MUV – Movimento Uniformemente Variado 1. (Uece 2015) Um carro, partindo do repouso, desloca-se em um trecho A de modo que sua velocidade aumente linearmente com o tempo até atingir 60km h. Após algum tempo, em um trecho B, o motorista aciona o freio, de modo que a velocidade decresça também linearmente com o tempo. Considere que a trajetória do automóvel é retilínea nos dois trechos e que ambos sejam estradas sem aclives ou declives. Assim, pode-se afirmar corretamente que o vetor aceleração nos dois trechos tem a) mesma direção e mesmo sentido. b) mesma direção e sentido contrário. c) mesmo módulo e mesmo sentido. d) direções perpendiculares e mesmo módulo. 2. (Upe 2015) Duas partículas, 1 e 2, se movem ao longo de uma linha horizontal, em rota de encontro com velocidades iniciais de módulos iguais a v1 10m / s e v2 14m / s e acelerações contrárias às suas velocidades de módulos a1 1,0m / s2 e a2 0,5m / s2 . Sabendo que o encontro entre elas ocorre, apenas, uma vez, o valor da separação inicial, d, entre as partículas vale a) 4 m b) 8 m c) 16 m d) 96 m e) 192m 3. (G1 - ifsul 2015) Dois móveis, A e B, movendo-se em um plano horizontal, percorrem trajetórias perpendiculares, seguindo os eixos Ox e Oy, de acordo com as funções horárias x A 18 3t e yB 18 9t 2t2 , com unidades de acordo com o Sistema Internacional de Unidades (S.I.). Esses móveis irão se encontrar no instante a) t 0,0s b) t 3,0s c) t 4,5s d) t 6,0s 4. (Unicamp 2015) A Agência Espacial Brasileira está desenvolvendo um veículo lançador de satélites (VLS) com a finalidade de colocar satélites em órbita ao redor da Terra. A agência pretende lançar o VLS em 2016, a partir do Centro de Lançamento de Alcântara, no Maranhão. a) Considere que, durante um lançamento, o VLS percorre uma distância de 1200km em 800s. Qual é a velocidade média do VLS nesse trecho? b) Suponha que no primeiro estágio do lançamento o VLS suba a partir do repouso com aceleração resultante constante de módulo aR . Considerando que o primeiro estágio dura 80s, e que o VLS percorre uma distância de 32km, calcule aR . 5. (Ufrgs 2015) Trens MAGLEV, que têm como princípio de funcionamento a suspensão eletromagnética, entrarão em operação comercial no Japão, nos próximos anos. Eles podem atingir velocidades superiores a 550 km / h. Considere que um trem, partindo do repouso e movendo-se sobre um trilho retilíneo, é uniformemente acelerado durante 2,5 minutos até atingir 540km / h. Nessas condições, a aceleração do trem, em m / s2 , é a) 0,1. b) 1. c) 60. d) 150. e) 216. TEXTO PARA A PRÓXIMA QUESTÃO: Para responder à(s) questão(ões), considere as afirmativas referentes à figura e ao texto abaixo. Na figura acima, está representada uma pista sem atrito, em um local onde a aceleração da gravidade é constante. Os trechos T1, T2 e T3 são retilíneos. A inclinação de T1 é maior do que a inclinação de T3, e o trecho T2 é horizontal. Um corpo é abandonado do repouso, a partir da posição A. 6. (Pucrs 2015) Com base nessas informações, afirma-se: I. O movimento do corpo, no trecho T1, é uniforme. II. No trecho T3, o corpo está em movimento com aceleração diferente de zero. III. No trecho T2, a velocidade e a aceleração do corpo têm a mesma direção e o mesmo sentido. Está/Estão correta(s) a(s) afirmativa(s) a) I, apenas. b) II, apenas. c) I e III, apenas. d) II e III, apenas. e) I, II e III. 7. (Unicamp 2014) Correr uma maratona requer preparo físico e determinação. A uma pessoa comum se recomenda, para o treino de um dia, repetir 8 vezes a seguinte sequência: correr a distância de 1 km à velocidade de 10,8 km/h e, posteriormente, andar rápido a 7,2 km/h durante dois minutos. a) Qual será a distância total percorrida pelo atleta ao terminar o treino? b) Para atingir a velocidade de 10,8 km/h, partindo do repouso, o atleta percorre 3 m com aceleração constante. Calcule o módulo da aceleração a do corredor neste trecho. 8. (Uerj 2014) O cérebro humano demora cerca de 0,36 segundos para responder a um estímulo. Por exemplo, se um motorista decide parar o carro, levará no mínimo esse tempo de resposta para acionar o freio. Determine a distância que um carro a 100 km/h percorre durante o tempo de resposta do motorista e calcule a aceleração média imposta ao carro se ele para totalmente em 5 segundos. 9. (Uel 2014) O desrespeito às leis de trânsito, principalmente àquelas relacionadas à velocidade permitida nas vias públicas, levou os órgãos regulamentares a utilizarem meios eletrônicos de fiscalização: os radares capazes de aferir a velocidade de um veículo e capturar sua imagem, comprovando a infração ao Código de Trânsito Brasileiro. Suponha que um motorista trafegue com seu carro à velocidade constante de 30 m/s em uma avenida cuja velocidade regulamentar seja de 60 km/h. A uma distância de 50 m, o motorista percebe a existência de um radar fotográfico e, bruscamente, inicia a frenagem com uma desaceleração de 5 m/s 2. Sobre a ação do condutor, é correto afirmar que o veículo a) não terá sua imagem capturada, pois passa pelo radar com velocidade de 50 km/h. b) não terá sua imagem capturada, pois passa pelo radar com velocidade de 60 km/h. c) terá sua imagem capturada, pois passa pelo radar com velocidade de 64 km/h. d) terá sua imagem capturada, pois passa pelo radar com velocidade de 66 km/h. e) terá sua imagem capturada, pois passa pelo radar com velocidade de 72 km/h. 10. (Ucs 2014) Tendo chegado atrasado ao casamento, um convidado conseguiu pegar uma última fatia de bolo e concluiu que experimentara o melhor glacê de toda a sua vida. Ouvindo falar que na cozinha havia mais um bolo, mas que seria cortado apenas em outra festa, ele foi até lá. Viu o bolo em cima de uma mesa perto da porta. Porém, percebeu que havia também uma cozinheira de costas para o bolo e para ele. Querendo passar o dedo no bolo sem ser pego pela cozinheira e conseguir pegar a maior quantidade de glacê possível, o convidado deduziu que, se passasse muito rápido, o dedo pegaria pouco glacê; mas, se passasse muito lentamente, corria o risco de ser descoberto. Supondo, então, que ele tenha 3 segundos para roubar o glacê sem ser notado e que a melhor técnica para conseguir a maior quantidade seja passar o dedo por 40,5 cm de bolo em MRUV, partindo do repouso, qual aceleração teria o dedo no intervalo de tempo do roubo do glacê? a) 0,03 m / s2 b) 0,04 m / s2 c) 0,09 m / s2 d) 1,05 m / s2 e) 2 m / s2 11. (G1 - ifpe 2014) Um trem bala, viajando a 396 km / h, tem a sua frente emparelhada com o início de um túnel de 80 m de comprimento (ver figura). Nesse exato momento, o trem desacelera a uma taxa de 5 m / s2 . Sabendo-se que o trem mantém essa desaceleração por todo o tempo em que atravessa completamente o túnel e que o mesmo possui 130 m de comprimento, é correto dizer que o trem irá gastar, para ultrapassá-lo totalmente, um tempo, em segundos, igual a: a) b) c) d) e) 3,6 2,0 6,0 1,8 2,4 12. (Pucrs 2014) Muitos acidentes acontecem nas estradas porque o motorista não consegue frear seu carro antes de colidir com o que está à sua frente. Analisando as características técnicas, fornecidas por uma revista especializada, encontra-se a informação de que um determinado carro consegue diminuir sua velocidade, em média, 5,0 m / s a cada segundo. Se a velocidade inicial desse carro for 90,0 km / h (25,0 m / s), a distância necessária para ele conseguir parar será de, aproximadamente, a) 18,5 m b) 25,0 m c) 31,5 m d) 45,0 m e) 62,5 m Gabarito: Resposta da questão 1: [B] No trecho A, o carro parte do repouso e aumenta sua velocidade uniformemente até atingir a velocidade de 60km h. Desta forma, a aceleração durante o trecho A tem direção como sendo a horizontal e sentido da esquerda para a direita. No trecho B, o carro está inicialmente com uma velocidade de 60km h e vai desacelerando até atingir o repouso. Assim, a aceleração no trecho B tem mesma direção que no sentido A (horizontal), porém está no sentido contrário (da direita para a esquerda). Resposta da questão 2: [E] Tomando as equações horárias das posições de cada móvel, temos: s1 0 10t 1 2 t 2 1 4 e s2 d 14t t 2 Em que S posição de cada móvel (m) no instante t (s) No encontro dos móveis, as posições são iguais. s1 s2 1 1 10t t 2 d 14t t 2 2 4 Rearranjando os termos 3t2 96t 4d 0 (1) Sabendo que o encontro ocorre apenas uma vez, temos um choque totalmente inelástico, isto é, a velocidade final das duas partículas é a mesma. v1 10 t e v 2 14 t 2 v1 v 2 10 t 14 t 48 t t 16 s 2 3 Substituindo o tempo encontrado na equação (1), obtemos: 3 162 96 16 4d 0 d 192m Outra forma de pensar a resolução desta questão a partir da equação (1) é que o encontro dos móveis significa as raízes da equação quadrática. Como esse encontro se dá uma única vez, temos duas raízes reais iguais, ou seja, Δ 0, então: ( 96)2 4 3 4d 0 9216 48d 0 9216 d d 192 m 48 Resposta da questão 3: [D] O encontro ocorrerá no ponto (0, 0), origem do sistema de eixos. 18 x A 18 3 t 0 18 3 t t t6 s 3 y 18 9t 2t 2 0 18 9t 2t 2 t 9 81 144 B 4 t 6 s. Resposta da questão 4: a) Dados: ΔS 1.200 km 1.200 103 m; Δt 800 s. vm ΔS 1.200 103 Δt 800 vm 1.500 m/s. b) Dados: S 32 km 32.000 m; S0 0; v0 0; t 80 s. S S0 v 0 t aR 2 aR t 32.000 802 2 2 a R 10 m/s2 . Resposta da questão 5: [B] Dados : v 540 km/h 150 m/s; Δt 2,5 min 150 s. a Δ v 150 0 Δt 150 a 1 m/s2 . t 1,5 s t6s Resposta da questão 6: [B] [I] Incorreta. O movimento do corpo no trecho T1 é acelerado. [II] Correta. No trecho T3, o corpo está em movimento com aceleração diferente de zero, em sentido oposto ao da velocidade, pois o movimento é retardado. [III] Incorreta. No trecho T2, a velocidade é constante e a aceleração é nula. Resposta da questão 7: a) Dados: d1 = 1 km = 1.000 m; v2 = 7,2 km/h = 2 m/s; Δt2 2min 120s. A distância total (d) percorrida nas 8 vezes é: d 8 d1 d2 8 d1 v 2 Δt 2 8 1.000 2 120 8 1.240 d 9.920 m. b) Dados: v0 = 0; v1 = 10,8 km/h = 3 m/s; ΔS 3m. Aplicando a equação de Torricelli: v12 v 02 2 a ΔS a v12 v 02 32 0 9 2 Δs 23 6 a 1,5 m/s2 . Resposta da questão 8: Distância percorrida durante o tempo de resposta: Dados: v = 100 km/h = (100/3,6) m/s; Δt 0,36s. D v Δt 100 0,36 D 10 m. 3,6 Aceleração média de frenagem: Dados: v0 = 100 km/h = (100/3,6) m/s; v = 0; Δt 5s. Supondo trajetória retilínea, a aceleração escalar é: a 100 Δv 0 3,6 a 5,6 m/s2 . Δt 5 Resposta da questão 9: [E] Da equação de Torricelli: v 2 v 02 2 a ΔS v 2 302 2 5 50 v 2 400 v 20 m/s v 72 km/h. Resposta da questão 10: [C] Dados: ΔS 40,5cm 0,405m; v0 0; t 3s. ΔS v0 t a 2 a 0,81 t 0,405 32 a 2 2 9 a 0,09 m/s2 . Resposta da questão 11: [B] Dados: ΔS 130 80 210 m; v0 396 km/h 110 m/s; a 5 m/s2 . Aplicando a equação horária do espaço para movimento uniformemente variado: a 2 5 t 210 110 t t 2 t 2 44 t 84 0 2 2 t 2 s. 44 1936 336 t t t 2 s. 2 t 42 s. (não convém) ΔS v 0 t Resposta da questão 12: [E] A aceleração escalar é a 5 m / s2. Aplicando a equação de Torricelli: v 2 v 02 2 a ΔS 0 252 2 5 ΔS ΔS 625 10 ΔS 62,5 m.