AULA 3 - WordPress.com

Propaganda
AULA 3: Segunda Lei de Mendel
Disciplina: Biologia
Professora: Mariana Bregalda
Conceito de segregação independente
Mendel estudou também a transmissão combinada de duas ou mais características. Esse é um caso de
di-hibridismo. Para exemplificar vamos considerar a transmissão da cor e do aspecto da semente de ervilha.
Como na Primeira Lei, em F1, 100% são heterozigotos, só que agora estamos analisando duas
características! A geração F2, obtida pelo cruzamento de F1, é composta por quatro tipos de fenótipos
diferentes e na proporção de 9:3:3:1 (Figura 1).
Figura 1: Cruzamento segundo a 2ª Lei de Mendel.
A 2ª Lei de Mendel é um exemplo de aplicação direta da regra do E de probabilidade, permitindo
chegar aos mesmos resultados sem a construção trabalhosa de quadro de cruzamentos. Observe que a
proporção esperada em F2 é 9:3:3:1.
Com base nos experimentos de Mendel conclui-se que os genes para dois ou mais caracteres são
transmitidos aos gametas de forma totalmente independente, um em relação ao outro, formando tantas
combinações gaméticas quanto possíveis, com igual probabilidade. Agora podemos resolver problemas com
n pares de alelos. Para facilitar basta separarmos os pares de alelos. Em seguida realizaremos cruzamentos
como na Primeira Lei e depois utilizamos a probabilidade para achar o resultado que buscamos.
Enunciado da segunda lei de Mendel
A segunda lei de Mendel ou lei da segregação independente pode ser enunciada como a seguir: “Os
fatores para duas ou mais características segregam-se no híbrido, distribuindo-se independentemente para os
gametas, onde se combinam ao acaso”.
Determinando o número de gametas
Para determinar o número de gametas formados por um indivíduo, segundo a segregação independente,
basta aplicar a expressão 2ⁿ, em que n representa o número de pares de alelos no genótipo que são
heterozigotos. Exemplos:
BBLl: 2ⁿ = 2¹ = 2 gametas
AaBBLl: 2ⁿ = 2² = 4 gametas
AaBbLl: 2ⁿ = 2³ = 8 gametas
Meiose e segunda lei de Mendel
Existe uma correspondência entre as leis de Mendel e a meiose. Durante a meiose, os homólogos se
alinham em metáfase e sua separação ocorre ao acaso, em duas possibilidades igualmente viáveis. A
segregação independente dos homólogos e, consequentemente, dos fatores (genes) que carregam, resulta nos
genótipos AB, ab, Ab e aB.
Ligação Fatorial - Linkage
No estudo da Primeira Lei de Mendel, analisamos uma característica de cada vez, sendo que cada
característica é condicionada por um par de alelos situados em um par de cromossomos homólogos. Quando
analisamos a segunda Lei de Mendel e suas variações trabalhamos com pelo menos dois pares de alelos,
sendo cada par localizado em um par de cromossomos homólogos.
A ligação fatorial analisa dois ou mais pares de alelos, situados em um mesmo par de cromossomos
homólogos. Genes nessa condição estão em linkage, isto é estão ligados. Assim, podemos dizer que a
herança analisada apresenta ligação fatorial.
A formação de Gametas com genes que estão ligados gera gametas que terão, necessariamente,
cromossomos com o mesmo par de genes. No caso de os genes A e B estarem ligados, os gametas que o
indivíduo produzirá terão o mesmo cromossomo com ambos os genes. Dessa maneira, um homozigoto
recessivo (aabb) produzirá apenas gametas (ab), e um heterozigoto para A e homozigoto recessivo para B
(Aabb) formará gametas de dois tipos: Ab e ab.
Duplo-heterozigoto (AaBb) podem ser de dois tipo: cis e trans. O heterozigoto cis tem genes
dominantes em um mesmo cromossomo homólogo. O heterozigoto trans apresenta cada um dos
cromossomos homólogos com um gene dominante e um gene recessivo.
2
Crossing-Over:
Os casos descritos de formação de gametas não levaram em consideração a ocorrência de crossingover (permutação ou re-combinação), que normalmente se verifica na prófase I da meiose, quando os
cromossomos homólogos são tracionados por filamentos proteicos. Com o tracionamento dos homólogos,
pode ocorrer quebras de cromátides em pontos correspondentes, seguida de uma troca de pedaços entre
cromossomos homólogos; essa troca corresponde ao crossing-over. A meiose prossegue, com a separação
dos homólogos, e depois, com a separação das cromátides. No caso de um heterozigoto cis, o resultado é a
formação de quatro tipos de gametas: AB, Ab, aB, ab.
Os gametas AB e ab apresentam a configuração original de genes e são denominados gametas
parentais. Os gametas aB e Ab, apresentam novas combinações de genes resultantes do crossing-over e são
denominados gametas recombinantes.
Porcentagem de gametas parentais e recombinantes:
A taxa de recombinação (TR = 40%) está vinculada à porcentagem de células que sofrem crossing-over.
TR = % de células que sofreram crossing-over / 2

120 ab:120/400 = 30% ab
3



120 AB: 120/400 = 30% AB
80 Ab: 80/400 = 20%
80 aB:80/400 = 20%
Sistema ABO
O tipo sanguíneo em humanos é condicionado por alelos múltiplos. São quatro os tipos de sangue: A,
B, AB e O. Sendo caracterizado pela presença ou ausência de aglutinogênio, nas hemácias e aglutinina, no
plasma sanguíneo.
Os aglutinogênios são substâncias encontradas nas membranas plasmáticas das hemácias e que
funcionam como antígenos quando introduzidos em indivíduos que não os possuam. Existem dois tipos de
aglutinogênios: A e B.
As aglutininas são substâncias presentes no plasma sanguíneo e que funcionam como anticorpos que
reagem com antígenos estranhos. Existem dois tipos de aglutininas: anti-A e anti-B.
O contato entre um aglutinogênio e sua aglutina correspondente provoca a aglutinação do sangue,
podendo causar entupimento dos vasos sanguíneos. Assim, indivíduos com sangue tipo A não podem doar
sangue para indivíduos do Tipo B, e vice-versa. Indivíduos AB podem receber sangue de qualquer grupo. Já
os tipo O podem doar para qualquer grupo.
Os genes que condicionam o tipo sanguíneo em humanos são: Ia, Ib e i, Ia e Ib são dominantes em
relação ao i, porém não apresentam dominância entre si. Os possíveis genótipos para os tipos sanguíneos
são:
A
IaIa ou Iai
B
IbIb ou Ibi
AB
IaIb
O
ii
Sistema RH
Indivíduos com sangue Rh+ possuem o fator Rh em suas hemácias e apresentam aglutinação do
sangue quando entram em contato com anticorpos anti-Rh. Aqueles que não possuem o fator Rh em suas
hemácias são chamados Rh- e não apresentam reação de aglutinação quando em contato com anticorpos
anti-Rh. Quando um indivíduo Rh- recebe sangue Rh+, ele passa a produzir anticorpos anti-Rh.
O sistema é determinado por um par de genes alelos com dominância completa. O alelo R é
dominante e o r é recessivo. Assim os possíveis genótipos para o sistema Rh são:
Fator
Genótipo
Rh+
RR, Rr
Rh-
rr
Exercícios:
4
1) Qual é o significado da segunda lei de Mendel.
2) Como pode ser determinado o número de gametas de dí-híbrido?
3) (FEI-SP) Em Drosophila melanogaster, asa vestigial (curta) e corpo ébano (preto) são características
determinadas por dois pares de gens recessivos v e e, respectivamente. Asa longa e corpo cinzento são
características determinadas pelos gens dominantes V e F. Do cruzamento entre parentais surgiu, em F1,
25% de indivíduos de asa longa e corpo cinzento. O genótipo provável dos pais será:
a) VvEe X VvEe b) VVEE X vvee c) vvee X vvee d) VvEe X vvee e) VvEe X VVEE
2) (FC Chagas-BA) Sendo Aa, Bb e Cc três pares de gens com segregação independente, quantos tipos de
gametas poderão ser formados por um indivíduo AA Bb Cc?
a) 3 b) 4 c) 6 d) 8 e) 12
3) 36. (UFSE-SE) A proporção fenotípica encontrada na descendência do cruzamento entre indivíduos
heterozigotos para dois caracteres com dominância completa é:
a) 3:1 b) 1:2:1 c) 9:4:3 d) 9:7 e) 9:3:3:1
4) Imagine que uma mulher com olhos escuros e visão normal (CcMm) case-se com um homem de olhos
claros e míope (ccmm). Sabendo que os olhos escuros e a visão normal são determinados por genes
dominantes (C e M), marque a alternativa que indica a probabilidade de nascer uma criança de olhos claros e
visão normal.
a) ½
b) 1/3
c) ¼
d) 1/5
e) 1/6
5) (UFC-CE) Um homem albino com sangue tipo AB casou-se com uma mulher normal também com
sangue tipo AB. O casal pretende ter filhos. Qual a probabilidade de nascer uma criança albina do sexo
masculino e com tipo sanguíneo AB, sabendo-se que a mãe é normal heterozigótica para albinismo?
a) 1/8.
b) 1/4.
c) 1/2.
d) 1/12.
e) 1/16.
6) Na espécie humana podemos distinguir quatro tipos sanguíneos diferentes: A, B, AB e O. Imagine que
uma pessoa possui tipo sanguíneo O. Marque a alternativa que indica as características desse tipo sanguíneo.
a) Possui aglutinogênios A e aglutinina anti-B.
b) Possui aglutinogênio B e aglutinina anti-A.
c) Possui aglutinogênio AB e não possui aglutininas.
d) Não possui aglutinogênio e possui aglutininas anti-A e anti-B.
5
7) Sabemos que pessoas do tipo AB são também chamadas de receptoras universais. Marque a alternativa
que explica corretamente o motivo pelo qual elas recebem essa denominação.
a) Pessoas com sangue do tipo AB apresentam aglutininas anti-A e anti-B e, por isso, não ocorre aglutinação
em contato com nenhum tipo sanguíneo.
b) Pessoas com sangue do tipo AB não apresentam nenhuma aglutinina e, por isso, não ocorre nenhuma
reação de aglutinação.
c) Pessoas com sangue do tipo AB possuem os aglutinogênios A e B, além de aglutininas anti-A e anti-B,
podendo assim receber qualquer tipo sanguíneo.
d) Pessoas com sangue do tipo AB não possuem nenhum aglutinogênio, sendo assim não ocorre reações de
aglutinação.
8) (FEI-SP) Nas hemácias de um indivíduo pertencente ao grupo sanguíneo B:
a) Existe o aglutinógeno B.
b) Existe o aglutinógeno A.
c) Existe a aglutinina A.
d) Existe a aglutinina B.
e) Existem o aglutinógeno A e a aglutinina B.
9) (Udesc 2010) Assinale a alternativa incorreta em relação à possibilidade de doações e às possíveis
transfusões sanguíneas.
a) Pessoas do grupo sanguíneo O são as receptoras universais, enquanto as do grupo sanguíneo AB são as
doadoras universais.
b) Pessoas do grupo sanguíneo AB e fator Rh+ (positivo) são receptoras universais.
c) Pessoas do grupo sanguíneo O e fator Rh- (negativo) são doadoras universais.
d) Pessoas do grupo sanguíneo A podem doar para pessoas do grupo sanguíneo A e para as do grupo
sanguíneo AB.
e) Pessoas do grupo sanguíneo AB podem doar somente para as do grupo sanguíneo AB.
6
Download