos, ambientais entre outros. Eles são muito utilizados por profissionais e estudantes de diversas áreas do conhecimento interessados na distribuição espacial de dados e fenômenos. A Geografia tem especial interesse neste tipo de mapa, pois são os mais usados na análise do espaço geográfico. Todos os mapas, sem distinção, possuem obrigatoriamente determinadas informações como projeção, orientação, escala, legenda e título. Cada uma delas já teve sua importância discutida anteriormente, à exceção do título, valioso por nos fornecer o tema e o espaço que foi representado. Para assimilar as informações contidas no mapa, precisamos conhecer o significado de cada símbolo nele implantado. Aliás, esses símbolos são outra distinção entre mapas topográficos e temáticos: os primeiros usam símbolos convencionais, ou seja, são pré-estabelecidos e aplicados em todas as cartas topográficas, como a altitude representada em curvas de nível. Para ler as cartas topográficas, temos que decodificar a legenda, ou seja, verificar na legenda o significado de cada um dos símbolos que estão no mapa. Você já aprendeu no início deste módulo como retirar algumas informações de um mapa (a localização através de coordenadas geográficas, o cálculo de diferença de horários, a medida de distâncias usando a escala, a leitura de curvas de nível e a elaboração de um perfil topográfico). Com as projeções cartográficas, você aprendeu também a reconhecer os limites dessas representações, e conhece a importância da legenda para a compreensão dos mapas. A legenda é a “porta de entrada” de um mapa, pois contém a expressão da relação entre o mapa (representação) e a realidade (espaço representado). Toda leitura de mapa começa com a leitura da legenda, mas não se esgota nela: é possível retirar de um mapa outras informações que não constam ou estão subentendidas na legenda, desde que o usuário tenha conhecimento prévio sobre o tema ou lugar mapeado ou já esteja acostumado a ler mapas. Essa etapa é chamada de interpretação e a experiência do leitor pode otimizar a eficácia da comunicação. Observe o trecho retirado de uma carta topográfica a seguir: Trecho extraído da carta topográfica 1:50000, folha Vitória, do IBGE. – Situe o mapa: em que estado brasileiro localiza-se o trecho acima? Em que região do estado? Faz parte de que grande conjunto do relevo brasileiro? – Quais são as formas de relevo visíveis no mapa? – Em que posições topográficas encontram-se as matas e os mangues? – Que relação existe entre a rede rodoviária e a urbanização? – Quais são as principais atividades econômicas da região? – Qual é a diferença entre o traçado das ferrovias e das rodovias em relação ao relevo? – Coloque uma folha de papel transparente sobre o mapa e organize um croqui traçando as curvas de nível de 60 m e de 300 m, indicando com um triângulo os pontos de maior altitude acima da cota de 300 m. Identifique cada triângulo com a altitude correspondente; rios, represas e lagos; contornos simplificados das áreas de vegetação natural, diferenciando os tipos; estradas principais; contorno das áreas urbanizadas e locais onde há grande densidade de habitações rurais; indústrias por ramo de atividade. – Anote na folha transparente o título, a legenda e a escala do croqui. Fonte: IBGE. Carta do Brasil, 1:50.000, Vitória. Rio de Janeiro: IBGE, in PITTE, J. R. (coord.). Geografia: A natureza humanizada: ensino médio. São Paulo: FTD, 1998. pp.90-91. A carta topográfica utiliza símbolos pontuais, lineares e areolares em diferentes cores, tamanhos e formas: - As localidades têm o nome impresso em preto com diferentes tamanhos, classificadas segundo a quantidade de habitantes ou status: temos assim a representação de uma hierarquia urbana; - - Os limites também são representados em cor preta e são hierarquizados pela forma da linha; - As estradas de rodagem são diferenciadas pela cor, preta e vermelha, e pela granulação das linhas, enquanto as estradas de ferro estão em preto e são classificadas pela forma da linha; - O azul é a cor usada exclusivamente para representar as informações referentes aos corpos d’água (rios, lagos, represas, cachoeiras etc.); - São utilizados ainda alguns pontos pretos diferenciados pela forma para identificar edifícios com uso específicos, como igrejas, escolas e minas; - As informações sobre cobertura vegetal estão na cor verde, com tramas de formas diferentes para distinguir os tipos de vegetação; - Temos também as áreas urbanizadas representadas na cor rosa, mas em outras escalas pode ser usado o cinza. - A cor sépia representa as informações de altimetria, as curvas de nível e os pontos cotados. Essa primeira etapa de decodificação da legenda é muito importante, mas uma maior familiaridade com este tipo de representação e com a linguagem cartográfica nos permite interpretar esses dados. Por meio das curvas de nível podemos identificar as formas de relevo como vales e morros. Devemos atentar também para a hierarquização de informações como cidades, estradas ou cursos d’água. Em um mapa topográfico, podemos ainda detectar a posição, dimensão e densidade dos fenômenos, desvendando sua distribuição espacial, correlacionar as diferentes informações, como a cobertura vegetal e a altitude, tentando assim explicar ou deduzir as causas da configuração espacial. Analisando o sistema viário podemos identificar o tipo de transporte que predomina na região. É possível também revelar outras ocorrências dominantes e apontar o caráter específico daquele espaço, como sua função ou uso rural ou urbano, residencial, agrícola, industrial etc. Alguns usuários conseguem correlacionar as informações do mapa com seu conhecimento prévio e atingir deduções mais complexas. Por exemplo, analisando a distribuição e a forma da rede hidrográfica pode-se obter informações sobre a geologia do terreno. Veja como isso é possível nos exemplos ao lado e abaixo: A drenagem dendrítica sugere que as rochas têm resistência uniforme e ausência de fraturas. DUARTE, R. A. Cartografia Básica. 2ª edição. Florianópolis: UFSC, 1988. p.122-4. Quando os rios escoam paralelos, apontam a presença de camadas resistentes regularmente inclinadas, em áreas onde vertentes têm um declive acentuado. O padrão treliça é comum em áreas de ocorrência paralela de rochas com resistência diferenciada ou falhas paralelas. O modelo radial é indicativo de estruturas isoladas de forma dômica e cones vulcânicos. A rede anelar geralmente indica estruturas de domos ou bacias erodidas até a maturidade, onde a drenagem se acomoda nos afloramentos das rochas de menor resistência. Atividade 01. Observe o trecho da carta topográfica e verifique: a) como se caracterizam o relevo e a hidrografia? b) que relação existe entre as rodovias e a ocupação humana? c) quais as principais atividades econômicas da região? Nos mapas temáticos os símbolos não são pré-estabelecidos, ou seja, cada cartógrafo usa os símbolos que julga mais adequados às suas necessidades. Assim, o mesmo tema pode ser representado de diferentes formas. São muitos os mapas temáticos, os temas que podem ser mapeados e os diferentes modos de fazê-lo. Podemos classificar os mapas pelo modo de expressão, pela escala ou pelo conteúdo. Como já estudamos a escala, apresentamos aqui as outras classificações. As representações cartográficas de acordo com a forma de expressão são divididas em: - mapas propriamente ditos; - cartogramas que utilizam representações proporcionais para representar fenômenos quantitativos; - cartodiagramas que representam as informações por meio de gráficos ou diagramas e; - anamorfoses geográficas, onde as superfícies do terreno são deformadas para representar a proporção do tema representado. Em termos de conteúdo, podemos classificá-los em mapas de análise, que apresentam um único tema, e mapas sintéticos ou de correlação, que relacionam as informações de dois ou mais mapas de análise. A seguir temos alguns exemplos dos métodos de representação cartográfica de uso freqüente e de como fazer sua leitura e interpretação. O mapa colorido abaixo é de análise, onde a variável visual forma foi implantada pontualmente para diferenciar os tipos de recursos minerais. Neste tipo de mapa, temos a localização das ocorrências no Brasil. Podemos ainda verificar as ocorrências por Estado ou a distribuição de cada tipo de mineral. Fonte: JOLY, F. A Cartografia. Trad. Tânia Pellegrini. 5ª edição. Campinas, SP: Papirus, 1990. p.78. Brasil – Principais Recursos Minerais. Fonte: SIMIELLI, M. E. R. Geoatlas. São Paulo: Ática, 2003. p.83. - Essas informações podem ser relacionadas com a estrutura geológica ou com a indústria siderúrgica ou mineradora. Temos no primeiro mapa a correlação entre a geologia e as ocorrências minerais. A geologia (cristalino) está representada pela área e os minerais por círculos proporcionais. O mapa nos mostra que grande parte das ocorrências minerais está no cristalino, bem como a distribuição dessas ocorrências pelo cristalino. O segundo mapa é de análise. A implantação pontual de figuras geométricas reproduz proporcionalmente no mapa as ocorrências do atributo estudado. Analisando o mapa, percebemos duas grandes concentrações de ocorrências: uma no litoral do nordeste, onde o número de assassinatos é menor; na segunda concentração, que abrange os estados do Pará, Tocantins e Maranhão, o número de assassinatos é bem maior. Uma leitura mais detalhada nos permite saber o número de assassinatos por Estado. Percebemos ainda que os conflitos com maior número de assassinatos estão na região norte e no estado do Maranhão, à exceção de um conflito no sul do estado da Bahia. Essa área com maior número de assassinatos forma um arco muito semelhante ao da fronteira de expansão agrícola. Mais um mapa de análise com implantação linear, com setas que representam proporcionalmente a migração no Brasil de 1970 a 1990. As setas são muito utilizadas para representar temas dinâmicos, pois pressupõem movimento. 2. Mortes em Conflitos no Campo 1985-1996 Fonte: SIMIELLI, M. E. R. Geoatlas. São Paulo: Ática, 2000. p.93. O mapa mostra três grandes tendências do movimento populacional neste período: a migração do nordeste para o sudeste e duas frentes chegando ao norte e centro-oeste, uma originária da região sul e outra da região nordeste. 1. Brasil – Concentrações Minerais – Cristalino. Fonte: SIMIELLI, M. E. R. Geoatlas. São Paulo: Ática, 2000. p.83. 3. Migração 1970-1990 Fonte: SIMIELLI, M. E. R. Geoatlas. São Paulo: Ática, 2000. p.97. Atividade Trabalho Infantil Fonte: SIMIELLI, M. E. R. Geoatlas. São Paulo: Ática, 2000. p.100. 01. Compare os dois últimos exemplos e correlacione suas informações. Aqui a variável valor mantém a ordem que o fenômeno apresenta. Temos a porcentagem de crianças de 10 a 14 anos que trabalham, divididas em quatro classes. Observando o mapa, percebemos que as maiores porcentagens de trabalho infantil estão na região nordeste e no estado de Tocantins, e as menores na região sudeste e em alguns estados da região norte. Podemos relacionar esse dado com o fato de a região nordeste ser a mais problemática. Esse método é chamado de pontos de contagem, e é usado para representar informações quantitativas. Neste mapa, cada ponto equivale a 2 milhões de pessoas. Essa representação nos permite ter uma visão geral da distribuição do fenômeno, ao mesmo tempo que permite uma leitura mais detalhada e precisa. Examinando o mapa percebemos as maiores concentrações humanas e como a população está distribuída; se houver necessidade, é possível extrair do mapa a população dos países contando o número de pontos e multiplicando pelo valor apresentado na legenda. Para representar fenômenos contínuos como relevo, precipitação, temperatura, pressão atmosférica, utilizamos o método isarítmico, apresentado neste mapa. As temperaturas são representadas por isotermas, linhas que unem pontos de igual temperatura, e os intervalos entre as isotermas são preenchidos por uma cor ou tom de cinza que representam o intervalo de temperatura entre as duas linhas. Atente para o fato de que, nesses casos, a legenda é contínua, pois a isoterma é que divide os quadradinhos da legenda. Temos neste mapa a distribuição das temperaturas médias anuais, sendo possível detectar as regiões mais frias e as mais quentes. Esse tipo de mapa é muito utilizado pelos estudiosos do clima. O Índice de Desenvolvimento Humano (IDH) é um índice sintético que considera três dimensões: a educação, a renda e a expectativa de vida. Atualmen- Planisfério População (p. 74) e Temperatura Média Anual (p. 10). FERREIRA, G. M. L. Atlas Geográfico. São Paulo: Moderna, 1999. p.74. - te é o parâmetro para medir e comparar a qualidade de vida dos países, variando de 0 a 1. No mapa identificamos três conjuntos que, de certa forma, refletem as regiões geoecônomicas: o Centro-sul apresenta os melhores índices, a Amazônia, índices intermediários e o Nordeste os índices mais baixos no IDH. Esta última região fica bem caracterizada como uma região mais problemática, pois além do IDH, possui altas taxas de crianças fora da escola e taxas de mortalidade infantil acima de 50 por mil. 3. Representações Gráficas Além dos mapas, a Geografia utiliza outras representações gráficas como o bloco diagrama, tabela, gráfico e maquete. Essas representações podem ser analisadas por si só, mas algumas delas têm outro uso na Geografia, os gráficos por exemplo podem ser implantados em mapas como os cartodiagramas, outros podem ser utilizados para a organizar os dados a serem representados como o histograma, as tabelas são riBrasil: Índice de Desenvolvimento Humano Fonte: SIMIELLI, M. E. R. Geoatlas. São Paulo: Ática, 2000. p.100. cas fontes de dados para o mapeamento. Trabalhar com dados e informações estatísticas pode nos desvendar o mundo, mas é preciso ter uma grande atenção para evitar conclusões equivocadas. Blocos diagramas são desenho em perspectivas de uma parte da crosta terrestre. Essa visão em perspectiva facilita a visualização da informação em três dimensões e permite a representação da estrutura interna da crosta, por isso são muito utilizados para explicar fenômenos que se estendem ou se originam abaixo da superfície terrestre. A visão em perspectiva Ferreira, G.M.L. Atlas Geográfico. São Paulo: Moderna, 1999. p.69. do movimento das placas tectônicas nos permite identificar o processo de formação de algumas estruturas decorrentes desse movimento. Os blocos diagramas também podem ser utilizados para a visualização dos processos naturais ao longo do tempo ou comparar áreas distintas como nessa questão da Fuvest. Tabela é um quadro demonstrativo de infor- (Fuvest) Nos climas tropicais úmidos, são mações e dados organiza- comuns os solos espessos. Entretanto, aldos. São utilizadas por di- guns fatores naturais podem mudar essa versas áreas como fonte tendência geral. Observe a figura abaixo, de dados, pois sua orga- representativa dessas áreas. nização facilita a análise a) Cite dois fatores que causam a diferendos dados. Além de ser ça de espessura do solo entre o perfil I e II. utilizada como fonte de dados na elaboração de b) Explique um dos fatores citados. mapas temáticos, também pode ser lida por linha, por colunas ou no conjunto comparando os dados entre si. Vejamos alguns exemplos: Nesta tabela teRenda per capita Renda per capita dos Países Renda per capita mos na primeira coda população dos 10% mais ricos 40% mais pobres luna a renda per total (em dólares) (em dólares) A (em dólares) B capita de alguns paí29340 114645 Estados Unidos 11 530 ses; convém lem24760 60005 Países Baixos (Holanda) 12754 brar que esse índice 4570 22692 Brasil 971 é obtido dividindo1640 7500 Guatemala 454 se o Produto Interno Bruto de um país Fonte: Banco Mundial, World development, 2000 in Vesentini, J.W. Sociedade e Espaço. Geografia Geral e do Brasil. Caderno de Atividades. São Paulo: Ática, 2001, p.14. pela sua população. É muito importante (Enem 2003 – Q. 57) O quadro abaixo mostra a taxa de crescimento saber como são calculados os índinatural da população brasileira no século XX. ces, pois assim conhecemos seu significado e suas limitações. Esse ínPeríodo Taxa anual média de cresdice já foi muito usado para medir e cimento natural (%) classificar a riqueza dos países. To1920-1940 1,90 davia por ser uma média ele não 1940-1950 2,40 considera as diferenças internas, 1950-1960 2,99 onde há pessoas que ganham acima 1960-1970 2,89 da média e outras que ganham mui1970-1980 2,48 to abaixo da média. 1980-1991 1,93 Podemos verificar isso nas colu1991-2000 1,64 nas subseqüentes onde temos a renFonte: IBGE, Anuários Estatísticos do Brasil da dos 10% mais ricos, a renda dos 40% mais pobres e o quociente entre Analisando os dados podemos caracterizar o período entre as duas últimas. (A) 1920 e 1960, como de crescimento do planejamento familiar. Maquetes são representações (B) 1950 e 1970, como de nítida explosão demográfica. reduzidas e tridimensionais de um (C) 1960 e 1980, como de crescimento da taxa de fertilidade. lugar. Elas são utilizadas em diver(D) 1970 e 1990, como de decréscimo da densidade demográfica. sas áreas como Engenharia e Arqui(E) 1980 e 2000, como de estabilização do crescimento demográfico. tetura. Na Geografia o tipo mais usado é a maquete de relevo, con(Enem 2003 – Q. 58) Ainda com base na tabela da questão anterior, é feccionada a partir das curvas de correto afirmar que a população brasileira nível. Assim temos a “reconstrução” (A) apresentou crescimento percentual menor nas últimas décadas. reduzida do relevo semelhante como (B) apresentou crescimento percentual maior nas últimas décadas. ocorre na realidade, diferente da re(C) decresceu em valores absolutos nas cinco últimas décadas. presentação em curva de nível que é uma representação plana. (D) apresentou apenas uma pequena queda entre 1950 e 1980. Relacionar a maquete com ou(E) permaneceu praticamente inalterada desde 1950. tras representações planas do relevo facilita a abstração do relevo no plano, por exemplo, a comparação com uma carta hipsométrica, facilita a compreensão da legenda e portanto das informações no mapa. Podemos ainda analisar outros fenômenos naturais como a hidrografia, o clima, a vegetação, correlacionando-os com a compartimentação do relevo. Dependendo da escala da maquete, é possível explicar a ocupação do espaço, atividades agrícolas, por exemplo, através da configuração de relevo. Maquete da Região Centro-Oeste. Fonte: Simielli, MER. Boletim Paulista de Geografia nº 70. São Paulo: AGB, 1992. p.18. - Gráficos são representações de informações estatísticas assim organizadas para facilitar sua interpretação. Eles mostram como uma informação (quantidade) varia em relação à outra informação, para isso geralmente usam duas escalas, uma vertical x, e uma horizontal y, cada qual com uma informação. Existem vários tipos de gráficos, os mais conhecidos são os gráficos de linha, de colunas, de barras e o de setor, também conhecido como gráfico de pizza. Diversas áreas usam esse tipo de representação como a matemática, a Engenharia, o Marketing, o Jornalismo, a Economia, etc. Na Geografia, além desses tipos mais conhecidos, ocorre ainda o uso corrente de dois gráficos específico: o climograma e a pirâmide etária. O gráfico de linhas é composto por dois eixos x e y perpendiculares entre si e cada eixo apresenta a variação de valores de um dado. As informações são implantadas através de pontos na intersecção dos dois valores correspondentes. Após inserirmos todas as informações, traçamos uma linha ligando esses pontos para verificar a variação do atributo x em relação ao atributo y. Eles são muito utilizados para mostrar a evolução de um atributo, mas também admitem a comparação de dados e informações. Analise os exemplos a seguir. No primeiro exemplo temos a evolução da emissão de dióxido de carbono (CO2), onde percebemos um aumento maior nos últimos períodos. No segundo gráfico podemos comparar a população mundial total com a população urbana e verificar que a população urbana tem crescido mais intensamente que a população total. A diminuição da distância entre as duas linhas nos mostra que a maior parte da população mundial, vive hoje em cidades com mais de 1000.000 habitantes. Fonte: Vesentini, J.W. Sociedade e Espaço. Geografia Geral e do Brasil. São Paulo: Ática, 1999, p. 321 (esq.) e 232 (dir.). Analise o gráfico a seguir e responda às questões da Unicamp 2003. Os gráficos de colunas e de barras O gráfico abaixo retrata a distribuição das temperaturas e precipitações são muito semelhantes, utilizam retânmédias mensais de Barra (BA). gulos verticais e horizontais, respectivamente, os quais variam de tamanho correspondendo ao valor do atributo. Através desses gráficos podemos analisar a evolução de um atributo, avaliar o mesmo atributo em diferentes áreas ou comparar dois ou mais atributos. No exemplo a seguir temos a taxa de mortalidade infantil. Analisando o gráfico percebemos Barra (BA) - precipitação anual - 692,0 mm que as taxas mais baixas concentramtemperatura média anual - 26,2 oC se na região geoeconômica Centro-Sul altitude - 408 metros e que as mais altas encontram-se no FONTE: E. NIMER.“CLIMATOLOGIA DA REGIÃO NORDESTE DO BRASIL: INTRODUÇÃO À CLIMATOLOGIA Nordeste, como já vimos representas anteriormente no mapa do Brasil IDH. DINÂMICA”.Revista Brasileira de Geografia.Rio de Janeiro,IBGE, 34(2),1972, p.46. No exemplo seguinte podemos a) Qual é o tipo climático representado e sua principal área de ocorrência? avaliar a evolução da distribuição da b) Descreva os principais aspectos térmicos e pluviométricos do tipo população economicamente ativa do climático representado. Brasil em setores da economia. c) Qual é a formação vegetal que aparece associada a este tipo climático? Embora o setor secundário seja o que apresenta menor alteração de valor, observamos que é o mais instável, pois no período é o que apresenta mais oscilações. O setor primário e o terciário apresentam uma tendência inversa, enquanto o setor primário reduziu a população ocupada de 60% a 25%; o setor terciário teve um ganho aproximadamente de 23% para quase 60%. Na atividade seguinte temos a combinação de gráficos de colunas e de barras, analise-os e responda a questão. Fonte: IBGE. Síntese de Indicadores Sociais 1999. Rio de Janeiro: IBGE, 2000 p. 45. Martinelli, M. Gráficos e mapas construa-os você mesmo. São Paulo: Moderna, 1998, p. 48. - O gráfico de setores serve para detalhar uma informação, mostrar a sua distribuição por porcentagem ou quanOs dados abaixo referem-se à origem do petróleo consumido no Brasil tidades absolutas, o círculo indepenem dois diferentes anos. dente do tamanho representa 100% da ocorrência do dado ou a quantidade absoluta, o círculo é dividido em setores, onde cada setor corresponde a uma parte do todo. Os gráficos a seguir trazem informações sobre a condição de atividade dos adolescentes de 15 a 17 anos no Brasil, onde temos o total de adolescentes nesta idade divididos pelas atividades que desempenham. Observamos que dos 76% que estudam, 23% estudam e trabalham e que 24% desses adolescentes exercem outras atividades estando portanto fora da escola. Vamos estudar os gráficos específicos mais usados na Geografia, começando pelo climograma. Analisando os dados, pode-se perceber que o Brasil adotou determinaOs climogramas são gráficos que combinam duas informações sobre o das estratégias energéticas, dentre as quais podemos citar: clima, em dois eixos verticais e um ho(A) a diminuição das importações dos países muçulmanos e redução do rizontal. consumo interno. Na horizontal temos os meses do (B) a redução da produção nacional e diminuição do consumo do petróano e nos eixos verticais os valores releo produzido no Oriente Médio. ferentes à temperatura e à pluviosi(C) a redução da produção nacional e o aumento das compras de petródade. Temos assim o comportamento leo dos países árabes e africanos. desses dois elementos climáticos no (D) o aumento da produção nacional e redução do consumo de petródecorrer do ano. Esses gráficos nos leo vindo dos países do Oriente Médio. permitem identificar o tipo de clima. (E) o aumento da dependência externa de petróleo vindo de países Para interpretar esses gráficos demais próximos do Brasil e redução do consumo interno. vemos atentar para cada uma das in- Fonte: IBGE. Síntese de Indicadores Sociais 1999. Rio de Janeiro: IBGE, 2000 p. 166. Ferreira, G.M.L. Atlas Geográfico. São Paulo: Moderna, 1999. p.70. Ferreira, G.M.L. Atlas Geográfico. São Paulo: Moderna, 1999. p.75. formações e relacioná-las. A linha de temperatura nos diz se o clima é quente ou frio e se há ou não grandes alterações de temperatura ao longo do ano, grandes alterações na temperatura são sinais de estações bem definidas, características de climas temperados, além disso através dos períodos de temperatura mais alta ou mais baixa podemos deduzir em que hemisfério está localizado o lugar representado. Nas colunas temos a quantidade de chuvas, bem como sua distribuição ao longo do ano, assim podemos saber se é um clima úmido ou seco, se há ou não estação seca. A combinação dessas informações nos permite identificar o clima. Vejamos alguns exemplos: temos acima duas figuras representando vários climas. Por exemplo, o clima equatorial está bem definido no climograma com chuvas em abundância e bem distribuídas e altas temperaturas sem grandes alterações ao longo do ano, trata-se de um clima quente e úmido. No climograma de Darwin vemos altas temperaturas, porém fica evidente que o inverno é a estação seca, característica do clima tropical. O clima semiárido é marcado pela alta temperatura e pouca quantidade de chuvas e uma estação seca bem definida. Em Buenos Aires, temos as chuvas em menor quantidade mas bem distribuídas ao longo do ano, no clima subtropical o inverno é marcado por temperaturas mais baixas. A pirâmide etária é um gráfico de barras que representa a estrutura da população por faixas etárias e por sexo, através delas temos as características do crescimento populacional. Pirâmides com base larga e topo muito estreito e achatado lembrando um triângulo são indícios de altas taxas de natalidade, trata-se de um país com jovem, geralmente representam países menos desenvolvidos. Se a pirâmide for mais longa com a base for estreita e o topo apresentar faixas largas, significa que a taxa de natalidade é baixa e a expectativa de vida é alta respectivamente, um país que tenha essa pirâmide está passando por um processo de envelhecimento da população, características de países desenvolvidos. Entre esses dois tipos de pirâmides temos outras que demonstram uma transição entre o primeiro e segundo caso, são países que estão diminuindo a taxa de natalidade e aumentando a expectativa de vida. Observe os modelos. Geralmente os dois lados da pirâmide são semelhantes, se houver alguma anomalia em um dos lados, ou uma diminuição muito grande em uma faixa etária pode significar guerra ou uma epidemia. - (Fuvest) Estas figuras representam, de forma muito simplificada, duas pirâmides de idade: A B VELHOS VELHOS ADUL TOS ADULT ADUL TOS ADULT JOVENS JOVENS Mostre resumidamente, os principais aspectos de cada uma e a que tipo de países poderiam corresponder. Sobre os autores Rosemeire Morone é bacharel e licenciada em Geografia pela Universidade São Paulo. Mestre e Doutoranda em Geografia Física pela mesma universidade. Atualmente é professora efetiva de Geografia da Rede Pública do Estado de São Paulo. Carlos Tadeu de Carvalho Gamba é bacharel e licenciado em geografia pela Universidade de São Paulo. Atualmente é mestrando pela mesma universidade e professor do ensino superior. Anotações