Ministério da Educação e Cultura

Propaganda
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
Disciplina: Fenômenos de Transportes 1
Código: ME35R
Turma: M51/E61/A41
Curso: Engenharias Mecânica, Elétrica e Automação e Controle
Prof. Rubens Gallo
PRIMEIRA LISTA DE EXERCÍCO E PRIMEIRA APS
1.) A distribuição de velocidade para o escoamento laminar desenvolvido entre placas paralelas é dado por:
 2 y 
 1 
 , onde h é a distância separando as placas: a origem está situada na linha mediana entre as
umax
 h 
placas. Considere um escoamento de água, com
e
. Calcule a tensão de
cisalhamento na placa superior e dê o seu sentido. Esboce a variação da tensão de cisalhamento numa seção
transversal do canal.
u
2
2.) A distribuição de velocidade para o escoamento laminar desenvolvido entre placas paralelas é dado por:
 2 y 
 1 
 , onde h é a distância separando as placas: a origem está situada na linha mediana entre as
umax
 h 
placas. Considere um escoamento de água, com
e
. Calcule a força sobre uma
seção de
da placa inferior e dê o sue sentido.
u
2
3.) Uma patinadora de estilo livre no gelo desliza sobre patins à velocidade V = 20 ft/s. O seu peso, 100 lbf, é
suportado por uma fina película de água fundida do gelo pela pressão da lâmina do patim. Admita que a lâmina
tem comprimento L=11,5 polegada e largura w = 0,125 polegada, e que a película de água tem espessura
h=0,0000575 polegada. Estime a desaceleração da patinadora que resulta do cisalhamento viscoso na película
de água, desprezando os efeitos das extremidades do patim.
4.) Petróleo bruto, com densidade relativa SG=0,85 e viscosidade
, escoa de forma
permanente sobre uma superfície inclinada de
para baixo em relação à horizontal, numa película
g 
y2 
h

y

de espessura h = 0,125 polegada. O perfil de velocidade é dado por: u 

 sen   . Determine a
 
2 
magnitude e o sentido da tensão de cisalhamento que atua sobre a superfície.
5.) Um bloco de massa M desliza sobre uma fina película de óleo, conforme mostrado na figura. A espessura da
película é h e a área do bloco é A. Quando liberada, a massa m exerce tração na corda, causando a aceleração do
bloco. Despreze o atrito na polia e a resistência do ar. Desenvolva uma expressão algébrica para a força viscosa
que atua sobre o bloco quando ele se move à velocidade V. Deduza uma equação diferencial para a velocidade
do bloco em função do tempo. A massa M=5kg, m=1kg, A=25cm² e h=0,5 mm. Se é necessário 1 segundo para
atingir a velocidade de 1 m/s, determine a viscosidade, , do óleo.
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
6.) Um bloco cúbico, com arestas de dimensões a [mm], desliza sobre uma fina película de óleo numa placa
plana. O óleo tem viscosidade  e a película tem espessura h [mm]. O bloco de massa M move-se com
velocidade constante U sob a ação de uma força constante F. Indique a magnitude e o sentido das tensões de
cisalhamento atuando no fundo do bloco. Esboce uma curva para a velocidade resultante do bloco em função do
tempo, quando a força é repentinamente removida e o bloco começa a reduzir a velocidade. Obtenha uma
expressão para o tempo requerido para que o bloco perca 95% de sua velocidade.
7.) Um bloco cúbico, com arestas de 0,2 m e massa de 5 kg, desliza em um plano inclinado de 30° para baixo
em relação à horizontal, sobre um filme de óleo SAE 30 a 20° com 0,2 mm de espessura. Se o bloco for
liberado do repouso em t=0, qual a sua aceleração inicial? Determine a velocidade do bloco após 0,1 s. Se
desejássemos que o bloco atingisse uma velocidade de 0,3 m/s neste tempo, qual deveria ser a viscosidade  do
óleo?
8.) Um fio magnético deve ser revestido com verniz isolante, sendo puxado através de uma matriz circular com
1,0 mm de diâmetro e 50 mm de comprimento. O diâmetro do fio é de 0,9 mm e ele passa centrado na matriz. O
verniz com (=20 centipoise) preenche completamente o espaço entre o fio e as paredes da matriz. O fio é
puxado a uma velocidade de 50 m/s. Determine a força necessária para puxar o fio através da matriz.
9.) Um viscosímetro de cilindros concêntricos é constituído de um par de cilindros verticais adequadamente
encaixados, sendo que o cilindro interno pode girar. A folga anular entre os cilindros deve ser muito pequena,
de modo a desenvolver um perfil de velocidade linear na amostra líquida que preenche a folga. Considere um
viscosímetro com cilindro interno de 4 in de diâmetro e altura de 8 in; a folga anular é de 0,001 in e está
preenchida com óleo de rícino a 90°F. Determine o torque necessário para girar o cilindro interno a 400 rpm
(rotações por minuto).
10.) Considere um viscosímetro de cilindros concêntricos como o do problema 9. Para pequenas folgas entre os
cilindros, pode-se admitir um perfil de velocidade linear no líquido que preenche o espaço anular. O cilindro
interno tem 75 mm de diâmetro e 150 mm de altura, e a folga anular é de 0,02 mm. Um torque de
é necessário para girar o cilindro interno a 100 rpm. Determine a viscosidade do líquido no espaço anular desse
viscosímetro.
11.) Um eixo com diâmetro externo de 18 mm gira a 20 rotações por segundo dentro de um mancal de
sustentação estacionário de 60 mm de comprimento. Uma película de óleo com espessura de 0,2 mm preenche a
folga anular entre o eixo e o mancal. O troque necessário para girar o eixo é
. Estime a
viscosidade do óleo que preenche a folga anular.
12.) Um viscosímetro de cilindros concêntricos é acionado pela queda de uma massa M, conectada pro corda e
polia ao cilindro interno, conforme mostrado. O líquido a ser testado preenche a folga anular de largura a e
altura H. Após um breve transiente de partida, a massa cai à velocidade constante. Deduza uma expressão
algébrica para a viscosidade do líquido no dispositivo em termos de M, g, Vm, r, R, a e H.
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
13.) O viscosímetro do problema 12 está sendo usado para verificar se a viscosidade de um determinado fluido
é realmente
. Acidentalmente, a corda rompe-se durante o experimento. Qual a distância
percorrida pela massa cilíndrica até perde 99% de sua velocidade? O momento de inércia do sistema
cilindro/peça é de
.
14.) O delgado cilindro externo (massa m2 e raio R) de um pequeno viscosímetro portátil de cilindros
concêntricos é acionado pela queda de uma massa m1, ligada a uma corda. O cilindro interno é estacionário. A
folga entre os cilindros é a. Desprezando o atrito do mancal externo, a resistência do ar e a massa do líquido no
viscosímetro, obtenha uma expressão algébrica para o troque devido ao cisalhamento viscoso que atua no
cilindro à velocidade angular w. Deduza e resolva uma equação diferencial para a velocidade angular w.
Deduza e resolva uma equação diferencial ara a velocidade angular para a velocidade angular do cilindro
externo como função do tempo. Obtenha uma expressão para a velocidade angular máxima do cilindro.
15.) Um eixo circular de alumínio montado sobre um mancal de sustentação estacionário é mostrdo. A folga
geométrica entre o eixo e o mancal está preenchida com óleo SAE 10W-30 a T=30°C. O eixo é posto em
rotação pela massa e corda a ele conectadas. Desenvolva e resolva uma equação diferencial para a velocidade
angular do eixo como função do tempo. Calcule a velocidade angular máxima do eixo e o tempo requerido para
ele atingir 90% dessa velocidade.
16.) Um acoplamento imune a choques, para acionamento mecânico de baixa potência, deve ser fabricado com
um par de cilindros concêntricos. O espaço anular entre os cilindros será preenchido com óleo. O dispositivo
deve transmitir uma potência P = 5W. Outras dimensões e propriedades são conforme mostrado. Despreze
qualquer atrito de mancal e efeitos de extremidade. Admita que a folga mínima, prática pra o dispositivo seja
. A indústria Dow fabrica fluidosà base de silicone com viscosidades tão altas quanto 106
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
centipoises. Determine a viscosidade que deverá ser especificada, de modo a satisfazer os requisitos desse
dispositivo.
17.) Foi proposto empregar um par de discos paralelos para medir a viscosidade de uma amostra líquida. O
disco superior gira a uma altura h acima do disco inferior. A viscosidade do líquido na folga deve ser calculada
a partir de medições do torque necessário para girar o disco superior continuamente em regime permanente.
Obtenha uma expressão algébrica para o torque necessário para girar o disco superior.
18.) O viscosímetro de cone e placa mostrado é um instrumento frequentemente usado para caracterizar fluidos
não-newtonianos. Ele consiste de uma placa plana e um cone giratório, com ângulo muito obtuso ( é
tipicamente, inferior a 0,5°). O ápice do cone apenas toca a superfície da placa, e o líquido a ser testado
preenche a estreita fenda formada pelas duas peças. Deduza uma expressão para a taxa de cisalhamento no
líquido que preenche a fenda em termos da geometria do sistema. Avalie o torque de acionamento do cone em
termos da tensão de cisalhamento e da geometria do sistema.
19.) Uma embreagem viscosa deve ser feita de um par de discos paralelos muito próximos, com uma fina
camada de líquido viscoso entre eles. Desenvolva expressões algébrica para o torque e a potência transmitida
pelo par de discos, em termos da viscosidade do líquido, , do raio, e 0, do disco acionador externo.
⁄ , em termos de i e do torque
Desenvolva também expressões para a razão de deslizamento,
transmitido. Determine a eficiência, , em termos da razão de deslizamento.
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
20.) Um viscosímetro de cilindros concêntricos é mostrado na figura. O torque viscoso é produzido pela folga
anular em torno do cilindro interno. Um torque viscoso adicional é produzido pelo fundo plano do cilindro
interno à medida que gira acima do fundo plano do cilindro externo estacionário. Obtenha expressões algébricas
para o torque viscoso devido ao escoamento na folga anular de largura a e para o torque viscoso devido ao
escoamento na folga do fundo de altura b. Faça um gráfico mostrando a razão b/a, necessária para manter o
torque do fundo a 1%, ou menos, do torque do espaço anular versus as outras varáveis geométricas.
21.) Projete um viscosímetro de cilindros concêntricos para medir a viscosidade de um líquido similar à água. O
objetivo é alcançar uma precisão de medida de
. Especifique a configuração e dimensões do viscosímetro.
Indique quais os parâmetros medidos que serão utilizados para inferir a viscosidade da amostra de líquido.
22.) Um eixo de ponta cônica gira em um mancal cônico. A folga entre as duas peças é preenchida com óleo
pesado de viscosidade SAE 30 a 30°C. Obtenha uma expressão algébrica para a tensão de cisalhamento que
atua na superfície do eixo cônico. Calcule o torque viscoso que atua no eixo.
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
23.) Um mancal de escora esférico é mostrado na figura. A folga entre o membro esférico e seu alojamento tem
largura constante H. Obtenha e faça o gráfico de uma expressão algébrica para o torque no membro esférico
como uma função do ângulo .
24.) Uma seção reta de um mancal giratório é mostrada na figura. O membro esférico gira com velocidade
angular , a uma pequena distancia, a, acima da superfície plana. A folga estreita é preenchida com óleo
viscoso de viscosidade  = 1250 cP (centipoise). Obtenha uma expressão algébrica para a tensão de
cisalhamento que atua no membro esférico. Avalie a tensão máxima de cisalhamento que atua sobre o membro
esférico para as condições mostradas. (A tensão máxima de cisalhamento está necessariamente localizada no
raio máximo?) Desenvolva uma expressão algébrica (na forma de uma integral) para o torque de cisalhamento
viscoso total que ague no membro esférico. Calcule o torque utilizando as dimensões mostradas.
25.) Um bloco de peso W desliza para baixo em um plano inclinado, sob uma película de óleo, como mostra a
figura, a área do bloco que esta em contato com a película é A e a sua espessura h. Assumindo perfil de linear
de velocidade no filme, obtenha uma expressão para a velocidade V terminal do bloco.
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
26.) Se a massa do bloco do exercício 25 é 6 kg, a área de contato entre o bloco e a película 35 cm², o ângulo
 = 15° e a espessura do filme é 1 mm, o óleo é o SAE 30 a 20°C, determine a velocidade terminal do bloco.
27.) Um placa fina é puxada por uma força F através de dois fluidos diferentes com viscosidades 1 e 2, como
mostra a figura. Os espaçamentos h1 e h2 são diferentes. Assumindo perfil de velocidade linear em ambos os
fluidos, determinar a força F necessária para puxar a placa a uma velocidade V. Existe uma relação necessária
entre as viscosidades dos dois fluidos?
27.) No sistema da figura desprezando-se o desnível entre os cilindros, determinar o peso G, que pode ser
suportado pelo pistão V. Desprezar os atritos. Dados:
.
28.) Aplica-se uma força de 200 N na alavanca AB, como é mostrado na figura. Qual é a força F que deve ser
exercida sobre a haste do cilindro para que o sistema permaneça em equilíbrio?
29.) Qual é a altura da coluna de mercúrio que irá produzir na base a mesma pressão de uma coluna de água de
5 m de altura? (
).
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
30.) No manômetro da figura o fluido A é água e o fluido B, mercúrio (Hg). Qual é a pressão p1?
31.) No manômetro diferencial da figura, o fluido A é água e o fluido manométrico é mercúrio. Sendo
, qual é a diferença de pressão
? Dado: SGóleo=0,8.
32.) No esquema dado, qual é a pressão em (1) se o sistema está em equilíbrio estático? (Leitura do manômetro
.)
33.) O cilindro movimenta-se dentro da tubulação circular da figura com velocidade constante. A folga entre o
cilindro e a tubulação contém óleo de viscosidade dinâmica
. Pede-se:
a.) O peso sobe ou desce? Justificar.
b.) Qual é o comprimento do cilindro?
c.) Qual é a massa especificado material do cilindro em kg/m³?
Dados:
.
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
34.) No manômetro da figura sabe-se que, quando a força F é 55,6 kN, a leitura na régua é 100 cm. Determinar
o valor da nova leitura, caso a força F dobre de valor.
35.) O pistão da figura desce com velocidade constante de 5 m/s. Dados: espessura da camada de lubrificante
0,001 m;  = 10-3 m²/s;
, despreza-se o peso do pistão. Pede-se:
a.) A força resistente oferecida pelo lubrificante.
b.) A pressão absoluta em B.
c.) A leitura do manômetro M.
36.) Calcular a pressão na câmara (1) sabendo que o pistão se desloca com uma velocidade constante de 1,2 m/s
e a indicação do manômetro metálico é 10 kPa. Dados: D = 1 m; L = 0,2 m; óleo = 10-3 m²/s; Dp = 0,998 m; óleo
= 8.000 N/m3 e g = 9,81 m/s². Observação: considerar o nível do óleo constante.
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
37.) Considere o escoamento de água para cima em um tubo inclinado de 30°, como mostra a figura. O
manômetro de mercúrio marca h = 12 cm. Qual é a diferença de pressão
no tubo?
38.) Um pistão de 8 cm de diâmetro comprime um manômetro de óleo em um tubo inclinado de 7mm de
diâmetro, como mostra a figura. Quando um peso P é acrescentado ao topo do pistão, o óleo sobre uma
distância adicional de 10 cm no tubo, como mostra a figura. Qual é o valor do peso, em N?
39.) Água escoa para baixo em um tubo a 45° como mostra a figura. A queda de pressão
se deve, em
parte, à gravidade e em parte, ao atrito. O manômetro de mercúrio lê uma diferença de altura de 152 mm. Qual
é a queda de pressão
em Pa? O que o manômetro está lendo corresponde somente à queda devido ao
atrito? Porque?
Ministério da Educação e Cultura
Universidade Tecnológica Federal do Paraná - Campus Cornélio Procópio
Engenharia Mecânica – Tecnologia em Manutenção Industrial
PR
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ
40.) Um manômetro de mercúrio, semelhante ao do problema 37, registra h = 1,2; 4,9 e 11,0 mm quando as
velocidades da água no tubo são V = 1,0; 2,0 e 3,0 m/s, respectivamente. Determine se esses dados podem ser
correlacionados na forma
, na qual é uma constante adimensional.
Download