Anais - dsee

Propaganda
ANAIS DO SisPot 2010
ENCONTRO DE PESQUISADORES EM
SISTEMAS DE POTÊNCIA
Carlos A. Castro, Walmir de Freitas Filho, Luiz C.P. da Silva
Campinas, março de 2010.
Sumário
x
Prefácio
5
Programa final
6
Resumos dos trabalhos apresentados
11
Estudo dos parâmetros elétricos de condutores múltiplos de linhas de transmissão por meio de
um método alternativo [001]; E.C.M. Costa (D), S. Kurokawa (PE), J. Pissolato (P) .
Small-Signal Stability Modeling of Inverter-Based Distributed Generators with Positive-Feedback
Anti-Islanding Protection [002]; Tiago R. Ricciardi (M), Walmir Freitas (P) . . . . . . .
Small-Signal Stability Analysis of Inverter-Based Distributed Generators with Positive-Feedback
Anti-Islanding Protection [003]; Tiago R. Ricciardi (M), Walmir Freitas (P) . . . . . . .
Conversor Eletrônico de Potência para Geração Distribuı́da com Painéis Solares Fotovoltaicos
[004]; Marcelo G. Villalva (D), Ernesto Ruppert (P) . . . . . . . . . . . . . . . . . . .
Sistema Automático de Corte de Carga em Instalações Industriais com Geradores Sı́ncronos
Após Ocorrência de Ilhamento [005]; Fernanda C.L. Trindade (D), Madson C. de Almeida
(P), Walmir de Freitas (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Estudo de Métodos Numéricos Utilizados em Simulações de Transitórios Eletromagnéticos
[006]; Rodrigo C. da Silva (IC), Sérgio Kurokawa (PE), José Pissolato (P) . . . . . . .
Método Baseado em Lógica Nebulosa para Inserção de Geração Distribuı́da sob a Óptica do
Perfil de Tensão [007]; Leonardo A. Gomes (M), Carlos A. F. Murari (P), Ahda P. G.
Pavani (PE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fluxo de Carga Trifásico para Análise de Distorções Harmônicas em Redes de Distribuição de
Energia Elétrica [008]; Marina B. Duque (M), Carlos A. F. Murari (P) . . . . . . . . . .
Análise de Redes de Distribuição Trifásicas com Incertezas Representadas por Conjuntos Nebulosos [009]; Patrı́cia L. Cavalcante (M), Carlos A. F. Murari (P), Silvio S. Segura
(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Practical Method for Computing the Maximum Loading Point Based on Load Flow with Step
Size Optimization [010]; Beatriz L. Tavares (M), Manfred F. Bedriñana (D), Carlos A.
Castro (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Análise da Influência da Prática de Eliminação de Faltas nos Principais Índices de Confiabilidade
e Qualidade de Energia em Modernos Sistemas de Distribuição [011]; Eline A. C. Barbosa
(M), Fernanda C. L. Trindade (D), Paulo C. M. Meira (D), Walmir Freitas (P) . . . . .
Método Experimental para Determinação das Capacitâncias Parasitas do Motor de Indução
Trifásico Acionado por Inversor MLP [012]; Rudolf R. Riehl (D), Ernesto Ruppert (P) .
–2–
12
14
16
18
20
22
24
26
28
30
32
34
Estudos para instalação de um Filtro Ativo de Potência Trifásico a quatro fios na FEEC [013];
João Inácio Y. Ota (M), Marcelo G. Villalva (D), Fujio Sato (P), Ernesto Ruppert (P) .
Método Prático Para a Avaliação do Impacto da Partida Direta de Motores de Indução no
Afundamento de Tensão [014]; Cecı́lia F. Morais (M), Diogo Salles (D), Paulo C. M.
Meira (D), Ahda G. P. Pavani (PE, UFABC), Walmir Freitas (P) . . . . . . . . . . . .
Solution of the Power Flow Problem: A Robust Approach Using Synthetic Dynamics and
Optimal Multiplier [015]; J. F. Gutierrez (D), C. A. Castro (P) . . . . . . . . . . . . . .
SysPrev – Sistema de Suporte para Previsão de Carga por Barramento [016]; Ricardo M.
Salgado (PE), Takaaki Ohishi (P), Rosangela Ballini (PE) . . . . . . . . . . . . . . . .
Análise da propagação de ondas em linhas de transmissão utilizando transformadas inversas
de Laplace [017]; A. R. J. Araújo (IC), S. Kurokawa (PE), J. Pissolato (P), A. J. Prado
(PE), L. F. Bovolato (PE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Estudo sobre a redução do consumo de energia no horário de pico via gerenciamento de
refrigeradores [018]; Glauco Niro (M), Luiz C. P. da Silva (P) . . . . . . . . . . . . . .
A Second-Order Method to Estimate the Active Power Losses Regarding the Presence of
Distributed Generation [019]; Hugo M. Ayres (D), Marcos J. R. Flores (P), Luiz C. P.
da Silva (P), Walmir Freitas (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Estudo Comparativo entre Modelos Estocástico e Determinı́stico para o Planejamento da
Operação Energética do Sistema Interligado Nacional [020]; André E. Toscano (D),
Secundino Soares Filho (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Análise de uma Estratégia de Controle e Dimensionamento de um Filtro Hı́brido com Potência
Reduzida no Inversor [021]; Newton da Silva (D), José A. Pomı́lio (P), Edson A. Vendrusculo (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Análise de Abordagens para Incorporação das Restrições Elétricas na Programação Diária do
Sistema Interligado Nacional [022]; Makoto Kadowaki (D), Anibal T. de Azevedo (PE),
Takaaki Ohishi (P), Secundino Soares (P) . . . . . . . . . . . . . . . . . . . . . . . . .
Abordagem Prática para Implementação de Modulação por Vetores Espaciais para Inversor de
Três Nı́veis [023]; Marcos Espindola (M), Ernesto Ruppert (P) . . . . . . . . . . . . . .
Geração Descentralizada de Reservas Operativas A partir de Resı́duos Sólidos Urbanos, Fonte
de Energia Renovável [024]; Gerardo M.A. Lescano (D), Mariella R.C. Aurich (D), Takaaki Ohishi (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A Review of Wind Power Development in Brazil [025]; João G. Dedecca (M), Vivaldo F. da
Costa (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Optimal power generation scheduling in multi-area interconnected hydrothermal systems [026];
L. S. A. Martins (PD), A. T. Azevedo (PE), S. Soares (P) . . . . . . . . . . . . . . . .
Metodologia Agregada para Previsão de Carga por Barramento [027]; Ricardo M. Salgado
(PE), Takaaki Ohishi (P), Rosangela Ballini (PE) . . . . . . . . . . . . . . . . . . . . .
Preliminary results of a real time estimation tool for the voltage stability margin using PMU
data [028]; Luiz C. P. da Silva (P), Madson C. de Almeida (P), Rodrigo Garcia-Valle
(PE), Alexandre H. Anzai (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alocação Ótima de Bancos de Capacitores em Redes de Distribuição Primária e Secundária
Incluindo Restrições de Ressonância [029]; S. S. Segura (D), L. C. P. da Silva (P), R.
Romero (PE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
–3–
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
Micro Turbinas Eólicas de Baixo Custo [030]; L. Molon (G), J. F. Fortes (G), D. A. A. Moori
(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Palestras convidadas
70
72
Medição Sincronizada de Fasores e suas Aplicações; Dr. Rui Menezes de Moraes, ONS/UFF .
73
Tendências Tecnológicas do Setor de Energia; Prof. Dr. Gilberto De Martino Jannuzzi,
FEM/UNICAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
Sistemas de Geração de Energia Eólica: Uma comparação com foco na integração a redes
elétricas; Prof. Dr. Selênio Rocha Silva, UFMG . . . . . . . . . . . . . . . . . . . . . .
75
–4–
Prefácio
O SisPot 2010 – Encontro de Pesquisadores em Sistema de Potência – foi realizado entre os dias 29
e 31 de março de 2010, na Faculdade de Engenharia Elétrica e de Computação (FEEC) da Universidade
Estadual de Campinas. Os principais objetivos do evento foram:
• divulgar os trabalhos de pesquisa em andamento ou recentemente concluı́dos na área de Energia
Elétrica;
• criar uma oportunidade para que os alunos apresentassem seus trabalhos de pesquisa, preparando-os
para futuras apresentações em congressos e defesas de dissertações e teses;
• criar uma oportunidade para que os alunos novos tomassem um primeiro contato com o ambiente
de pesquisa no qual estão se inserindo;
• estimular a interação entre docentes e alunos em um ambiente que propiciasse o desenvolvimento
de trabalhos conjuntos.
Uma maior aproximação entre a universidade e as empresas do setor elétrico é extremamente importante para ambas as partes e o SisPot 2010 teve também o papel de ser uma mostra do potencial de
pesquisa da nossa faculdade e de sua capacidade de fornecer produtos e soluções a serem aplicados no
setor.
Foram submetidos 30 resumos de trabalhos de pesquisa em andamento ou recentemente concluı́dos,
realizados por alunos de doutorado, mestrado e graduação, estes últimos envolvidos em projetos de
iniciação cientı́fica.
As apresentações, na sua grande maioria realizadas por alunos, foram de alto nı́vel, propiciando
discussões construtivas.
Foram também proferidas três palestras do maior interesse. A primeira, proferida pelo Dr. Rui
Menezes de Moraes (ONS/UFF), teve como tı́tulo “Medição Sincronizada de Fasores e suas Aplicações”.
A segunda palestra foi apresentada pelo Prof. Dr. Gilberto De Martino Jannuzzi (FEM/UNICAMP) teve
como tema “Tendências Tecnológicas do Setor de Energia”. A terceira palestra foi proferida pelo Prof.
Dr. Selênio Rocha Silva (UFMG), intitulada “Sistemas de Geração de Energia Eólica: Uma comparação
com foco na integração a redes elétricas”.
A realização do SisPot 2010 só foi possı́vel devido ao incentivo e apoio irrestritos recebidos da
diretoria da FEEC, na pessoa do Prof. Dr. Max H.M. Costa, ao qual expressamos o nosso mais profundo
agradecimento.
Desejamos também agradecer a todos as pessoas que de alguma forma contribuı́ram para o sucesso
do evento.
Carlos A. Castro, Walmir de Freitas Filho, Luiz C.P. da Silva, organização do SisPot 2010 .
–5–
Programa final
–6–
PROGRAMA
29 mar 2009 - Segunda-feira
Início
Atividade
09:00
Abertura: Prof. Dr. Edgar S. De Decca, Coordenador Geral da UNICAMP, Prof. Dr. Renato Pavanello, assessor
da PRPG/UNICAMP, Prof. Dr. Max H.M. Costa, diretor da FEEC, Prof. Dr. Carlos A. Castro
Sessão 1 (Coordenador: Prof. Dr. Carlos A. Castro)
09:40
10:00
10:20
10:40
Conversor Eletrônico de Potência para Geração Distribuída com Painéis Solares Fotovoltaicos [004]; Marcelo
G. Villalva (D), Ernesto Ruppert (P)
Estudos para instalação de um Filtro Ativo de Potência Trifásico a quatro fios na FEEC [013]; João Inácio Y.
Ota (M), Marcelo G. Villalva (D), Fujio Sato (P), Ernesto Ruppert (P)
Optimal power generation scheduling in multi-area interconnected hydrothermal systems [026]; L. S. A. Martins
(PD), A. T. Azevedo (PE), S. Soares (P)
Café
Sessão 2 (Coordenador: Prof. Dr. Luiz Carlos P. da Silva)
11:00
11:20
11:40
12:00
Sistema Automático de Corte de Carga em Instalações Industriais com Geradores Síncronos Após Ocorrência
de Ilhamento [005]; Fernanda C.L. Trindade (D), Madson C. de Almeida (P), Walmir de Freitas (P)
Estudo de Métodos Numéricos Utilizados em Simulações de Transitórios Eletromagnéticos [006]; Rodrigo C. da
Silva (IC), Sérgio Kurokawa (PE), José Pissolato (P)
Fluxo de Carga Trifásico para Análise de Distorções Harmônicas em Redes de Distribuição de Energia Elétrica
[008]; Marina B. Duque (M), Carlos A. F. Murari (P)
Almoço
Sessão 3 (Coordenador: Prof. Dr. Takaaki Ohishi)
14:00
14:20
14:40
Practical Method for Computing the Maximum Loading Point Based on Load Flow with Step Size Optimization
[010]; Beatriz L. Tavares (M), Manfred F. Bedriñana (D), Carlos A. Castro (P)
Abordagem Prática para Implementação de Modulação por Vetores Espaciais para Inversor de Três Níveis
[023]; Marcos Espindola (M), Ernesto Ruppert (P)
Estudo sobre a redução do consumo de energia no horário de pico via gerenciamento de refrigeradores [018];
Glauco Niro (M), Luiz C. P. da Silva (P)
15:00
Palestra: Medição Sincronizada de Fasores e suas Aplicações; Dr. Rui Menezes de Moraes, ONS/UFF
16:00
Café
-1-
–7–
PROGRAMA
30 mar 2009 - Terça-feira
Início
Atividade
Sessão 4 (Coordenador: Prof. Dr. Carlos A.F. Murari)
09:00
09:20
09:40
10:00
10:20
Small-Signal Stability Modeling of Inverter-Based Distributed Generators with Positive-Feedback Anti-Islanding
Protection [002]; Tiago R. Ricciardi (M), Walmir Freitas (P)
Small-Signal Stability Analysis of Inverter-Based Distributed Generators with Positive-Feedback Anti-Islanding
Protection [003]; Tiago R. Ricciardi (M), Walmir Freitas (P)
Análise da propagação de ondas em linhas de transmissão utilizando transformadas inversas de Laplace [017];
A. R. J. Araújo (IC), S. Kurokawa (PE), J. Pissolato (P), A. J. Prado (PE), L. F. Bovolato (PE)
Micro Turbinas Eólicas de Baixo Custo [030]; L. Molon (G), J. F. Fortes (G), D. A. A. Moori (G)
Café
Sessão 5 (Coordenador: Prof. Dr. Secundino Soares Filho)
10:40
11:00
11:20
11:40
12:00
Análise de Redes de Distribuição Trifásicas com Incertezas Representadas por Conjuntos Nebulosos [009];
Patrícia L. Cavalcante (M), Carlos A. F. Murari (P), Silvio S. Segura (D)
Estudo dos parâmetros elétricos de condutores múltiplos de linhas de transmissão por meio de um método
alternativo [001]; E.C.M. Costa (D), S. Kurokawa (PE), J. Pissolato (P)
Análise da Influência da Prática de Eliminação de Faltas nos Principais Índices de Confiabilidade e Qualidade
de Energia em Modernos Sistemas de Distribuição [011]; Eline A. C. Barbosa (M), Fernanda C. L. Trindade (D),
Paulo C. M. Meira(D), Walmir Freitas (P)
Estudo Comparativo entre Modelos Estocástico e Determinístico para o Planejamento da Operação Energética
do Sistema Interligado Nacional [020]; André E. Toscano (D), Secundino Soares Filho (P)
Almoço
Sessão 6 (Coordenadora: Profa. Dra. Maria Cristina D. Tavares)
14:00
14:20
14:40
A Review of Wind Power Development in Brazil [025]; João G. Dedecca (M), Vivaldo F. da Costa (P)
Alocação Ótima de Bancos de Capacitores em Redes de Distribuição Primária e Secundária Incluindo
Restrições de Ressonância [029]; S. S. Segura (D), L. C. P. da Silva (P), R. Romero (PE)
Geração Descentralizada de Reservas Operativas A partir de Resíduos Sólidos Urbanos, Fonte de Energia
Renovável [024]; Gerardo M.A. Lescano (D), Mariella R.C. Aurich (D), Takaaki Ohishi (P)
15:00
Palestra: Tendências Tecnológicas do Setor de Energia; Prof. Dr. Gilberto De Martino Jannuzzi, FEM/UNICAMP
16:00
Café
-2-
–8–
PROGRAMA
31 mar 2009 - Quarta-feira
Início
Atividade
Sessão 7 (Coordenador: Prof. Dr. Walmir de Freitas Filho)
09:20
09:40
10:00
10:20
Metodologia Agregada para Previsão de Carga por Barramento [027]; Ricardo M. Salgado (PE), Takaaki Ohishi
(P), Rosangela Ballini (PE)
SysPrev - Sistema de Suporte para Previsão de Carga por Barramento [016]; Ricardo M. Salgado (PE),
Takaaki Ohishi (P), Rosangela Ballini (PE)
Método Prático Para a Avaliação do Impacto da Partida Direta de Motores de Indução no Afundamento de
Tensão [014]; Cecília F. Morais (M), Diogo Salles (D), Paulo C. M. Meira (D), Ahda G. P. Pavani (PE, UFABC),
Walmir Freitas (P)
Café
Sessão 8 (Coordenador: Prof. Dr. Madson C. de Almeida)
10:40
11:00
11:20
11:40
12:00
Preliminary results of a real time estimation tool for the voltage stability margin using PMU data [028]; Luiz C. P.
da Silva (P), Madson C. de Almeida (P), Rodrigo Garcia-Valle (PE), Alexandre H. Anzai (D)
Método Experimental para Determinação das Capacitâncias Parasitas do Motor de Indução Trifásico Acionado
por Inversor MLP [012]; Rudolf R. Riehl (D), Ernesto Ruppert (P)
Método Baseado em Lógica Nebulosa para Inserção de Geração Distribuída sob a Óptica do Perfil de Tensão
[007]; Leonardo A. Gomes (M), Carlos A. F. Murari (P), Ahda P. G. Pavani (PE)
Análise de Abordagens para Incorporação das Restrições Elétricas na Programação Diária do Sistema
Interligado Nacional [022]; Makoto Kadowaki (D), Anibal T. de Azevedo (PE), Takaaki Ohishi (P), Secundino
Soares (P)
Almoço
Sessão 9 (Coordenador: Prof. Dr. Ernesto Ruppert Filho)
14:00
14:20
14:40
Solution of the Power Flow Problem: A Robust Approach Using Synthetic Dynamics and Optimal Multiplier
[015]; J. F. Gutierrez (D), C. A. Castro (P)
A Second-Order Method to Estimate the Active Power Losses Regarding the Presence of Distributed
Generation [019]; Hugo M. Ayres (D), Marcos J. R. Flores (P), Luiz C. P. da Silva (P), Walmir Freitas (P)
Análise de uma Estratégia de Controle e Dimensionamento de um Filtro Híbrido com Potência Reduzida no
Inversor [021]; Newton da Silva (D), José.A. Pomílio (P), Edson A. Vendrusculo (C)
15:00
Palestra: Sistemas de Geração de Energia Eólica: Uma comparação com foco na integração a redes elétricas;
Prof. Dr. Selênio Rocha Silva, UFMG
16:00
Café
-3-
–9–
PROGRAMA - ERRATA
30 mar 2009 - Terça-feira
Início
Atividade
Sessão 5 (Coordenador: Prof. Dr. Secundino Soares Filho)
10:40
11:00
11:20
11:40
15:00
Análise de Redes de Distribuição Trifásicas com Incertezas Representadas por Conjuntos Nebulosos [009];
Patrícia L. Cavalcante (M), Carlos A. F. Murari (P), Silvio S. Segura (D)
Estudo dos parâmetros elétricos de condutores múltiplos de linhas de transmissão por meio de um método
alternativo [001]; E.C.M. Costa (D), S. Kurokawa (PE), J. Pissolato (P)
Análise de Abordagens para Incorporação das Restrições Elétricas na Programação Diária do Sistema
Interligado Nacional [022]; Makoto Kadowaki (D), Anibal T. de Azevedo (PE), Takaaki Ohishi (P), Secundino
Soares (P)
Estudo Comparativo entre Modelos Estocástico e Determinístico para o Planejamento da Operação Energética
do Sistema Interligado Nacional [020]; André E. Toscano (D), Secundino Soares Filho (P)
Palestra: Tendências Tecnológicas do Setor de Energia; Prof. Dr. Gilberto De Martino Jannuzzi, FEM/UNICAMP
CANCELADA
15:00
Café
31 mar 2009 - Quarta-feira
Início
Atividade
Sessão 8 (Coordenador: Prof. Dr. Madson C. de Almeida)
10:40
11:00
11:20
11:40
Preliminary results of a real time estimation tool for the voltage stability margin using PMU data [028]; Luiz C. P.
da Silva (P), Madson C. de Almeida (P), Rodrigo Garcia-Valle (PE), Alexandre H. Anzai (D)
Método Experimental para Determinação das Capacitâncias Parasitas do Motor de Indução Trifásico Acionado
por Inversor MLP [012]; Rudolf R. Riehl (D), Ernesto Ruppert (P)
Método Baseado em Lógica Nebulosa para Inserção de Geração Distribuída sob a Óptica do Perfil de Tensão
[007]; Leonardo A. Gomes (M), Carlos A. F. Murari (P), Ahda P. G. Pavani (PE)
Análise da Influência da Prática de Eliminação de Faltas nos Principais Índices de Confiabilidade e Qualidade
de Energia em Modernos Sistemas de Distribuição [011]; Eline A. C. Barbosa (M), Fernanda C. L. Trindade (D),
Paulo C. M. Meira(D), Walmir Freitas (P)
-1-
– 10 –
Resumos dos trabalhos apresentados
– 11 –
1
Estudo dos Parâmetros Elétricos de Condutores
Múltiplos de Linhas de Transmissão por meio
de um Método Alternativo
E. C. M. Costa (D), S. Kurokawa (PE) e J. Pissolato (P)
RESUMO
U
M conduto múltiplo, ou feixe de subcondutores, consiste
de dois ou mais subcondutores conectados em paralelo e
separados por espaçadores ao longo da linha [1]. Essa
configuração aplicada às fases de linhas de transmissão de alta
tensão é um método eficiente de aumentar a capacidade da
linha sem aumentar a seção transversal dos condutores,
diminuindo a interferência eletromagnética em outros sistemas
elétricos [2]. Ademais, a utilização de condutores múltiplos em
linhas de alta e extra-alta tensão é uma ferramenta eficaz para
mitigação das perdas de energia e radio interferência
produzidas por efeito corona [3].
Atualmente as linhas de transmissão com tensão nominal
superior a 230 kV são projetadas com fases constituídas por
condutores múltiplos. O número de subcondutores por fase é
função do nível de tensão da linha. As linhas de 230 kV são
geralmente constituídas por feixes de dois subcondutores,
linhas de 345 kV possuem fases com feixes constituídos por
dois ou quatro subcondutores e as linhas de 440 kV são
projetadas com condutores múltiplos compostos por quatro
subcondutores.
O espaçamento entre dois subcondutores consecutivos de
um feixe geralmente é de 0,4 ou 0,6 m, no caso de linhas
convencionais, podendo ser maior em linhas compactas [4].
Na referência [5] são mencionadas linhas experimentais em
que as fases são constituídas por seis subcondutores com
espaçamento entre subcondutores consecutivos de 1,2 m.
Atualmente, as linhas de transmissão de potência natural
elevada (LPNE), ou High Surge Impedance Loading (HSIL),
têm sido gradualmente implementadas com o objetivo de
aumentar a capacidade de transmissão baseando-se na
manipulação dos subcondutores que compõe os condutores
múltiplos. Esse procedimento é fundamentado na otimização
do campo elétrico entre os subcondutores, que por sua vez
reduz consideravelmente a reatância longitudinal da linha. Um
exemplo prático e recente é a linha com potência natural
E. C. M. Costa ([email protected]) e J. Pissolato
([email protected]) estão vinculados ao Depto. de Sistemas e
Controle de Energia – Unicamp.
S. Kurokawa ([email protected]) é professor do Depto. de
Engenharia Elétrica, Faculdade de Engenharia de Ilha Solteira – Unesp.
elevada entre Banabuiú e Fortaleza, que possui condutores
múltiplos totalmente assimétricos e atípicos. Essa linha foi
projetada pela CEPEL com parceria da ELETROBRAS,
CHESF e FURNAS, representando um aumento de
aproximadamente 25% na capacidade de transmissão, com um
aumento no custo de apenas 1%.
Vale salientar que a precisão no cálculo dos parâmetros
elétricos de linhas de transmissão, em função da freqüência,
não está somente associada à eficácia na transmissão de
energia elétrica em regime permanente, mas também no estudo
de transitórios eletromagnéticos e projeto de equipamentos de
proteção e isolamento.
Geralmente, um condutor múltiplo é representado por meio
de um único condutor equivalente, cujo raio é igual ao Raio
Médio Geométrico (RMG) entre os subcondutores e localizase no centro geométrico do feixe [6], [7]. É importante lembrar
que os conceitos de RMG e DMG (Distância Média
Geométrica) são aplicados no cálculo dos parâmetros de
condutores múltiplos compostos por subcondutores iguais,
possibilitando uma corrente distribuída uniformemente através
do feixe. Dessa forma é possível reproduzir um fluxo
magnético total, associado ao condutor equivalente, igual a
soma do fluxo produzido pelos subcondutores do feixe. Nessas
condições, o problema fica resumido apenas à determinação
do RMG do feixe.
Porém, para que a metodologia utilizando o conceito do
RMG seja aplicada com aceitável precisão, duas considerações
são necessárias. Primeiramente, a distância entre duas fases
deve ser consideravelmente maior que o valor do raio do feixe
que compõe o condutor múltiplo, de forma que as distâncias
entre os subcondutores de duas fases distintas da linha possam
ser consideradas iguais às distâncias entre os centros
geométricos dos condutores múltiplos em questão. E, a
segunda das consideração, diz respeito aos fluxos magnéticos
produzidos individualmente pelas correntes que fluem através
dos subcondutores de cada fase, formando um único campo
magnético, de forma que a influência das diversas fases entre
si é provocada pelos campos magnéticos compostos. Estes são
deformados, pois os fluxos magnéticos enlaçados pelos
subcondutores mais externos são menores do que aqueles dos
subcondutores internos, resultando em indutâncias diferentes.
Essa distribuição irregular pode, no entanto, ser desprezada.
– 12 –
2
Porém, considerando um valor para o raio do feixe
excessivamente grande quando comparado com as distâncias
entre as fases, como descrito na referência [5], essa assertiva
não pode ser considerada totalmente verdadeira.
Neste trabalho é descrita uma metodologia levando em
conta o acoplamento mútuo entre os subcondutores que
compõem o condutor múltiplo e a natureza distribuída dos
parâmetros elétricos de cada um deles individualmente. Para
isso, são calculados os parâmetros elétricos próprios e mútuos
para cada um dos subcondutores da forma clássica, utilizando
função de Bessel [8] e séries de Carson [3], e a partir das
matrizes de indutância e admitância em função da freqüência e
aplicação de algumas técnicas de decomposição modal, é
possível obter os parâmetros elétricos do condutor múltiplo
sem a utilização do conceito de RMG. Portanto
proporcionando uma comparação entre metodologia clássica e
alternativa.
As duas metodologias são aplicadas no estudo dos
parâmetros elétricos de um condutor múltiplo composto por
quatro subcondutores, típico em algumas linhas de 345 KV e
nas linhas de 440 kV. E, logo então, são calculados e
analisados os parâmetros elétricos de um condutor múltiplo
baseado na referência [9]. Trata-se de um condutor múltiplo
composto por sete subcondutores, seis deles formando uma
blindagem externa e um subcondutor central com maior
diâmetro que os demais, e isolamento utilizando hexafluoreto
de enxofre (SF6).
De acordo com a referência [3], o conceito de RMG é
aplicado a cabos e condutores múltiplos levando em conta um
fluxo de corrente uniforme através dos filamentos ou
subcondutores. Portanto, para analisar essa restrição, são
aplicadas ambas metodologias para um condutor múltiplo
convencional (quatro subcondutores iguais), considerando
correntes iguais em todos os subcondutores do feixe, e para
um condutor assimétrico [9], induzindo assim uma corrente
não uniforme através do feixe.
O presente trabalho consiste nos estudos introdutórios no
desenvolvimento de uma possível nova metodologia para o
cálculo dos parâmetros elétricos para modelagem de linhas de
transmissão destinada à simulação de transitórios
eletromagnéticos, uma vez que esses fenômenos abrangem
uma ampla faixa de freqüências. Ademais, o desenvolvimento
de novas tecnologias na transmissão de energia, como as
linhas denominadas compactas e com potência natural elevada,
e eventualmente para o cálculo dos parâmetros de cabos,
motiva o desenvolvimento de técnicas mais precisas de cálculo
e projeto de linhas de transmissão em geral.
REFERÊNCIAS
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
L. E. Koolár and M. Farzaneh. “Vibration of bundled conductors
following ice shedding”, IEEE Trans. Power Delivery, vol. 11, n. 2, pp.
2198-2206, April 2008.
G. E. Adams. “An analysis of the radio-interference characteristics of
Bundled Conductors”, AIEE Trans. Power Apparatus and Systems, vol.
75, n..3, pp. 1569-1584, 1957.
R. D. Fuchs. Transmissão de energia elétrica:linhas aéreas e teoria das
linhas em regime permanente. 2ª. Ed. Rio de Janeiro: Livros Técnicos e
Científicos, 1979.
H. Wei-Gang. “Study on conductor configuration of 500-kV ChangFang compact line”. IEEE Trans. Power Delivery, vol. 18, n. 3, pp.
1002-1008, July 2003.
T. Nojima, M. Shimizu, I. Ogi, T. Okumura, K. Nagatomi, H. Ito.
“Development of galloping endurance design for extra large 6-conductor
bundle spacers by the experience of the full scale 500 kV test line”,
IEEE Trans. Power Delivery, vol. 12, n. 4, pp. 1824-1829, 1997.
N. Watson and J. Arrilaga, Power Systems Electromagnetic Transients
Simulation, London: Institution of Electrical Engineers, 2003, pp. 140142.
V. P. Tu and J. Tlusty. “The calculated methods of a frequencydependent series impedance matrix of overhead transmission lines with
a lossy ground for transient analysis problem”, in Proc. 2003 Large
Engineering Systems Conference on Power Engineering, Montreal,
Canada, pp. 159-163.
W. D. Stevenson. Elementos de análise de sistemas de potência. São
Paulo: McGraw-Hill do Brasil.
N. G. Trinh and C. Vincent. “Bundled-conductors for EHV transmission
systems with compressed SF6 insulation”, AIEE Trans. Power
Apparatus and Systems, vol. 75, no 6, pp. 2198-2206, 1978.
– 13 –
1
Small-Signal Stability Modeling of Inverter-Based Distributed
Generators with Positive-Feedback Anti-Islanding Protection
Tiago R. Ricciardi (M) and Walmir Freitas (P)
Abstract – This paper describes a small-signal model of an
inverter-based distributed generator with frequency positivefeedback anti-islanding control connected in the electric
distribution network. The linearized model is accurate and
suitable for computational analysis of stability, dynamic
interactions and grid connection studies in systems with multiple
generators.
Index Terms – Distributed Generation, Inverters, Islanding,
Modeling, Positive-Feedback, Stability.
I. INTRODUCTION
T
HE INTEREST in the connection of generators directly in
electric power distribution networks – a fact known as
distributed generation – is a worldwide phenomenon that has
increased considerably in recent years. Among the present
technologies, it is expected that inverter-based distributed
generation will increasingly be used in electrical power
systems in the near future. One of the most challenging aspects
of designing electric power distribution systems in the
presence of distributed generation is the need to provide
protection against islanding. The ability to detect when
distributed generators (DGs) become islanded from the main
source enables DGs to be quickly disconnected from the
utility, guaranteeing that the network can be safely and orderly
restored.
The positive-feedback based schemes are introduced to
improve the islanding detection of inverter-based distributed
generators (IBDGs). Compared with the passive schemes and
other active schemes, these techniques — which use the
deviations of frequency and voltage from normal values as
positive-feedback signals to influence the operation of the DG
— has a better performance on islanding protection of gridconnected DGs. However, the positive-feedback schemes
always attempt to destabilize a generator no matter if it is
islanded or not. Consequently, if the positive-feedback gain is
too high, the distributed generation system may become
unstable even when it is connected to the main supply system.
Moreover, the anti-islanding scheme may limit the amount of
power that can be supplied by the DG and the penetration level
of multiple IBDGs in some feeders.
This paper presents a linearized model of IBDGs with
positive-feedback anti-islanding control suitable to smallsignal stability analysis. Through the eigenanalysis of this
This work is supported by São Paulo Research Foundation (FAPESP)
under the process # 2009/01736-5.
T. R. Ricciardi and W. Freitas are with the Department of Electrical
Energy Systems of the School of Electrical and Computer Engineering of the
University of Campinas (DSEE/FEEC/UNICAMP), Campinas, São Paulo,
Brazil (e-mails: {tiago,walmir}@dsee.fee.unicamp.br).
state-space small-signal model, one can evaluate the impact of
parameters values such as load level, distribution line
impedance or positive-feedback gain over the system smallsignal stability. The proposed model is validated through time
domain dynamic simulations of a nonlinear model
implemented in SimPowerSystems™/Matlab.
II. SMALL-SIGNAL MODEL
The DG is represented by a three-phase voltage source
inverter (VSI). The pulse width-modulated (PWM) signal
generator, the DC source and the switching power electronics
devices such as IGBTs and MOSFETs from the inverter
switching model are replaced by an average model of voltage
sources controlled by a linear control system whose signal
inputs are power (current) reference for the case of the
constant power (current) injection controlled IBDG [1], [2].
The dynamic equations from this electric circuit approach plus
the control systems are described in the dq frame in order to
decouple the active and reactive power injection control. The
positive-feedback anti-islanding scheme is represented in the
average model through a control loop in the voltage source
control system. For example, to the Sandia Frequency Shift
(SFS) scheme [3], the following equation implements the
positive feedback loop between angular frequency (Ȧ)
deviation and injected current phase (șf):
θf =
𠧨
2 ¨©
§ sTw · ·
¸¸ω ¸
cf 0 + k f ¨¨
¸
© 1 + sTw ¹ ¹
(1)
Where Tw is the washout filter time constant, kf is the
positive-feedback loop gain and cf0 is an SFS parameter called
chopping fraction.
This set of equations from the average model together with
the algebraic nodal representation of the distribution system
(Ybus) and the interface equations between the dq frame and
the common reference frame (network) are the referred statespace small-signal model.
The set of equations can be represented in matrix form. As
the linearized model contains both algebraic and differential
equations, the descriptor system techniques can be applied in
the modal analysis [1].
The following small-signal descriptor system equation in
state-space for the complete system therefore is achieved:
E p ∆ x = A∆ x + B ∆ u
– 14 –
(2)
2
∆P ∆u = ref ∆Qref 7
(3)
x 10
P ref Step Response
-3
Nonlinear Model
Small-Signal Model
6
Where p is the derivative operator, ǻx is the state variables
vector and ǻPref and ǻQref are the control signals input. The
rows from the square and singular matrix E corresponding to
the algebraic equations in the model are null. Matrix A is
square and regular and B is the input matrix.
5
∆vd (p.u.)
4
3
2
III. MODEL VALIDATION
1
A linear system represented in descriptor form such in (2) is
formed by Differential-Algebraic Equations (DAEs). These
equations can be integrated in time domain through specific
numeric algorithms. To exemplify this procedure, consider an
IBDG connected to the infinite bus through an impedance,
with a parallel RLC local load and SFS anti-islanding scheme
as shown in Fig. 1.
0
-1
2
2.01
2.02
2.03
Time (s)
2.04
2.05
2.06
Fig. 2. Direct axis terminal voltage variation ǻvd after a 10% step in power
reference.
P ref Step Response
0.01
0.009
0.008
Nonlinear Model
Small-Signal Model
0.007
0.006
∆P (p.u.)
0.005
0.004
0.003
0.002
Fig. 1. IBDG connected to infinite bus.
0.001
The linearized model is verified by comparing the dynamic
responses for a reference step in time domain obtained from a
nonlinear model set up in SimPowerSystems™/Matlab with
those from the small-signal model. The verification results in
Fig. 2 and Fig. 3 show that the dynamic responses of the
developed small-signal models are very close to the results
from the nonlinear model. Different system parameters and
input references were tested for the models. The comparison
results, which are not shown here, also indicate the same
phenomenon while the step can be considered a small
perturbation. This demonstrates the accuracy of the smallsignal models.
0
2.01
2.02
2.03
Time (s)
2.04
2.05
2.06
Fig. 3. Active power injection variation ǻP after a 10% step in power
reference.
V. REFERENCES
[1]
[2]
[3]
IV. CONCLUSIONS
The proposed model is useful to analyze the impact of
positive-feedback anti-islanding schemes on the stability of
grid-connected inverter-based DG systems. The state-space
representation allows the use of a whole set of linear control
techniques to direct stability assessment, without the need of
slow time domain simulations.
2
X. Wang, “Investigation of Positive Feedback Anti-Islanding Scheme
for Inverter-Based Distributed Generation” Ph.D. thesis, Dept. Elect.
and Comp. Eng., Univ. Alberta, Edmonton, 2008.
X. Wang e W. Freitas, "Impact of Positive-Feedback Anti-Islanding
Methods on Small-Signal Stability of Inverter-Based Distributed
Generation" IEEE Transactions on Energy Conversion, vol.23, no.3,
pp.923-931, Set. 2008.
Z. Ye, R. Walling, L. Garces, R. Zhou, L. Li e T. Wang, "Study and
Development of Anti-Islanding Control for Grid-Connected Inverters"
National Renewable Energy Laboratory (NREL), Golden, CO, Technical
Report NREL/SR-560-36243, Mai. 2004.
VI. BIOGRAPHIES
Tiago R. Ricciardi received the Electrical Engineer degree from the
School of Electrical and Computer Engineering of the University of
Campinas, Campinas, SP, Brazil in 2008. Currently he is M.Sc. graduate
student with the Department of Electrical Energy Systems of the same
University. His research interests are distributed generation and power
systems protection, stability and control.
Walmir Freitas received the Ph.D. degree in Electrical Engineering from
the University of Campinas, Campinas, SP, Brazil in 2001. He was a PDF at
the University of Alberta, Edmonton, AB, Canada, from 2002 to 2003.
Currently, he is an Associate Professor at the University of Campinas. His
main research interests are distribution systems and distributed generation.
– 15 –
1
Small-Signal Stability Analysis of Inverter-Based Distributed
Generators with Positive-Feedback Anti-Islanding Protection
Tiago R. Ricciardi (M) and Walmir Freitas (P)
Abstract – This paper describes a procedure for small-signal
stability assessment of inverter-based distributed generators with
frequency positive-feedback anti-islanding control based on the
modal analysis of a linearized model. The procedure is
computationally efficient, accurate and suitable for studies of
stability and dynamic interactions in systems with multiple
generators. The main contribution of the proposed method is a
simple and direct curve from which is possible to evaluate the
maximum power injection for each anti-islanding protection
adjustment. Several electromagnetic time domain simulations
validate the proposed curve.
of multiple IBDGs in some feeders.
This paper presents a procedure for small-signal stability
assessment of IBDGs with positive-feedback anti-islanding
control. Through the eigenanalysis of a state-space smallsignal model of IBDGs connected on distribution system, one
can evaluate the impact of parameters values such as load
level, distribution line impedance or positive-feedback gain
over the system small-signal stability.
Index Terms – Distributed Generation, Inverters, Islanding,
Modeling, Positive-Feedback, Stability.
The DG is represented by a three-phase voltage source
inverter (VSI). The pulse width-modulated (PWM) signal
generator, the DC source and the switching power electronics
devices such as IGBTs and MOSFETs from the inverter
switching model are replaced by an average model of voltage
sources controlled by a linear control system whose signal
inputs are power (current) reference for the case of the
constant power (current) injection controlled IBDG [1], [2].
The dynamic equations from this electric circuit approach plus
the control systems are described in the dq frame in order to
decouple the active and reactive power injection control. The
positive-feedback anti-islanding scheme is represented in the
average model through a control loop in the voltage source
control system. For example, to the Sandia Frequency Shift
(SFS) scheme [3], the following equation implements the
positive feedback loop between angular frequency ( )
deviation and injected current phase ( f):
I. INTRODUCTION
T
HE INTEREST in the connection of generators directly in
electric power distribution networks – a fact known as
distributed generation – is a worldwide phenomenon that has
increased considerably in recent years. Among the present
technologies, it is expected that inverter-based distributed
generation will increasingly be used in electrical power
systems in the near future. One of the most challenging aspects
of designing electric power distribution systems in the
presence of distributed generation is the need to provide
protection against islanding. The ability to detect when
distributed generators (DGs) become islanded from the main
source enables DGs to be quickly disconnected from the
utility, guaranteeing that the network can be safely and orderly
restored.
The positive-feedback based schemes are introduced to
improve the islanding detection of inverter-based distributed
generators (IBDGs). Compared with the passive schemes and
other active schemes, these techniques — which use the
deviations of frequency and voltage from normal values as
positive-feedback signals to influence the operation of the DG
— has a better performance on islanding protection of gridconnected DGs. However, the positive-feedback schemes
always attempt to destabilize a generator no matter if it is
islanded or not. Consequently, if the positive-feedback gain is
too high, the distributed generation system may become
unstable even when it is connected to the main supply system.
Moreover, the anti-islanding scheme may limit the amount of
power that can be supplied by the DG and the penetration level
This work is supported by São Paulo Research Foundation (FAPESP)
under the process # 2009/01736-5.
T. R. Ricciardi and W. Freitas are with the Department of Electrical
Energy Systems of the School of Electrical and Computer Engineering of the
University of Campinas (DSEE/FEEC/UNICAMP), Campinas, São Paulo,
Brazil (e-mails: {tiago,walmir}@dsee.fee.unicamp.br).
II. SMALL-SIGNAL MODEL
θf =
π 
2 
 sTw  
ω 
cf 0 + k f 

 1 + sTw  
(1)
Where Tw is the washout filter time constant, kf is the
positive-feedback loop gain and cf0 is an SFS parameter called
chopping fraction.
This set of equations from the average model together with
the algebraic nodal representation of the distribution system
(Ybus) and the interface equations between the dq frame and
the common reference frame (network) are the referred statespace small-signal model.
The set of equations can be represented in matrix form. As
the linearized model contains both algebraic and differential
equations, the descriptor system techniques can be applied in
the modal analysis [1].
The following small-signal descriptor system equation in
state-space for the complete system therefore is achieved:
E p ∆x = A∆ x + B ∆ u
– 16 –
(2)
2
 ∆P 
∆u =  ref 
∆Qref 
2000
(3)
k f increases from blue * to red O
1500
Imag (rad/s)
1000
Where p is the derivative operator, x is the state variables
vector and Pref and Qref are the control signals input. The
rows from the square and singular matrix E corresponding to
the algebraic equations in the model are null. Matrix A is
square and regular and B is the input matrix.
The generalized eigenvalues of (2) provide information
about the small-signal stability of the DG system: the system is
asymptotically stable if the real part of all complex generalized
eigenvalues is negative. Otherwise the system is unstable.
500
0
-500
-1000
k crit
=0.0375
f
-1500
-2000
-400
-300
-200
-100
0
100
Real (1/s)
Fig. 2. Root locus for Pref = 0.1 p.u.
1.4
For a given positive-feedback gain kf, there is an active
power injection Pmax — corresponding to a system operation
point x0 around which the system is linearized — that leads
the IBDG to the stability limit. This maximum power injection
can be determined through the system root locus. One can then
through repeated root locus analysis plot the maximum power
transfer limit versus positive-feedback gain curve (Pmax-kf), a
useful tool to understand the parametric influences on the
dynamic performance of DG systems and to investigate the
system stability in the presence of IBDG with such positivefeedback anti-islanding protection.
To exemplify this procedure, consider an IBDG connected
to the infinite bus through an impedance, with a parallel RLC
local load and SFS anti-islanding scheme as shown in Fig. 1.
Distribution System Bus
DG Terminal Bus
Line Impedance
DG Power Transfer Limit (p.u.)
III. PMAX-KF CURVE: THE STABILITY LIMIT
Small-Signal Model
Nonlinear Model
1.2
1
0.8
0.6
0.4
0.2
0
0
0.01
0.02
0.03
Positiv e Fe edback Gain - K
0.04
0.05
f
Fig. 3. Maximum power transfer limit versus positive-feedback gain curve.
IV. CONCLUSIONS
The proposed Pmax-kf curve is a useful tool to analyze the
impact of the positive-feedback anti-islanding schemes on the
stability of grid-connected inverter-based DG systems. This
can be helpful to IBDG owners as well as utility engineers
quickly assess the amount of generation that can be installed in
a distribution feeder. The procedure based on modal analysis
is computationally several times faster than that based on time
domain simulations.
Local Load
(RLC)
V. REFERENCES
[1]
Fig. 1. IBDG connected to infinite bus.
The DG injects 0.1 p.u. active power at unity factor into the
terminal bus. Fig. 2 shows the root locus when the positive
feedback gain is gradually varied from 0.00 to 0.05. There is a
critical value that places a pair of complex eigenvalues in the
right half-plane, corresponding to stability frontier.
This critical value therefore leads to the pair (kfcrit ;
Pmax). Repeating this procedure for each value of power
injection, one can obtain the curve represented by a black solid
trace in Fig. 3. This curve was validated by several time
domain simulations of a nonlinear model of the same system
implemented in SimPowerSystems™/Matlab, represented by a
dotted red trace in Fig. 3. One can observe that the linearized
model is accurate to investigate the small-signal stability of
IBDGs.
[2]
[3]
X. Wang, “Investigation of Positive Feedback Anti-Islanding Scheme
for Inverter-Based Distributed Generation” Ph.D. thesis, Dept. Elect.
and Comp. Eng., Univ. Alberta, Edmonton, 2008.
X. Wang e W. Freitas, "Impact of Positive-Feedback Anti-Islanding
Methods on Small-Signal Stability of Inverter-Based Distributed
Generation" IEEE Transactions on Energy Conversion, vol.23, no.3,
pp.923-931, Set. 2008.
Z. Ye, R. Walling, L. Garces, R. Zhou, L. Li e T. Wang, "Study and
Development of Anti-Islanding Control for Grid-Connected Inverters"
National Renewable Energy Laboratory (NREL), Golden, CO, Technical
Report NREL/SR-560-36243, Mai. 2004.
VI. BIOGRAPHIES
Tiago R. Ricciardi received the Electrical Engineer degree from the
School of Electrical and Computer Engineering of the University of
Campinas, Campinas, SP, Brazil in 2008. Currently he is M.Sc. graduate
student with the Department of Electrical Energy Systems of the same
University. His research interests are distributed generation and power
systems protection, stability and control.
Walmir Freitas received the Ph.D. degree in Electrical Engineering from
the University of Campinas, Campinas, SP, Brazil in 2001. He was a PDF at
the University of Alberta, Edmonton, AB, Canada, from 2002 to 2003.
Currently, he is an Associate Professor at the University of Campinas. His
main research interests are distribution systems and distributed generation.
– 17 –
Conversor Eletrônico de Potência para Geração
Distribuída com Painéis Solares Fotovoltaicos
Marcelo G. Villalva (D), Ernesto Ruppert (P)
Resumo—Este trabalho apresenta as características e os
resultados experimentais de um protótipo de conversor
eletrônico de energia para geração distribuída. O conversor
permite fazer a conexão de um conjunto de painéis solares com a
rede elétrica. O conversor recebe tensão e corrente contínuas e
fornece correntes senoidais trifásicas sincronizadas com a rede.
I. INTRODUÇÃO
Este trabalho teve como principal objetivo a nacionalização
da tecnologia de conversores eletrônicos para geração
distribuída (GD) de energia elétrica. O uso de fontes
alternativas de energia (solar, eólica e outras) em GD requer o
emprego de conversores eletrônicos para compatibilizar as
diversas formas de energia com a rede elétrica. Os painéis
solares produzem tensões e correntes contínuas em seus
terminais, que precisam ser convertidas em tensões e correntes
alternadas sincronizadas com as da rede elétrica.
Neste trabalho foi desenvolvido e construído um conversor
eletrônico trifásico de 10 kW (Fig. 1) que permitiu a conexão
de um conjunto de painéis solares à rede elétrica. O conversor
foi testado durante dois meses na instalação de energia solar
do IFGW (Fig. 2), com potência de pico de 7,8 kW.
Fig. 1. Conversor de potência trifásico para GD desenvolvido na FEEC.
II. CARACTERÍSTICAS DO CONVERSOR
o Conversor de dois estágios: CC-CC com transformador isolador de
alta frequência (Fig. 3) e CC-CA trifásico (Fig. 4)
o Potência nominal de projeto: 10 kW
o Tensão de entrada: 200 V - 500 V (contínua)
o Corrente de entrada nominal: 40 A (contínua)
o Corrente de entrada máxima: 80 A (contínua)
o Tensão de saída nominal: 127 V / 220 V (rede trifásica)
o Corrente de saída nominal: senoidal, 30 A (pico), 60 Hz
(frequência sincronizada com a rede)
o Corrente de saída máxima: 145 A (pico)
o Frequência de chaveamento: 10 kHz (módulo CC-CA), 20 kHz
(módulo CC-CC)
o Módulo de processamento: DSP (microprocessador) de ponto
flutuante TMS320F28335
Este trabalho foi fomentado pela FAPESP por meio de um projeto de
“Auxílio à Pesquisa”. O montante concedido, de cerca de R$70 mil, além de
custear o projeto possibilitou equipar um laboratório de eletrônica na FEEC. O
pesquisador recebeu bolsas de estudos do CNPq e da CAPES.
FEEC/UNICAMP – [email protected], [email protected]
– 18 –
.
Fig. 2. Instalação de painéis solares de 7,8 kW do IFGW/UNICAMP.
III. ESTRUTURA E FUNCIONAMENTO DO CONVERSOR
Fig. 3. Conversor CC-CC: ponte completa com transistores IGBT,
transformador elevador de alta frequência, retificador com diodos rápidos e
filtro indutivo na saída. O conversor CC-CC fornece energia para o link CC.
Fig. 4. Conversor CC-CA: inversor fonte de tensão conectado à rede por meio
de indutores. O conversor CC-CA retira energia do link CC e injeta na rede.
Fig. 7. Formas de onda obtidas durante a operação do conversor. Magenta:
corrente senoidal de uma fase injetada na rede, em sincronismo com a tensão
de fase (20 A/div), Azul: corrente do conjunto de painéis solares (5 A/div),
Amarelo: tensão dos painéis solares (100 V/div).
V. REFERÊNCIAS
Periódicos:
[1]
M. G. Villalva, J. R. Gazoli, E. Ruppert, “Comprehensive approach to
modeling and simulation of photovoltaic arrays”, IEEE Transactions on
Power Electronics”, EUA, Nova York, 2009.
M. G. Villalva, E. Ruppert, “Voltage Regulation of Photovoltaic Arrays:
Small-Signal Analysis and Control Design”, IET Transactions on Power
Electronics, UK, Londres, 2010. (aceito para publicação)
M. G. Villalva, E. Ruppert, “Regulação da Tensão de Dispositivos
Fotovoltaicos e Análise em Diferentes Pontos de Operação”, Revista
Eletrônica de Potência, SOBRAEP, Brasil, 2010. (artigo submetido)
M G. Villalva, E. Ruppert, “Modeling and Control of a Three-Phase
Isolated Grid-Connected Converter for Photovoltaic Applications”,
Revista Controle & Automação, SBA, Brasil, 2010. (artigo submetido)
M. G. Villalva, J. R. Gazoli, E. Ruppert, “Modeling and circuit-based
simulation of photovoltaic arrays”, Revista Eletrônica de Potência,
SOBRAEP, Brasil, 2009.
M. G. Villalva, E. Ruppert, “Dynamic analysis of the input-controlled
buck-converter fed by a photovoltaic array”, Revista Controle &
Automação, SBA, Brasil, 2008.
[2]
[3]
[4]
Fig. 5. Organização dos sistemas de controle do conversor.
[5]
IV. RESULTADOS
[6]
Conferências:
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
Fig. 6. Conversor em teste nas dependências do IFGW/UNICAMP.
[15]
– 19 –
M. G. Villalva, E. Ruppert, “Modeling and circuit-based simulation of
photovoltaic arrays”, X Congresso Brasileiro de Eletrônica de Potência
(COBEP), 2009.
M. G. Villalva, J. R. Gazoli, E. Ruppert, “Analysis and simulation of the
P&O MPPT algorithm using a linearized photovoltaic array model”, X
Congresso Brasileiro de Eletrônica de Potência (COBEP), 2009.
M. G. Villalva, J. R. Gazoli, E. Ruppert, “Modeling and control of a
three-phase isolated grid-connected converter fed by a photovoltaic
array”, X Congresso Brasileiro de Eletrônica de Potência (COBEP),
2009.
M. G. Villalva, E. Ruppert, “Input-controlled buck converter for
photovoltaic applications: modeling and design”, 4th IET Conference on
Power Electronics, Machines and Drives, UK, York, 2008.
M. G. Villalva, E. Ruppert, “Modeling and design of a step-down dc-dc
converter with input voltage control for photovoltaic applications”, XVII
Conferência Brasileira de Automática (CBA), Brasil, 2008.
M. G. Villalva, E. Ruppert, “Buck converter with variable input voltage
for photovoltaic applications”, IX Congresso Brasileiro de Eletrônica de
Potência (COBEP), Brasil, 2007.
M. G. Villalva, E. Ruppert, “Input voltage regulation of buck and boost
converters in photovoltaic systems”, IEEE Energy Conversion Congress
and Exposition, EUA, Atlanta, 2010. (resumo submetido)
M. G. Villalva, E. Ruppert, “Three-phase grid-connected photovoltaic
converter: analysis and experimental results”, IEEE Energy Conversion
Congress and Exposition, EUA, Atlanta, 2010. (resumo submetido)
M. G. Villalva, E. Ruppert, “Design of a Three-Phase Grid-Connected
Converter and Operation with a 7.5 kW PV Installation”, 33rd IAEE
International Conference, Rio de Janeiro, 2010. (resumo submetido)
1
Sistema Automático de Corte de Carga em
Instalações Industriais com Geradores
Síncronos Após Ocorrência de Ilhamento
Fernanda Caseño Lima Trindade (D), Madson Cortes de Almeida (P), Walmir de Freitas Filho (P)
Resumo-- Sistemas industriais modernos são instalações com
elevado grau de automatização. Tais instalações, na presença de
geradores, são denominadas consumidores autoprodutores. As
normas técnicas requeridas pelas concessionárias de energia
elétrica obrigam a desconexão da instalação industrial logo após a
ocorrência de um ilhamento na rede de distribuição. A
possibilidade de operação isolada é uma alternativa bastante
atrativa, pois permite o aumento da confiabilidade de operação
dos autoprodutores. No entanto, após a separação dos sistemas, é
necessário adotar uma série de medidas que garanta que o sistema
industrial possa continuar operando isoladamente de forma
adequada, dentre elas está a realização do corte do excesso de
carga. Nesse contexto, o objetivo deste trabalho é apresentar um
esquema automático de corte de carga que concilia a simplicidade
dos métodos baseados em relés de freqüência e a flexibilidade dos
métodos centralizados.
Palavras-chave—Esquemas de Corte de Carga, Operação
Isolada, Sistemas Autoprodutores.
I. INTRODUÇÃO
A
PÓS a ocorrência de um ilhamento seguida pela
desconexão do sistema autoprodutor da rede ilhada,
dependendo da capacidade de geração e da quantidade carga
em operação no sistema industrial, é necessário desconectar
algumas cargas caso não haja geração disponível suficiente
para atender a demanda total, ou mesmo se a capacidade de
tomada de carga dos geradores seja excedida temporariamente,
de forma a garantir a operação estável do sistema ([1], [2]).
Deseja-se que esse alívio de carga seja realizado minimizando
a quantidade de cargas desconectadas e atendendo algum
critério de priorização de cargas. De forma geral, os dois
principais métodos de corte de carga são ([3]-[5]): (a)
Métodos distribuídos baseados no uso de relés de
subfreqüência (ou de taxa de variação de freqüência):
promovem o desligamento de cargas de acordo com o nível de
freqüência do sistema. Cada carga (ou conjunto de carga) é
protegida por um relé de subfreqüência com um ajuste fixo e
um esquema de priorização das cargas que devem ser
desligadas pode ser implementado usando-se diferentes níveis
de ajustes nos relés para as diversas cargas. A principal
Este trabalho foi financiado pela Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP), Brasil.
F. C. L. Trindade, M. C. Almeida e W. Freitas são do Departamento de
Sistemas de Energia Elétrica, Universidade Estadual de Campinas
(UNICAMP)
C.P.
6101,
13081-970
Brasil
(e-mail:
[email protected];
[email protected];
[email protected]).
vantagem desses métodos é a simplicidade de implementação,
ao passo que a principal desvantagem refere-se à falta de
flexibilidade da metodologia visto que sempre uma
determinada quantidade fixa de carga será desconectada para
cada nível de subfreqüência independentemente do nível de
geração e carga, podendo ocasionar um corte excessivo de
carga; (b) Métodos centralizados baseados no uso de CLPs
(controladores lógicos programáveis): permitem determinar
qual a quantidade de carga e a seqüência de corte a ser
implementada utilizando-se alguma técnica de otimização, préprogramada ou inteligente. A principal vantagem desses
métodos refere-se à flexibilidade de algoritmos (e.g., métodos
analíticos, otimização clássica, metaheurística, etc) que podem
ser utilizados na determinação das cargas a serem desligadas,
ao passo que a principal desvantagem refere-se à
complexidade de implementação e alteração desses
algoritmos.
Nesse contexto, a principal contribuição deste estudo é
apresentar um novo método que concilia a característica de
simplicidade dos métodos baseados em relés de freqüência e a
flexibilidade dos métodos centralizados. O método proposto
baseia-se no uso de uma equação analítica que permite
determinar em tempo real quantidade de carga que deve ser
cortada por nível de freqüência levando em consideração
indiretamente as características de dependência de tensão e
freqüência das cargas do sistema industrial e a capacidade de
retomada de carga dos geradores. Detalhes dessa metodologia
são apresentados nas próximas seções.
II. METODOLOGIA DO CORTE DE CARGA AUTOMÁTICO
Visto que o nível de geração, e mesmo o número de
geradores em funcionamento, podem variar durante a operação
da instalação industrial, não basta saber a capacidade máxima
de geração instalada e desconectar a quantidade excedente de
cargas com base no conhecimento dos valores nominais dessas
caso ocorra um ilhamento. Portanto, um importante fator a ser
conhecido é o desbalanço real de potência ativa durante a
execução do corte de carga. Dessa forma, este trabalho propõe
o uso de uma fórmula analítica para determinar em tempo real
o desbalanço de potência ativa para cada nível de
subfreqüência (equação (1)). Tal fórmula é obtida conforme
descrito em [6].
2H d
2 H ∆f
(1)
∆P =
f ≅
f 0 dt
f 0 ∆t
– 20 –
2
De acordo com a equação acima, conhecendo-se a taxa de
variação de freqüência e a constante de inércia dos geradores,
pode-se estimar em tempo real o desbalanço de potência ativa,
determinando-se a quantidade de carga que deve ser cortada.
A idéia básica do método é efetuar o alívio de carga por
nível de subfreqüência em diversos estágios sendo que a
quantidade de carga a ser cortada em cada nível é determinada
em tempo real utilizando-se a expressão (1) e seguindo-se uma
lista de prioridade de carga. Como exemplo da metodologia, a
seguir, ela será descrita para uma situação de três níveis de
subfreqüência (59, 58 e 57 Hz) e de priorização de carga
(baixa, média e alta prioridade). Os seguintes passos devem
ser seguidos para implementar a metodologia proposta:
1. Classificar todas as cargas do sistema em ordem de
prioridade sendo que as cargas classificadas como baixa
prioridade serão desligadas primeiramente, seguidas pelo
desligamento das cargas de média prioridade e depois das
cargas de alta prioridade.
2. Determinar a quantidade e os valores dos níveis de
freqüência em que serão realizados os cortes de carga.
3. Deve-se monitorar a freqüência do sistema e, assim que
esta for atingindo cada um dos níveis de subfreqüência
pré-estabelecidos, deve-se calcular o desbalanço de
potência utilizando-se a expressão (1), para isso a taxa de
variação da freqüência também deve ser monitorada. Em
seguida, percorre-se a lista de prioridade de cargas
determinando qual a combinação de carga que reduz a
demanda na mesma quantidade de desbalanço de potência
ativa calculado e leva a um menor número de cargas
desconectadas, considerando suas respectivas prioridades.
Para o estudo do método utilizaram-se simulações de
transitório eletromagnético em um sistema teste baseado em
uma instalação real (Fig. 1) através do uso da plataforma
computacional SimPowerSystems ([7]). Nesse sistema teste,
três conjuntos turbina a vapor-gerador síncrono (TG-1, TG-2,
TG-3) alimentam dois motores de indução do tipo gaiola de
esquilo (M1 e M2) e um conjunto de cargas representadas por
um modelo tipo impedância constante. Testaram-se três
diferentes situações de carga: leve, normal e pesada, 75%,
100% e 125% do valor original de carregamento apresentado
na Tabela 1, respectivamente. Ressalta-se ainda que a
expressão (1) foi calculada ora por meio da medição de ∆f/∆t,
ora por meio da função df/dt (conhecida também como
ROCOF - do inglês Rate Of Change Of Frequency) existente
na maioria dos relés de proteção utilizados em sistemas
industriais. Para representar o tempo necessário de execução
do algoritmo de corte de carga e envio efetivo do sinal de
abertura para os disjuntores adotou-se um atraso de 100 ms.
Concessionária
SE Entrada
Barramento 138 kV
TR-1
138 kV11,5 kV
Carga 1
Carga 3 Carga 4 Carga 5
Barramento COGER 11,5 kV
TR-AUX1
11,5 kV0,46 kV
TR-AUX2
11,5 kV0,46 kV
Carga 6
TG-1
TG-2
TG-3
Carga 7
M2
M1
Fig. 1. Diagrama unifilar do sistema teste.
TABELA I
DADOS DAS CARGAS DO SISTEMA TESTE
Pnominal
Fator de
Snominal
Carga
(MVA)
potência
(MW)
1
2
3
4
5
6
7
M1
M2
Total
14,000
10,500
16,625
13,125
15,750
1,312
0,700
0,606
1,508
74,126
0,92
0,92
0,92
0,92
0,92
0,92
0,92
0,85
0,85
-
12,880
9,660
15,295
12,075
14,490
1,207
0,644
0,515
1,282
68,048
Prioridade
alta
média
baixa
média
baixa
baixa
baixa
alta
alta
-
em MW bastante próxima ao valor de excesso da carga
existente respeitando a prioridade de cada uma das cargas e
evitando o corte desnecessário, o que provavelmente não
ocorreria com o uso de métodos baseados somente no
conhecimento da potência nominal das cargas.
IV. REFERÊNCIAS
[1]
[2]
[3]
[4]
[5]
III. CONCLUSÕES
Com base nos resultados relacionados a este trabalho, podese verificar que a metodologia de corte de carga proposta,
embora bastante simples, apresenta resultados satisfatórios,
visto que, com o cálculo em tempo real do déficit de potência
ativa através da expressão (1) e o uso de vários estágios, é
possível, em alguns casos, desligar uma quantidade de cargas
Carga 2
TR-4
138 kV11,5 kV
TR-3
138 kV11,5 kV
TR-2
138 kV11,5 kV
[6]
[7]
– 21 –
Shokooh, F.; Dai, J.J.; Shokooh, S.; Taster, J.; Castro, H.; Khandelwal,
T.; Donner, G., "An intelligent load shedding (ILS) system application
in a large industrial facility," Industry Applications Conference, 2005.
Fourtieth IAS Annual Meeting. Conference Record of the 2005 , vol.1,
no., pp. 417-425 Vol. 1, 2-6 Oct. 2005
W. Elmore, Protective Relaying Theory and Applications. CRC Press.
2nd ed. New York, 2004.
Delfino, B.; Massucco, S.; Morini, A.; Scalera, P.; Silvestro, F.,
"Implementation and comparison of different under frequency loadshedding schemes," Power Engineering Society Summer Meeting, 2001.
IEEE , vol.1, no., pp.307-312 vol.1, 2001
Anderson, P. M.; Mirheydar, M., "An adaptive method for setting
underfrequency load shedding relays ," Power Systems, IEEE
Transactions on , vol.7, no.2, pp.647-655, May 1992.
IEEE Guide for the Application of Protective Relays Used for Abnormal
Frequency Load Shedding and Restoration, IEEE. Standard C37.1172007, 2007.
F. C. L Trindade, "Análise dos Sistemas de Proteção e Controle de
Instalações Industriais com Geradores Síncronos Durante Operação
Ilhada," Dissertação de Mestrado, Depto. De Sistemas de Energia
Elétrica, Unicamp, Campinas-SP, 2009.
TRANSÉNERGIE TECHNOLOGIES INC, SimPowerSystems User's
Guide, 2006. Disponível em: <http://www.mathworks.com>. Acesso
em: 12 de dezembro de 2007.
1
Estudo de Métodos Numéricos Utilizados em
Simulações de Transitórios Eletromagnéticos
Rodrigo Cleber da Silva (IC), Sérgio Kurokawa (PE, FEIS/UNESP), José Pissolato (P).
Abstract—O objetivo deste trabalho é estudar alguns métodos
numéricos que podem ser utilizados em simulações de
transitórios eletromagnéticos. Serão estudados a fórmula de
Heun e o método de Simpson. Estes métodos serão utilizados
para simular as correntes e tensões nos terminais de uma linha de
transmissão monofásica submetida a uma operação de
chaveamento.
Index Terms—Transitórios eletromagnéticos, Linhas de
Transmissão, Métodos Numéricos.
fornecer certa quantidade de energia e essa energia não é
dissipada durante sua trajetória na linha, mas devido à
característica da linha ser indutiva e capacitiva, tem-se o
surgimento de campos elétricos e magnéticos. Esses campos
interferem diretamente na tensão e corrente no fim da linha de
transmissão.
A partir da análise das equações de correntes e tensões de
uma linha de transmissão, verifica-se que a uma linha com
perdas pode ser representada por meio de uma cascata de
circuitos , conforme mostra a figura 1.
I. INTRODUÇÃO
A
S soluções analíticas das equações diferenciais de
correntes e tensões, no domínio do tempo, de uma linha
de transmissão são conhecidas para o caso em que as
perdas na mesma são desconsideradas [1,2]. No entanto, este
modelo (sem perdas) não representa adequadamente uma linha
real, que possui uma resistência e uma condutância
distribuídas ao longo do seu comprimento [1,2].
Sabe-se que em algumas situações, uma linha de
transmissão pode ser representada por meio de uma cascata de
circuitos π [3]. Este modelo é desenvolvido diretamente no
domínio do tempo e permite levar em conta o efeito da
frequência nos parâmetros longitudinais da linha [4].
Quando uma linha é representada por meio de uma cascata
de circuitos π, as correntes e tensões ao longo da mesma são
obtidas por meio da solução das equações de estado. A
integração das equações de estado geralmente são realizadas
por meio do método de integração numérica denominado
Fórmula de Heun ou método de integração trapezoidal.
Neste trabalho será feita uma comparação do método de
integração trapezoidal com um outro método numérico de
integração denominado Regra de Simpson. Estes dois métodos
de integração serão utilizados para calcular as correntes e
tensões em uma linha de transmissão submetida a uma
operação de energização.
II. REPRESENTAÇÃO DE UMA LINHA MONOFÁSICA POR MEIO DE
UMA CASCATA DE CIRCUITOS π
Inicialmente considerando uma linha de transmissão ideal,
em cada intervalo de tempo t, necessário para energizar uma
linha de transmissão de comprimento x, a fonte precisa
R. C. Silva e S. Kurokawa estão vinculados ao Departamento de
Engenharia Elétrica da Faculdade de Engenharia de Ilha Solteira, UNESP (email: [email protected]; [email protected]).
J. Pissolato está vinculado ao DSCE/FEEC/UNICAMP (e-mail:
[email protected]).
Fig. 1. Linha de transmissão representada por cascata de n circuitos .
A partir do circuito mostrado na figura 1, é possível
escrever as correntes e tensões na forma de equações de
estado, conforme mostra a equação 1.
(1)
Na equação (1), X representa as correntes e tensões em cada
um dos circuitos . E [A] e [B] são matrizes de estados da
cascata de circuitos . Sendo possível calcular as correntes e
tensões ao longo da linha por meio de métodos de integração
numérica.
III. MÉTODOS NUMÉRICOS DE INTEGRAÇÃO
Para a resolução da equação de estado, neste trabalho serão
apresentadas resoluções utilizando os seguintes métodos
numéricos: Fórmula de Heun (integração trapezoidal) e a regra
de Simpson.
A. Fórmula de Heun
A Fórmula de Heun consiste em aproximar a função y’, em
um pequeno intervalo de tempo, por uma função de 1º grau.
A partir da aproximação, obtêm a equação 2.
Onde,
– 22 –
t = tk+1 – tk.
(2)
2
B. Regra de Simpson
A Regra de Simpson consiste em aproximar a função y’, em
um pequeno intervalo de tempo, por uma função de 2º grau.
A partir da aproximação, obtêm a equação 3.
.
Onde,
(3)
IV. SIMULAÇÃO DA ENERGIZAÇÃO DE UMA LINHA
Na figura 5 foi utilizado um passo de calculo de 0.1 us,
ambos os métodos numéricos apresentam praticamente a
mesma resposta, tendo apenas uma diferencia significativa no
tempo computacional maior para a resolução pelo método da
Regra de Simpson. Já na figura 6, apresenta uma maior
estabilidade utilizando a Regra de Simpson, porém a transição
entre cada ciclo da forma de onda apresenta um menor pico de
tensão pelo método da Integração Trapezoidal, sendo
considerado um passo de cálculo de 0.5 us.
MONOFÁSICA
V. CONCLUSÕES
Foi considerado uma linha de transmissão monofásica em
aberto de 10 km de comprimento e uma tensão aplicada de
20kV, conforme a figura 4.
Utilizando o modelo proposto foi possível determinar o
comportamento das correntes e tensões envolvidas em uma
linha de transmissão monofásica com perdas. Os resultados
obtidos estarão mais próximos da realidade do que os modelos
já conhecidos das linhas de transmissão sem perdas.
O resultado encontrado na literatura está coerente com os
dois resultados obtidos, porem pode-se notar a diferença entre
os dois métodos numéricos aplicados para a resolução deste
problema.
O método de integração trapezoidal apesar de ser um
método que apresenta certa instabilidade devido a ondulações,
tem uma melhor resolução quando aumenta o passo de
calculo, porém, aumenta o tempo computacional e apresenta
um surto na transição entre os períodos da forma de onda.
O método de resolução pela regra de Simpson apresenta
uma melhor resposta do que a integração trapezoidal em
relação a ondulações, porém, é um método que é necessário de
um tempo computacional maior para o processamento, pois
apresenta o dobro do numero de pontos que o método anterior,
além de que, necessita de um passo de calculo pequeno para
que haja convergência no método numérico.
Apesar dessa diferencia entre os métodos, ambos podem ser
aplicados para resolução desse problema.
Fig. 4. Linha de transmissão monofásica em aberto.
Neste trabalho serão apresentadas comparações entre os
métodos de integração numérica trapezoidal e a regra de
Simpson.
As figuras 5 e 6 representam a comparação entre os
métodos numérico estudados, variando os passos de cálculos
para uma melhor visualização do comportamento entre o
métodos.
60
50
Tensão [kV]
40
30
20
VI. REFERÊNCIAS BIOGRAFIAS
10
[1] R. D. Fuchs, Transmissão de Energia Elétrica: Linhas
Aéreas; teoriadas Linhas em Regime Permanente, 2ª
edição, Editora livros Técnicos e Científicos, Rio de
Janeiro, R. J., 1979.
[2] R. A. Chipman, Teoria e Problemas de Linhas de
Transmissão, Editora Mc Graw-Hill do Brasil Ltda, São
Paulo, SP, 1976.
[3] R. M. Nelms, G. B. Sheble’, S. M. Newton e L. L.
Grigsby, Using A Personal Computer To Teach Power
System Transients, IEEE Transactions on Power Systems,
Vol. 4, No. 3, August 1989.
[4] S. Kurokawa, F. N. R. Yamanaka, A. J. Prado e J.
Pissolato, “Inclusion of the frequency effect in the lumped
parameters transmission line model: State space
formulation”, Electric Power Systems Research, Vol. 79,
No. 7, pp. 1155-1163, Julho 2009.
0
-10
-20
0
R. Simpson
I. Trapezoidal
10
20
30
Tempo [us]
40
50
Fig. 5. Comparação entre a Regra de Simpson e Integração Trapezoidal para
a resolução de transitório eletromagnético, utilizando um passo de cálculo de
0.1 us.
60
50
Tensão [kV]
40
30
20
10
0
-10
-20
0
R. Simpson
I. Trapezoidal
10
20
30
Tempo [us]
40
50
Fig. 6. Comparação entre a Regra de Simpson e Integração Trapezoidal para
a resolução de transitório eletromagnético, utilizando um passo de cálculo de
0.5 us.
– 23 –
1
Método Baseado em Lógica Nebulosa para
Inserção de Geração Distribuída sob a Óptica do
Perfil de Tensão
Leonardo A. Gomes (M), Carlos A. F. Murari (P) e Ahda P. G. Pavani (PE, UFABC)
Resumo -- Neste artigo é proposta uma metodologia baseada em
lógica nebulosa para a obtenção de um índice que classifica as
barras mais propícias para a instalação de geradores
distribuídos em redes de distribuição de energia elétrica. A
metodologia foi desenvolvida considerando-se a dificuldade em
se manter um perfil de tensão adequado e, dessa forma, tende a
contemplar com os maiores valores de índices, as barras nas
quais a conexão de geradores tende a melhorar o perfil de tensão
da rede. Outro aspecto considerado no desenvolvimento da
metodologia, foi o de minimizar as perdas de potência ativa nas
redes elétricas. De forma geral, a obtenção do índice consiste em
associar graus de pertinência para as variáveis magnitudes das
tensões e potências ativas consumidas pelas cargas nas barras
das redes e, a partir de regras nebulosas, definir um valor
numérico para o índice. A vantagem dessa metodologia é que tais
variáveis são classificadas em conjuntos nebulosos, os quais
traduzem linguisticamente o conhecimento humano e, assim,
pode-se mais facilmente utilizar a experiência adquirida na
operação de uma rede de distribuição para a definição das
regras nebulosas para a obtenção dos índices a serem
empregados na alocação dos geradores.
Palavras Chave – Redes de distribuição, geração distribuída,
conjuntos nebulosos, lógica nebulosa, incertezas.
I. NOMENCLATURA
GD
PCH
SIF
IGDVp
Geração Distribuída
Pequena Central Hidroelétrica
Sistema de Inferência Fuzzy
Índice para Geração Distribuída de Variação do
Perfil de Tensão
II. INTRODUÇÃO
A
TUALMENTE através do incentivo estabelecido pela
ONU e incorporado por diferentes órgãos do setor
energético e ambiental, as políticas energéticas contemplam a
conexão nos sistemas de transmissão e distribuição, de
geradores de energia elétrica que incorporam tecnologias
pouco poluentes, especificamente as baseadas em fontes
renováveis, devido à adequação a tratados internacionais como
é o caso do protocolo de Kyoto [1], que com a inserção dos
créditos de carbono [2] incentiva também financeiramente a
Esta pesquisa teve o apoio financeiro do Conselho Nacional de Pesquisa
Científica - CNPq
.
conexão de geradores que aproveitem gases que contribuem
para o efeito estufa.
As tecnologias empregadas em GD incluem turbinas eólicas,
PCHs, células combustíveis e sistemas fotovoltaicos. Apesar
de sua pequena dimensão, a geração distribuída está tendo um
impacto significativo no mercado de energia, sendo comum
fazer uso da GD em novos projetos, ao invés de redes de
eletricidade mais caras.
Constata-se um grande potencial de expansão de geração de
energia elétrica na indústria sucroalcooleira que segundo
Fonseca [3], esse tipo de geração em 2006 supriu entre 8,9% a
10,7% da demanda do estado de São Paulo e até 2015 pode
chegar a atender entre 14,2% a 21,8% dessa demanda. Além
disso, busca-se também a diversificação da matriz energética
de cada país, podendo todos estes meios de geração postergar
a necessidade de expansão do sistema de geração centralizada,
melhorando o perfil de tensão e reduzindo consideravelmente
as perdas devido à proximidade da carga.
Não existindo reguladores de tensão ou banco de
capacitores, os perfis de tensão ao longo dos alimentadores de
uma rede de distribuição apresentam a seguinte característica:
a magnitude da tensão corresponde ao valor nominal – ou até
um pouco acima – nas subestações, onde estão instalados os
transformadores, e nas demais barras, ao longo das linhas dos
alimentadores, tem-se uma diminuição gradativa dessa
magnitude devido à inerente queda de tensão devido às
impedâncias dos condutores que compõem os alimentadores.
Manter um perfil de tensão adequado, mesmo com a
conexão de geradores distribuídos é, atualmente, um dos
principais desafios das concessionárias de energia elétrica.
Havendo a possibilidade da conexão de um gerador
independente a um alimentador, tem-se como conseqüência o
efeito da redução da queda de tensão ao longo do mesmo,
podendo até ocasionar um aumento da tensão acima do valor
nominal em alguns pontos [4].
Este cenário demanda diversos tipos de estudos com o
intuito de determinar a melhor alocação de GD. Em geral,
estes estudos ocorrem através da análise de resultados obtidos
de repetitivos fluxos de potência que exigem grande esforço
computacional e demandam muito tempo, pois é necessário
considerar diversos níveis de carregamento e modos de
operação dos geradores.
Neste trabalho é proposto um método heurístico que, a
partir da obtenção do estado de operação da rede através, por
– 24 –
2
exemplo, de um fluxo de potência ou estimador de estado,
baseando-se na teoria dos conjuntos nebulosos (Fuzzy Sets),
pode determinar de forma rápida, com mínimo esforço
computacional e boa precisão, as melhores barras para a
inserção de GD, sob a óptica do perfil de tensão. O método
aproveita o conhecimento do operador sobre o sistema elétrico
para classificar linguisticamente as variáveis do sistema,
magnitude das tensões e potência ativa consumida pelas cargas
nas barras. Em seguida, fazendo uso dessa experiência
determinam-se funções de pertinência para representar tais
variáveis na forma de conjuntos nebulosos.
São apresentadas: as funções de pertinência utilizadas na
classificação linguística das magnitudes das tensões e da
potência ativa consumida pelas cargas, as regras nebulosas, o
tipo de sistema de inferência utilizado, o método utilizado na
defuzificação, e um índice apropriado para indicar os melhores
pontos de inserção de GD. Os resultados são comparados com
aqueles obtidos através de um método que faz uso de
simulações exaustivas proposto na literatura [5].
III. CONTEXTO DA METODOLOGIA
Alguns tipos de índices matemáticos [5, 7] têm sido
propostos visando determinar de forma prática, o impacto da
inserção de GD no sistema de distribuição. Através destes
índices são identificados quais os melhores pontos para a
conexão de geradores para melhorar a operação da rede, de
acordo com critérios definidos.
O presente estudo objetivou desenvolver um sistema de
inferência fuzzy (SIF), que tem como variáveis de entrada as
magnitudes das tensões e a potência ativa consumida pelas
cargas nas barras da rede de energia elétrica, após a obtenção
do estado de operação da rede através, por exemplo, de um
fluxo de potência baseado no método de Newton [8]. A partir
daí, levando-se em conta a experiência do operador do
sistema, desenvolvem-se as funções de pertinência, as quais
classificam os valores das magnitudes das tensões nodais e a
potência ativa consumida pelas cargas em faixas de valores,
traduzindo seus valores numéricos em valores linguísticos
como, por exemplo: “Muito Baixo”, “Baixo”, “Nominal”,
“Alto” e “Muito Alto” para a aplicação de um conjunto de
regras nebulosas de um SIF.
A partir do uso SIF obtém-se índices para todas as barras,
tendo como objetivo auxiliar o operador na alocação do
gerador.
Com a inserção de lógica nebulosa, além de se atingir de
forma simplificada resultados equivalentes ou superiores aos
obtidos por meio dos índices propostos na literatura [5] tem-se
uma maior interação do usuário no processo de obtenção da
barra mais apropriada para a instalação do gerador distribuído.
índice final, para na sequência realizar as operações de
agregação das regras nebulosas através do método de
Mandani, dando origem ao índice nebuloso que por fim é
defuzificado através do método centróide, gerando índices de
classificação das barras, que priorizam o perfil das tensões e
consideram o nível de potência ativa consumida pelas cargas
do sistema.
Destaca-se que a vantagem em utilizar um sistema de
inferência nebuloso para a solução do problema de alocação
de geradores em uma rede de distribuição consiste na
possibilidade de traduzir os valores numéricos em valores
lingüísticos, o que torna a avaliação mais compreensível e os
ajustes, através do conjunto de regras nebulosas, mais
intuitivos.
Dessa forma, a abordagem do problema em questão através
da lógica nebulosa, possibilita uma maior interação do usuário
no processo de escolha da barra mais apropriada para a
inserção de GD.
Como exemplo dessa interação, o usuário pode atribuir
diferentes pesos a cada barra do sistema, considerando o custo
do transporte do insumo ou mesmo a disponibilidade de local
para a instalação ou aproveitamento de uma fonte de energia
elétrica próxima à barra.
V. BIBLIOGRAFIA
[1]
N. P. Domingos, “O Protocolo de Kyoto: a União Européia na liderança
do regime de mudanças climáticas”, Dissertação de Mestrado. Relações
Internacionais. Pontifícia Universidade Católica de São Paulo, São
Paulo, 2007.
[2]
http://www.agroind.com.br/content/view/473/2/ - informativo de
26/09/2007, acessado em 16 de fevereiro de 2009.
F. M. Fonseca, “Geração de energia elétrica em usinas sucroalcooleiras
de São Paulo: Cenários de expansão”,apresentado no XIX seminário
nacional de produção e transmissão de energia elétrica, Rio de Janeiro,
Brasil, 14 a 17 de outubro, 2007. Disponível: Cd-rom.
T. Hammons, L. L Lai, K P Wong, " International Practices in
Distributed Generation," IEEE Power Engineering Society, Pittsburgh,
PA, 2008 IEEE PES General Meeting, July. 2008.
J. A. M. Gallardo, "Impacto de geradores síncronos no desempenho de
regime permanente de sistemas de distribuição de energia elétrica”,
Dissertação de Mestrado, Departamento de Sistemas e Controle de
Energia. Eng., Univ. Estadual de Campinas, Campinas, 2005.
W. Pedrycs e F. Gomide, An Introduction to Fuzzy Sets: Analysis and
Design. London: MIT Press, 1998.
L. V. L. Abreu, "Análise do desempenho dinâmico de geradores
síncronos conectados em redes de distribuição de energia elétrica”,
Dissertação de Mestrado, Departamento de Sistemas e Controle de
Energia. Eng., Univ. Estadual de Campinas, Campinas, 2005.
A. Monticelli e A. Garcia, Introdução a sistemas de energia elétrica,
Editora da UNICAMP, 2000.
Baran, M.E. e Wu, F.F., “Optimal capacitor placement on radial
distribution systems”, Power Delivery, IEEE Transactions on, Volume:
4, Issue: 1, Pages: 725 – 734, Jan. 1989.
[3]
[4]
[5]
[6]
[7]
[8]
[9]
IV. METODOLOGIA
Após a obtenção do estado de operação da rede, que pode
ocorrer através de um fluxo de potência ou estimador de
estado, por exemplo, classifica-se linguisticamente as tensões e
as potências ativas consumidas pelas cargas do sistema através
de funções de pertinência onde no caso das tensões foram
utilizadas funções triangulares e no caso das cargas funções
trapezoidais. Em seguida faz-se uso da base de regras
nebulosas que considera as influências das tensões e cargas no
– 25 –
1
Fluxo de Carga Trifásico para Análise de
Distorções Harmônicas em Redes de
Distribuição de Energia Elétrica
Marina Borges Duque (M) e Carlos A. F. Murari (P)
Resumo -- A alimentação de cargas não-lineares gera
correntes harmônicas que podem afetar não somente a
fonte, mas toda a rede elétrica. Essas cargas não-lineares
são geradoras de harmônicas, pois ao se inserir um sinal de
tensão e correntes senoidais neste elemento não-linear, o
que se obtém serão sinais de tensão e/ou corrente nãosenoidais, mesmo que estejam em fase. Nesta pesquisa está
sendo implementada uma “versão harmônica” de um fluxo
de carga trifásico específico para redes de distribuição de
energia elétrica, no qual os alimentadores das redes de
distribuição bem como as cargas e outros componentes
serão representados adequadamente para inserir as
freqüências harmônicas e assim possibilitar a obtenção do
estado da rede (V,θ
θ) e também de outras grandezas
elétricas que levem em conta os efeitos causados pelas
cargas não-lineares.
Palavras Chave—Fluxo de carga harmônico, cargas nãolineares, correntes não-senoidais, freqüências harmônicas, redes
de distribuição
tensão não senoidal na carga, com distorções – chamada
corrente harmônica – no sistema de alimentação elétrica [2].
Embora algumas literaturas [3, 4] proponham que a fonte de
tensão dos dispositivos não-lineares comportam-se como uma
fonte de tensão harmônica, os dispositivos não-lineares podem
ser modelados geralmente como uma fonte de corrente
harmônica.
A alimentação de cargas não-lineares gera correntes
harmônicas que podem afetar não somente a fonte, mas toda a
rede elétrica. Essas cargas não-lineares são geradoras de
harmônicas, pois ao se inserir um sinal de tensão e correntes
senoidais neste elemento não-linear, o que se obtém serão
sinais de tensão e/ou corrente não-senoidais, mesmo que
estejam em fase.
Como principais equipamentos causadores das harmônicas
destacamos: os inversores de frequência, os variadores de
velocidade, os acionamentos tiristorizados, os conversores
eletrônicos de potência, os fornos de indução e a arco, os nobreaks e as máquinas de solda a arco [5, 7].
ATÉ
algumas décadas, nas instalações elétricas em geral
predominavam as cargas de natureza linear, as quais são
constituídas por elementos resistivos, capacitivos e indutivos,
alimentadas por tensão senoidal e absorvem da rede de
distribuição elétrica correntes senoidais com amplitudes
proporcionais à tensão e à freqüência nela aplicadas, mantendo
o formato senoidal, mesmo quando há defasagem entre tensão
e corrente (fenômeno encontrado em elementos reativos)[1].
Com o desenvolvimento de dispositivos baseados na
eletrônica de potência e consequente impulso na automação
principalmente na indústria, disponibilizou-se uma melhora do
rendimento, da controlabilidade e do custo de processos além
de permitir a execução de tarefas difíceis ou não possíveis
anteriormente, como por exemplo, o controle de velocidade do
motor de indução trifásico.
Todavia, esses dispositivos resultam em corrente elétrica
com forma de onda não senoidal na carga, gerando também
Figura 1 - Onda Senoidal fundamental e sua 5ª harmônica [1]
A figura 1 é um exemplo de uma tensão senoidal em 60 Hz
que é definida como a freqüência fundamental do sistema
elétrico brasileiro e um sinal de tensão na freqüência de 300
Hz, ou seja, de 5ª harmônica. Na figura 2 tem-se a soma dos
dois sinais, a frequência fundamental com a quinta harmônica,
que gera uma forma de onda resultante bem distorcida.
Esta pesquisa tem o apoio financeiro do Conselho Nacional de Pesquisa
Científica - CNPq
.
– 26 –
2
unidades capacitivas, podendo até haver uma danificação
completa dos capacitores.
Mesmo que não haja condições de ressonância, um
capacitor é sempre um caminho de baixa impedância para as
correntes harmônicas, pois o capacitor comporta-se como um
filtro passa-alta, portanto pode estar constantemente
sobrecarregado. Estará sujeito a um sobreaquecimento
excessivo, podendo até ocorrer uma atuação da proteção,
sobretudo dos relés térmicos.
Figura 2 - Forma de onda resultante da soma de dois sinais gerando uma onda
com distorção [1]
As cargas não lineares são compostas por elementos de
estado sólido como diodos, tiristores e transistores ou circuitos
chaveados como retificadores e inversores de tensão. Também
são cargas não-lineares as lâmpadas de descarga e os núcleos
magnéticos operando próximo da saturação [5].
Freqüências harmônicas são freqüências múltiplas da
fundamental, sendo que a freqüência fundamental no Sistema
Elétrico Brasileiro é de 60 Hz. Distorções harmônicas são uma
conseqüência dos sinais de tensão e corrente harmônicas na
rede elétrica, provocando a má operação de equipamentos e
processos [5]. Uma interpretação para as distorções
harmônicas é uma “sujeira” na rede elétrica, ou um “ruído”, o
que implica a necessidade de averiguar a rede como um todo,
antes de iniciar um processo. As Distorções Harmônicas são
um fenômeno contínuo e não de curta duração que duram
apenas alguns ciclos.
Dado que as perdas joule ou por aquecimento são
diretamente proporcionais ao quadrado da corrente, no caso de
haver uma corrente distorcida, a magnitude da corrente é
obtida a partir da soma vetorial da corrente fundamental com
as correntes harmônicas. Sendo assim há um aumento das
perdas ôhmicas no condutor [5], além de causar desde danos
em componentes até a parada do equipamento.
Nesta pesquisa está sendo implementada uma “versão
harmônica” de um fluxo de carga trifásico específico para
redes de distribuição de energia elétrica, no qual os
alimentadores das redes de distribuição bem como as cargas e
outros componentes serão representados adequadamente para
inserir as freqüências harmônicas e assim possibilitar a
obtenção do estado da rede (V,θ) e também de outras
grandezas elétricas que levem em conta os efeitos causados
pelas cargas não-lineares.
Bibliografia
[1] http://www.usjt.br/ep_eletrica/alecio.pdf, março de 2009
[2] D. Xia, G. T. Heydt, "Harmonic Power Flow Studies Part I – Formulation
and Solution," IEEE Trans. Power Apparatus and Systems, vol. PAS-101,
No. 6, pp. 1257-1265, June 1982.
[3] F. Z. Peng, "Application issues of active power filters", IEEE Industrial
Application Magazine, pp. 21-30, September/October, 1998.
[4] F. Z. Peng, “Harmonic sources and filtering approaches”, IEEE Industrial
Application Magazine, pp. 18-25, July/August 2001.
[5] M. Izhar, C. M. Hadzer, S. Masri, S. Idris, “A Study of the Fundamental
Principles to Power System Harmonic”, National Power and Energy
Conference (PECon) Proceedings Bangi-Malaysa, pp. 225-232, 2003.
[6] http://www.engecomp.com.br/bol_0089.htm, março de 2009
[7] http://www.engecomp.com.br/harmonic.htm, março de 2009
Em motores e geradores, causa aumento do aquecimento
devido ao aumento das perdas no ferro e no cobre, afeta a
eficiência e o torque disponível, pois o torque no eixo fica
pulsante. Nos transformadores, os efeitos assemelham-se com
os dos motores, com relação às perdas, além de aumentar o
nível de ruído. Harmônicos de tensão aumentam as perdas
ferro e harmônicas na corrente elevam as perdas cobre,
causando redução da capacidade e diminuição da vida útil.
Em aparelhos de medição e instrumentação, há a
possibilidade de medições errôneas. Nos relés de proteção e
fusíveis há um aquecimento dos dispositivos pelos quais
circula a corrente, podendo ocasionar a redução da vida útil e
eventualmente sua operação inadequada.
Os problemas causados por harmônicas em banco de
capacitores, podem resultar em ressonância, originando uma
sobretensão nos terminais das unidades capacitivas e em
decorrência desta, uma degradação do isolamento das
– 27 –
1
Análise de Redes de Distribuição Trifásicas com
Incertezas Representadas por Conjuntos
Nebulosos
Patrícia Lopes Cavalcante (M), Carlos A. F. Murari (P) e Silvio Sales Segura (D)
Newton [2] e suas versões modificadas.
Resumo -- Para que as simulações computacionais dos sistemas
de energia elétrica ocorram no menor tempo possível e resultem
em valores compatíveis com a realidade, é fundamental a pesquisa
e o desenvolvimento de modelos elétricos e matemáticos
adequados, tanto para os componentes das redes elétricas como
para a representação das cargas. É neste contexto que se insere a
pesquisa sintetizada neste artigo, sendo que o principal objetivo
foi a elaboração de uma versão de fluxo de carga trifásico para a
análise de redes de distribuição de energia elétrica, que
contemplasse o fato de que algumas variáveis do sistema elétrico
não são determinísticas, ou seja, há imprecisões ou variações,
particularmente nas cargas. Neste sentido, tais variáveis
imprecisas foram representadas como números nebulosos (na
forma de sino) e assim apresenta-se um Fluxo de Carga Trifásico
Especializado que incorpora conjuntos nebulosos (fuzzy sets) e
respectivas operações matemáticas. Os resultados obtidos
confirmam o bom desempenho deste novo método.
Palavras Chave -- Fluxo de carga trifásico, números nebulosos,
fluxo de carga fuzzy, incertezas
I. NOMENCLATURA
FCTE – Fluxo de Carga Trifásico Especializado
FCTEF – Fluxo de Carga Trifásico Especializado Fuzzy
R – Resistência do condutor
X – Reatância do condutor
II. INTRODUÇÃO
M geral, os sistemas de distribuição de energia elétrica,
além de apresentarem configuração radial, são
caracterizados por possuírem condutores em que a relação
R/X apresenta valores superiores aos encontrados em redes de
transmissão. Além disso, os fluxos de potência ativa e reativa
são desbalanceados em virtude da disposição dos condutores e
do desequilíbrio das cargas. Estas características têm
estimulado o desenvolvimento de metodologias específicas de
fluxo de carga para a distribuição que possibilitem uma melhor
eficiência computacional para a análise destes sistemas [1].
O fluxo de carga é uma ferramenta muito importante e
fundamental para a análise de qualquer sistema de potência,
seja para aplicações em tempo real ou para as etapas de
planejamento da operação e da expansão das redes elétricas.
Um dos métodos mais estudados e utilizados é o método de
E
Esta pesquisa tem o apoio financeiro do Conselho Nacional de Pesquisa
Científica - CNPq
.
A partir dos anos 80, constata-se um interesse crescente
dos pesquisadores em desenvolver técnicas de solução
específicas para a área de distribuição de energia elétrica.
Estão disponíveis na literatura, trabalhos específicos para os
sistemas de distribuição [3 a 5].
Entretanto, qualquer que seja o método adotado para se
efetuar simulações do fluxo de carga, visando a obtenção do
estado da rede (ângulos e módulos das tensões) recorre-se a
uma base de dados na qual constam informações sobre as
cargas, bitolas, disposição e distâncias entre os cabos,
transformadores, entre outras. Alguns desses dados apresentam
um grau de imprecisão como, por exemplo, as potências nas
barras, já que estas variam de acordo com o horário do dia.
Devido a essas imprecisões, normalmente se utiliza o
conhecimento e a experiência dos operadores, para estimar os
valores destas grandezas elétricas e os mesmos são
considerados invariantes, na maioria das simulações do fluxo
de carga. . Entretanto, é possível, através de técnicas
adequadas, inserir nas simulações de fluxo de carga tais
imprecisões.
Zadeh [6] desenvolveu a Teoria de Conjuntos Nebulosos
(Fuzzy Sets) e em 1978 [7], a Teoria de Possibilidades,
criando assim uma base teórica que possibilita introduzir nos
algoritmos de fluxo de carga as imprecisões presentes nos
sistemas elétricos de potência. Assim, grandezas como as
potências nas barras, que não são nem determinísticas nem
probabilísticas, podem ser quantificadas na forma de números
nebulosos e serem tratadas através de técnicas conhecidas, tais
como o fluxo de carga.
A inserção de conjuntos nebulosos em sistemas elétricos de
potência começou a ganhar destaque na década de 70, tendo
sido inicialmente utilizados para resolver problemas de tomada
de decisão. Algumas aplicações têm sido propostas para, por
exemplo, processar informações do tipo “a tensão na barra k
está alta” [8 a 13].
Neste trabalho, o foco está no FCTE [4] desenvolvido
especificamente para a análise das redes de distribuição de
energia elétrica. A esta metodologia foi agregada a teoria de
conjuntos nebulosos para representar as variáveis imprecisas a
fim de refletir nos resultados do FCTE as incertezas inerentes
às cargas presentes no sistema elétrico.
O fluxo de carga com incertezas é uma ferramenta muito
útil nas situações onde são necessárias diversas simulações de
– 28 –
(
α E kcapacitores = [BCBV]. α I kc arg as − α Ikcapacitores
um fluxo de carga determinístico, como por exemplo, no
planejamento da expansão.
III. ALGORITMO
Neste trabalho, as variáveis imprecisas são representadas
como números nebulosos através da função de pertinência
sinusoidal, ilustrada na Figura 1, na qual m correspondente ao
representa o grau de incerteza
maior grau de pertinência e
da função. Este tipo de função facilita a obtenção dos
resultados por possuir seus próprios operadores nebulosos e
por ser definida com apenas dois valores numéricos ( m e ).
2
)
(4)
Passo 5
Calcular desvios relativos aos fluxos de corrente:
km
α J km
= α J km
− α J capacitore
total
c arg as
s
(5)
α J ckmarg as = [MatI].α Ickarg as
(6)
km
km
α J capacitore
= [MatI].α Icapacitore
s
s
(7)
sendo:
Nas expressões (6) e (7) [ MatI] é a matriz incidência nodal.
Passo 6: Determinação dos fluxos de potência ativa e reativa e
respectivos desvios:
(
S(m
) (
) = P(m
) (
)+ j.Q(m
S mSkm , α Skm = E mEk , α Ek ⊗ J mJkm , α J km
abc
km
Sabc
abc
, αSkm
abc
abc
km
Pabc
abc
, α Pkm
abc
abc
km
Qabc
total
, α Qkm
total
)
)
*
(8)
(9)
IV. BIBLIOGRAFIA
[1] P.A.N. Garcia; J.L.R. Pereira; S. Carneiro; V. M. da Costa, and N.
Martins, “Three-Phase Power Flow Calculations Using the
Figura 1. Função de pertinência sinusoidal
Em [14] é comentado que a obtenção de uma função que
represente operações de multiplicação nem sempre é possível.
Acrescente-se o fato de que operações consecutivas com
números nebulosos impõem restrições, pois, assim como
ocorrem erros em processamentos iterativos com números
decimais, eles também surgem nas operações com números
nebulosos e com maior intensidade. Portanto, em matemática
fuzzy, a escolha das melhores funções e melhores operadores
depende da aplicação.
A modelagem do FCTEF baseou-se no FCTE [4] e a
modelagem das incertezas foi realizada através da função de
pertinência sinusoidal utilizada em [9], [11] e [12].
O FCTEF é inicializado com os valores centrais da
distribuição de possibilidades ( m ) obtidos através do FCTE e
Current Injection Method”. IEEE Transactions on Power
[2]
[3]
[4]
[5]
[6]
[7]
[8]
E abc e J abc correspondentes às
que compõem os vetores
variáveis de entrada do FCTEF. Para obtenção dos desvios
propõem-se executar:
Passo 1
Calcular os desvios nas injeções de corrente proveniente das
cargas:
α Ik
c arg as
= I c arg as .α ( P ,Q )
k
(1)
[9]
[10]
[11]
Passo 2
Calcular os desvios nas tensões:
α E k = [BCBV ].α I k
abc
c arg as
[12]
(2)
Passo 3
Caso existam capacitores, calcular desvios nas injeções de
corrente proveniente dos mesmos:
α Ik
capacitores
= j.B.α E k
capacitores
(3)
[13]
Systems, vol. 15, No 2, pp. 508-514, 2000.
G. W. Stagg and A. H. El-Abiad, Computer Methods in Power System
Analysis. Mc Graw Hill, 1968.
D. Das; H.S. Nagi, and D.P. Kothari, “Novel Method for Solving Radial
Distribution Network”, IEE Proceedings Generation, Transmission
and Distribution, vol. 141, No. 4, pp. 291-298, 1994.
Jen-Hao Teng, “A Direct Approach for Distribution System Load Flow
Solutions”. IEEE Transactions on Power Delivery, vol. 18, No 3.,
2003.
R.D. Zimmerman and H.D. Chiang, “Fast Decoupled Power Flow for
Unbalanced Radial Distribution”. IEEE Transactions on Power
Delivery, vol. 10, No. 4, pp. 2045-2052, 1995.
L.A. Zadeh, “Fuzzy Sets”. Information and Control 8, pp. 338-353,
1965.
L.A. Zadeh, “Fuzzy Sets as a Basis for a Theory of Possibility”. Fuzzy
Sets and Systems 1, pp. 3-28, 1978
P.R. Bijwe and G.K.V. Raju, “Fuzzy Distribution Power Flow for
Weakly Meshed Systems”. IEEE Transactions on Power Systems, vol.
21, No. 4, pp. 1645-1652, 2006.
M.M.P. Lima, “Nova Concepção para Simulação de Fluxos de Carga
Fuzzy Incluindo Função de Pertinência Sinusoidal”. Dissertação de
M.Sc., Unicamp, Campinas, SP, Brasil, 2000.
V. Miranda; M.A.A.C. Matos and J.T. Saraiva, “Fuzzy Load Flow –
New Algorithms Incorporating Uncertain Generation and Load
Representation”. Proceedings of the Tenth Power Systems
Computation Conference, Graz, Austria, pp. 621-627, 1990.
C.A.F. Murari; M.A. Pereira and M.P. Lima, “A New Technique to
Electrical Distribution System Load Flow Based on Fuzzy Sets”. Fuzzy
Sets Based Heuristics for Optimization. Springer-Verlag, Berlin,
Heidelberg, 2003.
M.A. Pereira. and C.A.F. Murari, “Electrical Distribution Systems
Fuzzy Load Estimation”. Inteligent System Application to Power
Systems, (ISAP’99), pp. 370-375, 1999.
M.A. Pereira; C.A.F. Murari and C.A. Castro Jr., “A Fuzzy Heuristic
Algorithm for Distribution Systems’ Service Restoration. Fuzzy Sets
and Systems, Elsevier, vol. 102, pp. 125-133, 1990.
[14] W. Pedrycz and F. Gomide, An Introduction to Fuzzy
Sets: Analysis and Design. MIT Press, 1998.
Caso contrário, prosseguir para o Passo 5.
Passo 4
Recalcular os desvios nas tensões:
– 29 –
2010 SISPOT – March 29-31, 2010
1
Practical Method for Computing the Maximum
Loading Point Based on Load Flow with Step
Size Optimization
Beatriz L. Tavares (M), Manfred F. Bedriñana (D), Carlos A. Castro (P)
I
N this paper a fast, practical maximum loading point
(MLP) calculation method is presented. The calculation
process is based on the properties of the normal vector to the
feasibility boundary computed close to MLP, which is
calculated through a load flow method with step size
optimization (LFSSO). Moreover, a practical procedure is
added to the overall calculation process to include the
operator's information on the acceptable error in the final
result. The basic process is characterized by obtaining
consecutive approximations of the MLP within the infeasible
region. In each step, a correction factor based on the
maximum admitted error in the final MLP is applied.
Reactive power generation limits are taken into account.
margins [15].
The loading factor reaches its maximum value ρ = ρcr (cr
stands for critical point), and the respective operating point
is on the voltage stability boundary ; this point is named
maximum loading point (MLP).
C. Load flow method with step size optimization (LFSSO)
LFSSO was first proposed for solving the load flow
equations of ill-conditioned power systems. For those, the
conventional load flow methods exhibit poorer performance,
or simply diverge, although the system indeed operates in a
stable equilibrium point. At rth iteration of LFSSOP
(assuming ρ fixed), the state variable vector x(r+1) is
computed by
I. THEORETICAL CONCEPTS
x ( r +1) = x ( r ) + µ ( r ) ∆x ( r ) , and
(3)
A. Load flow equations
∆x ( r ) = − [∇ x g ] -1
g(x (r ) , ρ ) ,
x = x (r )
The conventional load flow equations are formulated as
where (r) is a step size optimization factor (optimal
g ( x, ρ ) = 0 ,
(1) multiplier) that multiplies the state variable correction vector
(r)
where x∈ℜ(2nPQ+nPV) is vector of system state variables
x ; ∇xg is the Jacobian matrix of g. Also, is computed to
t
t t
nPQ+nPV
corresponding to system, x=[ V ] , where ∈ℜ
and minimize the following quadratic function based on the
V∈ℜnPQ are vectors of bus voltage angles and magnitudes, power mismatches.
2
respectively; ρ∈ℜ is the loading factor; nPQ and nPV are
min F ( µ ) = 12 g st 2 = 12
g ts2 , i ,
(4)
the numbers of PQ and PV buses, respectively; g(x,ρ) is
i∈Ωg
t
t t
nPQ+nPV
nPQ
defined as g=[ P Q ] , where P∈ℜ
and Q∈ℜ
where Ωg indicates the components g that are taken into
are the real and reactive power mismatches, respectively.
consideration; gts is g expanded in Taylor series, considering
Equation (1) can be rewritten as
up to the second-order term, as
 ∆P(x, ρ )   Psch ( ρ ) − Pcal (x)  0
g ( x, ρ ) = 
=
=
,
g ts ( µ ) = g (x ( r ) , ρ ) + µ ∇ x g(x ( r ) ) t ∆x ( r ) + µ 2T (x ( r ) ) .
(5)
(2)
  
 
∆Q(x, ρ ) Q sch ( ρ ) − Q cal (x) 0
Also, T(x) corresponds to the second order terms of g, as
where subscripts sch and cal correspond to scheduled and
2
calculated terms, respectively.
1
∂ 
(6)
T (x) = 
g( x) .
∆x i
2  i∈Ωg
∂xi 
B. Maximum loading point


In this paper a load increase direction with constant Replacing (5) in (4) and applying the local minimum
power factor (proportional to the base case), followed by a condition F/ = 0, a cubic equation is obtained for .
proportional increase in the real power generation was
D. Applications of LFSSO for voltage stability analysis
adopted. Therefore, Psch = ρPsch-bc and Qsch =ρQsch-bc, where
For points outside the feasibility region (either due to an
bc stands for base case (ρbc = 1). Also, Psch-bc = Pg-bc – Pl-bc
excessive loading or to a contingency), assumes very low
and Qsch-bc = Qg-bc–Ql-bc, where g and l are terms associated
values (theoretically 0). Overbye [2] showed that LFSSO
to generation and load powers, respectively. This load
leads to a point on the feasibility boundary rather than to
increase direction is usually adopted by utilities and
simply diverge. With this information (points on boundary
regulatory agencies for the definition of secure loading ), further applications of the LFSSO can be proposed.
In [1], an iterative method for the calculation of the
Beatriz L. Tavares, Manfred F. Bedriñana, and Carlos A. Castro are with closest point on the boundary
from a certain feasible
the University of Campinas (UNICAMP), Power Systems Department, São
operation point is proposed. The distance between these two
Paulo, Brazil, (e-mail: {beatriz, manfred.bedrinana, ccastro}@ieee.org).
operating points is called as Minimum Voltage Stability
The authors would like to thank agency FAPESP for the financial support.
∑
∑
– 30 –
2010 SISPOT – March 29-31, 2010
2
Security Margin (MVSSM). In each step the MLP is
calculated for a predefined load increase direction. Then, the
direction is updated by using the normal vector to
computed at the last MLP. This normal vector w is
calculated from (1) as
∇ x g (x mlp ) w = 0
t
w
2
(7)
=1
(2)
Run LFSSOP for ρ(i). If the operating point is
infeasible (µ → 0 ) , continue. Else, go to (5).
(3)
Obtain ρtemp=ρ(i)- ρ, where ∆ρ is computed by (9).
Run LFSSOP for ρtemp. If the operating point is
feasible, continue. Else, go to (6).
Run LFSSOP for ρ(i+1)= · ρtemp. If the operating point is
infeasible, the final solution is given by
ρcr=(ρ(i+1)+ρtemp)/2. Else, set ρ(i+1)= (ρ(i)+ ρ(i+1))/2
(average of the most recent feasible and infeasible
points). Increment counter i and go to (2).
/ρtemp. If the operating point is
Run LFSSOP for ρ(i+1)=
feasible, the final solution is given by
ρcr=(ρ(i+1)+ρtemp)/2. Else, increment counter i and go to
(3).
(4)
(5)
where xmlp is the state variable vector in last MLP; ||w||2 is
the Euclidean length of w, so w is a unitary vector.
Other Initial
Point
>
Unfeasible region
(no power flow solutions)
Calculated MLP
(for s2 direction)
0
Desired MLP
(for ssch direction)
0
(6)
cr
ρ
cr
Calculated MLP
(for s1 direction)
0
A
B
ρcr
acceptable
range
C
Voltage Stability
Boundary
(one power flow
solution)
s1
Flat Start
Point
D
LFSSO
Process
s2 ssch
Feasible region
(two power flow solutions)
i-1
i
iteration
Fig. 2. Illustration of an iterative process.
Fig. 1. LFSSO features in load parameter space.
III. TEST RESULTS
The proposed method has been tested for the IEEE test
systems and also for realistic systems. The LFSSO
convergence tolerance εs was set to 0.1 MW/MVAr, the
loading factor tolerance ερ was set to 10-2 and the optimal
multiplier tolerance min to 0.1. Reactive power generation
limits at generation buses were considered. Table I shows
∆S, w
∆S lc =
s sch ,
(8) the number of iterations of the proposed algorithm, the
cos β
number of load flows that are carried out and also shows the
S∈ℜ(2nPQ+nPV) is power mismatch vector, S = [ Pt
where
number of load flows (equal to the number of iterations)
t t
Q ] ; ⟨ S,w⟩ is a dot product of S and w; β is the angle
performed by [1], considering the accepted margin error of
between ssch and w, so cosβ = ⟨ssch,w⟩. The loading factor
±5% in both cases.
correction ρ∈ℜ is calculated as
TABLE I
Information on the last calculated MLP and equation (7)
can be used to calculate the unitary normal vector w to the
boundary at this point. Then, using geometry properties
is convex, the power
and assuming that boundary
curtailment Slc is calculated as
∆ρ =
∆S lc
2
S sch−bc
=
2
∆S , w
cos β
1
S sch−bc
=
2
∆S , w
COMPARISON BETWEEN THE PROPOSED ALGORITHM AND [1]
.
(9)
System
S sch−bc , w
So, the new estimate for ρ will be ρnew = ρ – ρ.
IEEE
300
II. PROPOSED METHOD
Peruvian
For instance, some utility may define that "the acceptable
error in ρcr is 5%". Therefore, any value between 0.95ρcr and
1.05ρcr is considered as a good one for practical purposes.
Fig. 2 illustrates possible situations that may be
encountered in an iterative process by using (9). From an
operating point at iteration (i-1), iteration i consists of using
(9), leading to a new operating point. Points A (infeasible)
and D (feasible) are unacceptable, since they lay without the
acceptable range. On the other hand, points B (infeasible)
and C (feasible) are acceptable, since they lay within the
acceptable range. Therefore, ρB and ρC provide a good
practical estimate of the MLP and can be used in security
analysis processes.
The proposed method is described in detail below.
(1) Set counter i = 0 . Set ρ(i). Usually, the initial value of
ρ is large enough to define an infeasible operating
point, but in practice any value would work fine.
Initial ρ
2
3
6
8
10
Iterations
LFSSO
Iterations of [1]
Iterations
LFSSO
Iterations of [1]
1
3
2
1
3
2
3
7
4
1
3
3
4
9
6
2
5
3
3
7
3
3
7
5
3
7
8
1
3
2
The method presents good convergence characteristics
for test systems and realistic systems, and also for small
margin acceptable ranges, like x = ±2.5%.
The amount of load flows run by the proposed method is
equal to a bit larger that of method [1], however, the
computational burden required by the proposed method was
still very light in all cases tested, proving the efficiency of
the method.
IV. REFERENCES
[1]
[2]
[3]
– 31 –
M.F. Bedriñana, C.A. Castro, "Maximum Loading Point
Computation based on Load Flow with Step Size Optimization,"
2008 PES General Meeting, July 20-24, Pittsburgh, PA, 2008.
T. J. Overbye, “A power flow measure for unsolvable cases”, IEEE
Trans. Power Syst., vol. 9, no. 3, pp. 1359–1365, Aug. 1994.
I. Dobson and L. Lu, “New methods for computing a closest saddle
node bifurcation and worst load power margin for voltage collapse”,
IEEE Trans. Power Syst., vol. 8, no. 3, pp. 905–913, Aug. 1993.
1
Análise da Influência da Prática de Eliminação
de Faltas nos Principais Índices de
Confiabilidade e Qualidade de Energia em
Modernos Sistemas de Distribuição
Eline A. C. Barbosa (M), Fernanda C. L. Trindade (D), Paulo C. M. Meira(D), Walmir Freitas (P)
Palavras-chave— Qualidade de Energia, Confiabilidade,
Sistemas de Distribuição, Religadores, Proteção de Sobrecorrente.
religadores automáticos teve início nos anos 70, quando as
interrupções momentâneas não eram motivo de preocupação
aos consumidores. No entanto, com o avanço tecnológico dos
últimos anos, as características das cargas têm sofrido
modificações que resultam numa maior exigência de qualidade
no fornecimento da energia.
Como uma tentativa de minimizar a incidência de
interrupções
momentâneas,
algumas
empresas
têm
simplesmente eliminado o uso de religamentos automáticos.
No entanto, deve-se considerar que, se por um lado, a prática
do religamento automático resulta numa melhora dos índices
de confiabilidade e piora na qualidade da energia fornecida, a
prática da operação de fusíveis, ainda que mediante a
ocorrência de faltas temporárias, pode resultar na piora dos
índices de confiabilidade e na melhora da qualidade da energia
[2]. Neste contexto, o objetivo deste trabalho é apresentar uma
análise da política de eliminação de falta adotada pelas
concessionárias na ocorrência de interrupções sustentadas e
momentâneas.
I. INTRODUÇÃO
II. ÍNDICES DE CONFIABILIDADE E QUALIDADE DE ENERGIA
tualmente, o crescente impacto das interrupções
momentâneas no fornecimento de energia elétrica tem
resultado numa maior preocupação dos consumidores quanto
aos efeitos negativos desses distúrbios no desempenho de seus
processos.
Enquanto a maior parte das cargas dos
consumidores residenciais recupera a operação normal assim
que a tensão retorna a níveis aceitáveis, as cargas dos
consumidores industriais e comerciais podem ter o
desempenho prejudicado e ainda levar algumas horas para que
tenham sua atividade restaurada [1].
A ocorrência de interrupções momentâneas está fortemente
associada ao fato de que as empresas de distribuição de
energia utilizam religadores automáticos em seus
alimentadores com o intuito de minimizar o impacto das faltas
e melhorar a confiabilidade de operação do sistema. O uso dos
Com o intuito de medir a qualidade e a confiabilidade da
energia suprida, muitos índices foram desenvolvidos [3]-[7].
Basicamente, os índices avaliam a freqüência e a duração das
interrupções momentâneas e sustentadas e são divididos em
duas classes principais: índices baseados nos consumidores e
índices baseados nas cargas. Na Tabela 1, foram apresentados
alguns desses índices e, a menos que se tenha sido previamente
especificado, o termo “interrupções” está relacionado a
“interrupções sustentadas”. Os índices são representados por
siglas de termos em inglês porque nem todos os índices são
utilizados no Brasil.
Resumo-- Os sistemas de distribuição utilizam religadores
automáticos nos alimentadores como uma forma de minimizar o
impacto das faltas e melhorar a confiabilidade no fornecimento de
energia elétrica. Contudo, atualmente, as concessionárias têm
questionado tal uso à medida que as cargas dos sistemas
modernos de distribuição tornam-se cada vez mais sensíveis a
interrupções momentâneas. O religamento automático pode
causar interrupções momentâneas a um grande número de
consumidores, resultando na piora da qualidade da energia
fornecida. Como resultado, algumas empresas estão eliminando a
prática do religamento automático. No entanto, essa eliminação
implica em mudanças fundamentais de planejamento e operação
nos sistemas de distribuição. Aparentemente, não é possível obter
uma melhora simultânea na confiabilidade e na qualidade de
energia utilizando o religamento automático. Nesse contexto, de
forma que seja possível avaliar o impacto do religamento
automático, esse trabalho apresenta um estudo sobre a prática de
eliminação de falta utilizada para balizar a tomada de decisão das
empresas distribuidoras de energia.
A
Este trabalho foi financiado pela Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior (CAPES), Brasil.
E. C. A. Barbosa, F. C. L. Trindade, P. C. M. Meira e W. Freitas são do
Departamento de Sistemas de Energia Elétrica, Universidade Estadual de
Campinas (UNICAMP) C.P. 6101, 13081-970 Brasil (e-mail:
[email protected];
[email protected];
[email protected]; [email protected]).
– 32 –
TABELA I
ÍNDICES DE INTERRUPÇÃO DE ENERGIA.
SAIFI
System Average Interruption Frequency Index
SAIDI
System Average Interruption Duration Index
MAIFI
Momentary Average Interruption Frequency Index
MAIFIE Momentary Event Average Interruption Frequency
Index
2
ressaltar que essas taxas são parâmetros estocásticos
dependentes de uma série de fatores que variam de sistema
para sistema.
Para que seja possível observar melhor o impacto de cada
prática no valor total dos índices SAIFI e MAIFI, calculados a
partir dos dados apresentados, a Figura 2 foi construída.
35
DJ
P1
20
15
10
0
...
...
L1.7
25
5
L1.8
L1.1
SAIFI
MAIFI
30
Valores dos índices
III. METODOLOGIA E RESULTADOS
Para investigar a influência da prática do religamento nos
índices SAIFI e MAIFI, foi utilizado um sistema (Figura 1)
que consiste de um alimentador principal e um religador (R)
dividindo o alimentador em duas partes. A função da chave
seccionadora (Chave Sec.). é permitir que, no caso de
ocorrência de uma falta permanente em P1, as cargas
conectadas à P2 possam sofrer apenas uma interrupção
temporária ao invés de uma interrupção sustentada, como
resultado da abertura do disjuntor DJ.
1
2
3
4
Casos
Figura 2. Valores totais dos índices SAIFI e MAIFI para o sistema sob estudo.
L1.14
R
L2.1
P2
IV. CONCLUSÕES
L2.7
...
...
L2.6
L2.12
Chave Sec.
N.A.
Figura 1. Diagrama unifilar do sistema utilizado.
Os parâmetros que descrevem o sistema da figura acima
são apresentados na Tabela 2.
TABELA II
DADOS DO SISTEMA.
Seção do
Alimentador (y)
P1
L1.1 a L1.14
P2
L2.1 a L2.12
Total
Comprimento (ly)
(km)
10,00
2,50
8,00
2,50
83,00
Número de
Consumidores (NCy)
200
80
300
80
2580
Para o estudo da prática de eliminação de falta do sistema
escolhido foram estipuladas quatro configurações:
Caso 1: adota-se a prática de evitar a queima de fusíveis e o
fechamento da chave seccionalizadora é realizado
manualmente;
Caso 2: não se adota a prática de evitar a queima de fusíveis e
o fechamento da chave seccionalizadora é realizado
manualmente;
Caso 3: adota-se a prática de evitar a queima de fusíveis e o
fechamento da chave seccionalizadora é realizado
automaticamente;
Caso 4: não se adota a prática de evitar a queima de fusíveis e
o fechamento da chave seccionalizadora é realizado
automaticamente.
Além disso, assumiu-se uma taxa de falta permanente ( p)
de 0,15 falta/km/ano e uma taxa de falta temporária ( t) de
0,40 falta/km/ano para todo o sistema. No entanto, deve-se
Neste trabalho verificou-se que a opção pela prática de
evitar a queima de fusíveis através da atuação de dispositivos
como os religadores resultou na diminuição do índice SAIFI,
mas também num aumento significativo do índice MAIFI. Não
é possível afirmar diretamente qual prática é a melhor para
todos os sistemas. Na escolha da prática de eliminação de falta
a ser adotada por um determinado sistema, além da quantidade
de consumidores que sofrem interrupções momentâneas ou
permanentes, deve-se levar em conta a duração de cada
interrupção e os custos finais de cada situação tentando-se, na
medida do possível, conciliar uma opção que satisfaça tanto os
consumidores quanto as concessionárias de energia.
Quanto à automatização da chave seccionadora, a utilização
do fechamento automático ao invés do manual representa uma
boa alternativa para a melhora da confiabilidade de operação
do sistema sem afetar significativamente a qualidade da
energia fornecida, já que o índice MAIFI aumenta numa
proporção bem menor.
V. REFERÊNCIAS
[1]
[2]
[3]
[4]
[5]
[6]
[7]
– 33 –
Short, T. A., 2006. Distribution Reliability and Power Quality. Boca
Raton:Taylor and Francis.
Brown, R. E., 2009. Electric power distribution reliability. Boca
Raton:Taylor and Francis.
Voltage Characteristics of Electricity Supplied by Public Distribution
Systems, European Standard, EN-50160, Belgium, 1994.
IEEE Guide for Service to Equipment Sensitive to Momentary Voltage
Disturbances, IEEE Standard. 1250-1995.
Recommended Practice for Monitoring Electric Power Quality, IEEE
Standard. 1159-1995
Recommended Practice for Evaluating Electromagnetic Compatibility
with Electronic Process, IEEE Standard 1346-1998.
IEEE Guide for Electric Power Distribution Reliability Indices, IEEE
Standard 1366-2003.
Método Experimental para Determinação das
Capacitâncias Parasitas do Motor de Indução
Trifásico Acionado por Inversor MLP
RUDOLF RIBEIRO RIEHL (D), ERNESTO RUPPERT (P)
Three-phase induction motors present high
Abstract
frequency stray capacitances when driven by PWM inverters.
The aim of this paper is to present a new methodology to
experimentally determine these capacitances and also evaluates
the effects of electromagnetic interference to the motors both in
differential mode as well as in common mode.
Three-phase induction motor, PWM inverter,
Keywords
high frequency capacitances, stray capacitances, parasitic
capacitances
I. INTRODUÇÃO
A utilização do inversor MLP no acionamento e controle de
motores de indução trifásicos é cada vez mais comum,
principalmente para a faixa de potência de até 10 cv. Com a
evolução dos dispositivos de eletrônicos de potência (IGBT,
MOSFET e outros), as frequências de chaveamento destes
inversores podem chegar a até 20kHz. Nestas frequências, os
tempos de subida da tensão MLP são muito pequenos e são
responsáveis pelo aparecimento de fenômenos, definidos
como interferência eletromagnética no motor de indução.
Devido à presença de capacitâncias parasitas, um
acoplamento capacitivo é estabelecido e caminhos de
circulação de correntes de alta frequência entre as fases do
motor (modo diferencial) e entre as fases e o terra (modo
comum). Quanto maiores forem estas frequências de
chaveamento, maiores serão as conseqüências [1, 2].
Um destes caminhos passa pelos rolamentos do motor e são
conhecidas como correntes de mancais (bearing currents) que,
em virtude das descargas que ocorrem pelo rompimento do
dielétrico (lubrificante do rolamento) podem danificar estes
rolamentos e consequentemente o motor. Outro fenômeno é o
choque elétrico ou descarga elétrica do motor (DEM), devido
à circulação da corrente de fuga (IFUGA) do motor para a
carcaça quando o mesmo não está aterrado ou este aterramento
não é bom o suficiente [1, 3]. Neste trabalho foi utilizado um
motor de indução trifásico de 5 cv, alimentado por um
inversor MLP operando com controle volts/hertz. Não se tem
notícia de trabalhos brasileiros que utilizam esta metodologia
para determinação de capacitâncias parasitas de motores de
indução trifásicos.
_______________________________
II. MÉTODO PARA DETERMINAÇÃO
EXPERIMENTAL DAS CAPACITÂNCIAS PARASITAS
DO MOTOR DE INDUÇÃO TRIFÁSICO
Os procedimentos propostos para o desenvolvimento deste
novo método consistem em: a) determinação dos parâmetros
do circuito equivalente do motor de indução trifásico, em
regime permanente e em alta freqüência [1, 4], através de
ensaio característico em laboratório (figuras 1 e 2); b)
estabelecer configurações de ligações entre o inversor MLP e
o motor para medições das grandezas de interesse: tensões de
modo comum (VCM) e de eixo (VEIXO); correntes de fuga
(IFUGA) e de eixo (IEIXO), através de circuito de medição
desenvolvido para este fim (figura 3); c) calcular os valores
das capacitâncias parasitas entre estator e carcaça do motor
(CEC); estator e rotor (CER); rotor e carcaça (CRC) e de
rolamento (CB) utilizando suas equações características
(TABELA 1); d) utilizar o Pspice, para simular o sistema
(motor de indução trifásico, alimentado por inversor MLP,
com o circuito equivalente em alta frequência do mesmo.
B
R1
L1
V1
L2
R2
Lmag
Fig. 1 Circuito equivalente de baixa frequência
Fig. 2 Circuito equivalente simplificado de alta frequência do motor de
indução
As capacitâncias parasitas do motor de indução trifásico:
CEC; CRC; CER e CB são determinadas através das equações
abaixo:
I C EC
I CRC
C EC
(1) C RC
(2)
2. . f s .VEIXO
2. . f s .VCM
B
Rudolf Ribeiro Riehl, DEE/FEB/UNESP (e-mail: [email protected]).
Ernesto
Ruppert
Filho,
DSCE/FEEC/UNICAMP
(e-mail:
[email protected]).
– 34 –
C ER
I C ER
(3) C B
2. . f s . VCM
S
R
R
S
T
N
T
N
V EIXO
INVERSOR
comum (VCM) e de eixo (VEIXO), com frequência de
chaveamento do inversor MLP de 16kHz e frequência do
motor de 60Hz.
220V/60Hz
( )
R = 1M
IEIXO
IFUGA
CER
VCM
PLACA
DE
AQUISIÇÃO
&
MEDIÇÃO
I C RC
C RC (4)
MI 3
MLP 3
V/f
GINV
I CB
VEIXO
CH
CB
CEC
LABVIEW
CRC
CANAIS
a)
200V
Vcm
a0+
a0-
0V
a1+
a1-
SEL>>
-200V
V(VCOM)
5V
Veixo
a2+
a2-
0V
-5V
a3+
a3-
-10V
93.37ms
V(VEIXO)
93.40ms
93.44ms
93.48ms
93.52ms
93.56ms
b)
Fig. 5 VCM – Ch1; VEIXO- Ch2. a) medido, b) simulado.
93.60ms
Time
GND
Fig. 3 Circuito de medição das grandezas de interesse
III. CONCLUSÕES
TABELA 1
CAPACITÂNCIAS PARASITAS CALCULADAS.
A metodologia proposta, para a determinação das
capacitâncias parasitas do motor de indução trifásico, quando
acionado por inversor MLP, apresenta resultados consistentes
e coerentes.
As variações da frequência de chaveamento alteram pouco
o valor das capacitâncias. O que tem seu valor alterado é a
reatância capacitava das mesmas devido às freqüências das
harmônicas. O aumento da frequência de chaveamento do
inversor MLP, apesar de melhorar a característica da forma de
onda da corrente de carga, faz com os tempos de
chaveamentos dos dispositivos de potência (IGBT ou
MOSFET) sejam bastante reduzidos, implicando no aumento
das taxas de crescimento da tensão (dV/dt). Isto reflete
diretamente nas correntes que circulam pelas capacitâncias
parasitas e consequentemente na corrente de fuga.
As figuras a seguir mostram as curvas das capacitâncias
parasitas do motor de 5 cv. Na figura 4, Na figura 16, são
apresentados os valores médios das capacitâncias parasitas do
motor de 5 cv.
MOTOR 5 cv - Valores médios
Capacitâncias (pF)
6000,00
5000,00
4000,00
3000,00
2000,00
1000,00
0,00
4
8
12
16
Freq. de chaveamento (kHz)
Cec
Crc
Cer
Cb
Fig. 4 Valores médios das capacitâncias para o motor de 5cv
As figuras 5a (osciloscópio digital) e 5b (simulação no
Pspice) apresentam as formas de onda das tensões de modo
IV. REFERÊNCIAS BIBLOGRÁFICAS
[1] Erdman, J., Kerkman, R. J., Schlegel, D. and Skibinski,
G. (1996). System Electrical Parameters And Their
Effects On Bearing Currents, IEEE APEC Conference,
San Jose, CA.
[2] Akagi, H., Hasegawa, H. and Domouto, T. (2004). Design
and Performance Of A Passive EMI Filter For use With A
Voltage-Source PWM Inverter Having Sinusoidal Output
Voltage And Zero Common-Mode Voltage, IEEE Trans.
on Power Electronics, Vol.19, pp. 1069-1076.
[3] Charoy, A., Dunand, P. (2007). Bearing Current Induced
by a Power Drive, Automotive Power Electronics, Paris.
[4] Akagi, H., Tamura, S. (2006). A Passive EMI Filter for
Eliminating Both Bearing Current and Ground Leakage
Current from na Inverter-Driven Motor, IEEE
Transactions on Power Electronics, vol.21, n.5
– 35 –
1
Estudos para instalação de um Filtro Ativo de
Potência Trifásico a quatro fios na FEEC
João Inácio Yutaka Ota (M), Marcelo Gradella Villalva (D), Fujio Sato (P), Ernesto Ruppert (P)
I. INTRODUÇÃO
A troca do sistema de iluminação realizada pelo projeto
ECOGERA, financiado pela FINEP, tornou mais eficiente a
utilização de energia elétrica nos locais onde foi realizada,
com a da troca de lâmpadas fluorescentes convencionais (tipo
T8 – 26 mm de diâmetro) com reatores eletromagnéticos para
lâmpadas (tipo T5 – 16 mm de diâmetro) com reatores
eletrônicos e luminárias com maior eficiência [1], mas este
tipo de iluminação traz como consequencias distorções
harmônicas, principalmente de corrente.
Reatores eletrônicos são cargas altamente não lineares que
aumentam a circulação de correntes harmônicas nas
instalações elétricas. Distorções harmônicas podem trazer
problemas para a instalação como um todo como, por
exemplo, diminuição de capacidade de potência transmitida,
ressonância, perdas energéticas e deterioração das tensões da
rede [1,2].
Filtros Ativos de Potência (FAP) se apresentam com
solução para as distorções harmônicas. A utilização de filtros
passivos também é uma alternativa, mas além de não
apresentar a mesma eficiência, pode trazer problemas de
ressonância na rede [3].
Nesse contexto, propõe-se um FAP a ser instalado em um
dos locais contemplados pelo programa ECOGERA como
solução para as distorções harmônicas criadas pelas cargas não
Este trabalho está sendo financiado pela Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e pela Financiadora
de Estudos e Projetos (FINEP).
J.
I.
Y.
Ota
([email protected])
e
F.
Sato
([email protected]) são membros do Departamento de Sistemas de
Energia Elétrica (DSEE), Faculdade de Engenharia Elétrica e Computação
(FEEC), Universidade Estadual de Campinas (UNICAMP).
M.
G.
Villalva
([email protected])
e
E.
Ruppert
([email protected]) são membros do Departamento de Sistemas e
Controle de Energia (DSCE), FEEC, UNICAMP.
lineares, aumentando assim ainda mais a eficiência no uso da
energia elétrica e preservando a qualidade da mesma.
II. ESTUDOS PRELIMINARES
A partir de dados coletados pelos medidores de qualidade
de energia elétrica usados no programa ECOGERA foi
realizado um estudo inicial visando a compensação ativa dos
harmônicos gerados e eventuais distorções na qualidade de
energia nos locais das medições. Para esse estudo, foram
analisados dados coletados em medidores localizados nos
prédios da FEEC (Blocos A, B, F e EFG), e em duas
instalações do CAISM (RH e CME), utilizados em [1].
Realizando uma estratégia de compensação baseada na
teoria p-q [4] e tendo como objetivo manter a potência ativa
fornecida pelo alimentador constante, é possível obter os
valores de corrente que o filtro deverá gerar e com isso
dimensioná-lo em uma etapa preliminar. Para exemplificar a
análise realizada apresenta-se a seguir o estudo realizado para
o bloco F da FEEC. É importante ressaltar que a análise feita é
estática, isto é, foram usados dados coletados e não leva em
conta o comportamento dinâmico das correntes e tensões no
sistema analisado.
Na Fig. 1 tem-se as formas de onda de corrente da carga.
Pode-se observar que elas apresentam distorções e
desequilíbrios, provavelmente devido às cargas não-lineares e
à sua distribuição nas fases da rede. As tensões de
alimentação, apesar de apresentarem ruído, podem ser
consideradas senoidais nesse caso.
80
60
40
Corrente (A)
Resumo – A instalação de novas luminárias na UNICAMP
através do projeto ECOGERA tornou mais eficiente o uso da
energia elétrica, entretanto a utilização de reatores no sistema de
iluminação provoca a circulação de correntes harmônicas na rede
devido a não linearidade desse tipo de carga, além da presença de
outras cargas não lineares. Dentro desse contexto, este trabalho
propõe a extensão do projeto com a realização de estudos,
construção, testes e instalação de um Filtro Ativo de Potência
para a compensação das distorções harmônicas e de outros
distúrbios na qualidade de energia em uma das instalações
analisadas na FEEC/UNICAMP.
20
0
-20
-40
-60
-80
0
0.02
0.04
0.06
0.08
Tempo (s)
0.1
Fig. 1. Correntes na carga para a análise no bloco F da FEEC.
– 36 –
0.12
2
III. DESENVOLVIMENTO E INSTALAÇÃO DO FAP
Simulou-se a compensação usando filtro ativo a 3 e 4 fios,
de acordo com [4]. Realizando a compensação para 4 fios, as
formas de onda de corrente vistas pelo alimentador são
apresentadas na Fig. 2. Pode-se observar que a compensação
realizada apresenta resultados satisfatórios, compensando as
harmônicas, além de equilibrar as fases e compensar os
reativos. Para a compensação a 3 fios, o resultado não é
satisfatório, uma vez que não há a compensação de corrente de
neutro.
80
60
Corrente (A)
40
20
0
-20
-40
-60
-80
0
0.02
0.04
0.06
0.08
Tempo (s)
0.1
0.12
Fig. 2. Corrente que seria vista pelo alimentador do bloco F da FEEC,
utilizando uma compensação a 4 fios.
Pelos resultados obtidos foi possível observar que os
valores máximos de corrente de compensação são próximos de
20A no condutor de neutro. Com as correntes de compensação
simuladas, é possível estimar a corrente que o inversor do FAP
deverá produzir e a potência do mesmo.
A análise foi estendida para os demais locais, utilizando-se
a compensação para 4 fios, que apresentou melhores
resultados. A tabela 1 mostra os valores máximos de corrente
gerados e a potência do FAP a ser instalado em cada um
desses locais.
TABELA 1 – VALORES MÁXIMOS DE CORRENTE E DE POTÊNCIA
Corrente Máxima
Potência estimada
Local
de compensação
do FAP (kVA)
CAISM – CME
27 A
4,9
CAISM – RH
63 A
7,9
FEEC Bloco A
190 A
16,2
FEEC Bloco B
125 A
35,0
FEEC Bloco F
20 A
1,8
FEEC Blocos EFG
200 A
32,9
É importante ressaltar que os resultados obtidos são
estimados e que foram obtidos através de uma análise estática,
sem levar em conta as dinâmicas entre as variáveis elétricas.
Isso deve ser levado em conta principalmente nos prédios do
CAISM, onde foi observado que a tensão de alimentação
apresentou uma distorção harmônica considerável [1], mas que
não prejudica essa avaliação inicial.
Como solução para a questão da distorção harmônica, e
para fins didáticos, propõe-se o desenvolvimento e a instalação
de um FAP. O FAP, além de tratar adequadamente as
distorções harmônicas, contribui para manter a qualidade de
energia da instalação (equilíbrio de fases, maximização do
fator de potência), além de possuir maior flexibilidade em
relação às alterações nas cargas e na rede elétrica [2].
O FAP a ser desenvolvido deverá ser trifásico, com
capacidade de compensação no neutro (filtro de 4 fios) e capaz
de fornecer correntes de compensação de 50 A. Por questões
operacionais e de acordo com a capacidade das instalações do
LEPO/DSCE, a corrente máxima do filtro será de 50 A. A
instalação deverá ocorrer no Bloco F da FEEC. Entretanto, o
mesmo filtro, após testes de segurança e confiabilidade poderá
ser utilizado nos blocos do CAISM-CME e RH.
Para o desenvolvimento do FAP deverão ser estudadas
diversas técnicas de compensação (não apenas o método
apresentado no estudo inicial), incluindo métodos seletivos
[5], e também alguns métodos de controle de corrente,
testando-se entre eles o controle repetitivo [6] e o PI
ressonante [7]. A implementação do controle deverá ocorrer
através do uso de um DSP, assim como feito em [2].
O FAP será realizado de forma a produzir um equipamento
compacto, que possa ser considerado um produto préindustrial (protótipo com características de produto). Será feito
o acompanhamento das correntes e tensões das instalações
contempladas através dos medidores antes e depois da
instalação do FAP. Espera-se que o filtro seja capaz de
compensar as distorções harmônicas, os desequilíbrios e os
reativos da rede.
IV. AGRADECIMENTOS
Os autores agradecem a Caio Gomes de Oliveira pelo
auxílio na obtenção e no manuseio dos dados utilizados para
os estudos preliminares.
V. REFERÊNCIAS
[1]
[2]
[3]
[4]
[5]
[6]
[7]
– 37 –
C. G. de Oliveira. Estudo sobre conservação de Energia Elétrica e
Qualidade de Energia Elétrica. Dissertação de mestrado, UNICAMP,
2009.
M. G. Villalva. Estudo e Aplicação de Filtros Ativos Paralelos para
Sistemas Trifásicos com Quatro Fios, Dissertação de mestrado,
UNICAMP, 2005.
H. Akagi. “Trends in Active Power Line Conditioners”, IEEE
Transactions on Power Electronics, v.9, n.3, p.263-268. Maio, 1994.
H. Akagi, E. H. Watanabe e M. Aredes. Instantaneous Power Theory
and Applications to Power Conditioning. John Wiley & Sons, 2007, p.
59-64, 71-87.
P. Matavelli. “A Closed-Loop Selective Harmonic Compensation for
Active Filters”, IEEE Transactions on Industry Applications, v.37, n.1,
p.81-89. Janeiro/Fevereiro, 2001.
K. Zhou e D. Wang. “Digital Repetitive Controlled Three-Phase PWM
Rectifier”, IEEE Transactions on Power Electronics, v.18, n.1, p.309316. Janeiro, 2003.
Y. Sato, T. Ishizuka, K. Nezu, e T. Kataoka. “A New Control Strategy
for Voltage-Type PWM Rectifiers to Realize Zero Steady-State Control
Error in Input Current”, IEEE Transactions on Industry Applications,
v.34, n.3, p.480-486. Maio/Junho, 1998.
1
Método Prático Para a Avaliação do Impacto da
Partida Direta de Motores de Indução no
Afundamento de Tensão
Cecília F. Morais (M), Diogo Salles (D), Paulo C. M. Meira (D), Ahda G. P. Pavani (PE, UFABC),
Walmir Freitas (P)
Resumo--Os impactos da partida direta do motor de indução
sobre a qualidade da energia podem ser avaliados através de
estudos de numerosas e complexas simulações dinâmicas.
Entretanto, engenheiros estão cada vez mais interessados em
ferramentas práticas que permitem uma análise rápida e confiável
de novos projetos de instalação de motores de indução, de forma
que estudos de diversos casos sejam realizados. Nesse contexto, o
objetivo desse artigo é apresentar um método gráfico composto de
simples fórmulas analíticas para determinar qual a capacidade
máxima do motor de indução que pode ser conectado no sistema
de distribuição de energia elétrica em estudo sem ultrapassar os
valores aceitáveis de afundamento de tensão estabelecidos pelas
concessionárias de energia elétrica. Basicamente, o método
proposto fornece uma curva que relaciona, para um certo limite
permissível de afundamento de tensão, o nível de curto circuito do
sistema de distribuição com o valor máximo da capacidade do
motor que pode ser instalado.
Palavras-chave -- Motor de indução, partida de motor,
qualidade de energia, afundamentos de tensão.
I. INTRODUÇÃO
O
impacto da partida de motores de indução (MI) nos
indicadores de qualidade de energia tem sido largamente
investigado por várias décadas. Durante a partida, a rede
elétrica é submetida a afundamentos de tensão de magnitude
elevada, devido ao alto valor da corrente absorvida pelos
motores, a qual pode ser de 4 a 8 vezes o valor da corrente
nominal ([1]-[3]). Nas instalações em que são utilizados
equipamentos sensíveis, os afundamentos de tensão deterioram
de forma considerável a operação desses equipamentos, uma
vez que os mesmos trabalham para uma pequena faixa de
variação da tensão.
Portanto, sempre que um procedimento de partida de um
motor de indução é realizado, os engenheiros de planejamento
estão interessados em verificar se o mesmo irá resultar em
patamares de afundamentos de tensão inaceitáveis de acordo
com as limitações impostas pelas concessionárias de energia e
Este trabalho foi financiado FAPESP e CNPq.
C. F. Morais, D. Salles, P. C. M. Meira e W. Freitas são pesquisadores do
Departamento de Sistemas de Energia Elétrica, Universidade Estadual de
Campinas, Campinas, 13083-852, Brasil (e-mails: {cecília, dsalles, meira,
walmir}@dsee.fee.unicamp.br).
A. G. P. Pavani é pesquisadora do Centro de Engenharia, Modelagem e
Ciências Sociais Aplicadas, Universidade Federal do ABC, 09090-400, Santo
André, SP, Brasil (e-mail: [email protected]).
pelos guias técnicos.
Os impactos da partida do motor de indução no
afundamento de tensão podem ser avaliados através de
simulações dinâmicas, as quais envolvem uma representação
detalhada dos componentes da rede elétrica. No entanto, este
processo é complicado e demorado. Em muitos casos,
engenheiros da concessionária estão mais interessados em um
método mais simples e rápido para uma compreensão inicial
dos possíveis impactos da partida do motor. Com pouca
informação disponível, a ferramenta de análise deve mostrar se
a partida do motor de indução causa problemas de qualidade
de energia. Se os resultados indicarem violações dos limites
permissíveis de afundamento de tensão, então, uma
investigação detalhada poderá ser realizada.
Um método simples que emprega o critério de energia
constante para estimar o impacto da partida do motor de
indução no afundamento de tensão foi proposto em [4].
Embora o método simplifica a análise da partida do motor, o
mesmo não é intuitivo o suficiente para permitir uma rápida
avaliação. Isto pode ser parcialmente explicado pelo fato de
que dois parâmetros essenciais, capacidade do motor e nível
de curto-circuito do sistema, não serem explicitamente
utilizados.
Neste artigo, um método sistemático e prático para avaliar o
impacto produzido pela partida do motor de indução, do ponto
de vista da magnitude do afundamento da tensão, é
apresentado. Expressões analíticas fundamentadas no circuito
equivalente de regime permanente do MI são empregadas para
gerar gráficos que podem proporcionar, de forma rápida e
direta, um entendimento inicial dos potenciais impactos da
partida do motor de indução.
II. MÉTODO GRÁFICO PARA AVALIAÇÃO DA PARTIDA DO
MOTOR DE INDUÇÃO
Um método gráfico simples e direto é proposto para avaliar
o impacto da partida do motor de indução na qualidade de
energia, do ponto de vista da magnitude do afundamento de
tensão no ponto de acoplamento comum (PAC). Deve-se
ressaltar que o tempo de duração do afundamento não é
considerado no estudo. A principal contribuição do método é
auxiliar engenheiros de planejamento na escolha de um projeto
apropriado de instalação de MI sem depender de numerosas e
complexas simulações de transitórios eletromagnéticos.
– 38 –
2
A. Conceitos Fundamentais do Método Proposto
Para as concessionárias de energia, um procedimento de
partida de MI que cause um afundamento da tensão no PAC
com magnitude superior, por exemplo, a 5%, é considerado
inaceitável.
O objetivo do método é relacionar o nível de curto-circuito
do sistema com a capacidade do motor. Com isso, é possível
determinar de forma rápida e simples qual é a capacidade
máxima do motor que pode ser conectado ao sistema de
distribuição de acordo com o respectivo limite permissível do
afundamento de tensão.
O método gráfico proposto é um conjunto de curvas
representadas no espaço capacidade do motor (eixo x) versus
nível de curto-circuito do sistema de distribuição (eixo y). A
Figura 1 exemplifica o método considerando uma única curva.
Essa indica um limite acima do qual o impacto da partida
direta do MI pode ser considerado insignificante, enquanto
que abaixo desse limite, a partida do motor pode ser
problemática. Portanto, para esse último caso, uma análise
detalhada da partida do motor é recomendável.
450
Nível de Curto−Circuito (MVA)
400
e o nível de curto-circuito do sistema. O sistema apresentado
na Figura 2 será usado como rede de distribuição exemplo.
Figura 2. Circuito elétrico equivalente para a avaliação da partida do motor
de indução.
Inicialmente, os seguintes parâmetros são considerados:
• Capacidade do motor - Sm (MVA) (A unidade hp foi
utilizada para traçar o gráfico).
• Nível de curto-circuito no PAC - SCC (MVA).
A partir da solução analítica do circuito elétrico da
Figura 2, as curvas, como a mostrada na Figura 1, podem ser
traçada. Em seguida, estudos de sensibilidade foram
desenvolvidos com o objetivo de investigar a influência de
diversos fatores da partida do motor de indução no
afundamento de tensão. Os seguintes parâmetros foram
considerados: capacidade do transformador abaixador, relação
X/R, fator de corrente de partida e fator de potência do motor
no instante de partida.
350
III. CONCLUSÃO
300
250
Capacidade Máxima MI
2150 hp
200
150
100
50
0
0
500
1000
1500
2000
2500
3000
3500
Capacidade do Motor (hp)
4000
4500
5000
Figura 1. Método gráfico proposto.
Como exemplo, suponha que o nível de curto-circuito no
ponto PAC do sistema mostrado na Figura 1 seja 150MVA. O
limite de afundamento da tensão no ponto PAC é adotado
igual a 5%. Se a reatância do transformador abaixador é
conhecida, um ponto (4000 hp, 150 MVA) pode ser
encontrado na região problemática do gráfico. Assim, pode-se
concluir que um motor de 4000hp irá causar um problema de
afundamento de tensão no PAC quando o motor é partido
diretamente. Consequentemente, uma análise detalhada da
partida do motor é recomendável para investiga o problema do
afundamento de tensão. O limite da capacidade do motor para
este exemplo é de 2150 hp, abaixo do qual nenhuma análise
detalhada é necessária.
Este artigo apresentou uma metodologia gráfica prática que
permite a avaliação do impacto da partida do motor de
indução, do ponto de vista da magnitude do afundamento de
tensão. Expressões analíticas fundamentadas no circuito
equivalente de regime permanente do MI foram desenvolvidas
visando a obtenção de gráficos que permitem determinar
rapidamente se um motor pode ser conectado a uma rede de
distribuição respeitando os limites permissíveis de
afundamento de tensão.
O estudo de sensibilidade mostrou que a aplicação do
método proposto e a interpretação dos resultados são
realizadas de forma muito simples. A avaliação crítica dos
resultados permitiu determinar a influência dos principais
parâmetros do motor e do transformador na capacidade
máxima do motor que pode ser instalado. Adicionalmente, os
resultados de validação mostraram que o método é preciso e
pode auxiliar engenheiros de planejamento no projeto de
instalação de motores de indução, minimizando o número de
simulações de transitórios eletromagnéticos.
IV. REFERÊNCIAS
[1]
[2]
B. Desenvolvimento Analítico do Método Proposto
A obtenção da curva do método gráfico proposto, como a
da Figura 1, envolve duas etapas: (1) determinar os parâmetros
elétricos do sistema baseado apenas na capacidade do motor e
no nível de curto-circuito no PAC; (2) traçar a curva baseado
em uma fórmula simples que relaciona a capacidade do motor
[3]
[4]
– 39 –
M. H. J. Bollen, Understanding Power Quality Problems: Voltage Sags
and Interruptions, IEEE Press, New York, NY, USA, 1999.
R. C. Dugan, M.F. McGranaghan, S. Santoso e H. W. Beaty, Electrical
Power Systems Quality. New York: McGraw-Hill, 2002.
M. F. McGranaghan, D. R. Mueller e M. J. Samotyj, Voltage sags in
industrial systems, IEEE Trans. Industry Applications, vol. 29, no 2, pp.
397-403, 1993.
J. C. Gomez, e M. M. Morcos, A simple methodology for estimating the
effect of voltage sags produced by induction motor starting cycles on
sensitive equipment. 36th IAS Annual Meeting, Chicago, USA,
pp. 1196-1199, 2001.
1
Solution of the Power Flow Problem: A Robust
Approach Using Synthetic Dynamics and
Optimal Multiplier
J. F. Gutierrez (D), and C. A. Castro, (P)
Index Terms— Ill-conditioned power systems, NewtonRaphson method, numerical integration, nonlinear systems,
load flow analysis optimal multiplier, power systems, robust
power flow, synthetic dynamic modeling.
I. INTRODUCTION
T
HIS document presents an introduction to the research
work in the subject of power flow solution methods. The
hypothesis is based in a different approach to solve the power
flow problem based in a robust method based in synthetic
dynamics also called Continuous Newton’s method. This
method in conjunction with the application of the optimal
multiplier could be used to solve ill-conditioned power
systems achieving a reasonable computation time.
II. POWER SYSTEM LOAD FLOW
The power flow analysis is one of the most important tools
in power systems engineering. Its models is composed by
nonlinear equations with several discontinuities that are
associated with physical equipment limits, control systems etc.
Techniques to solve this nonlinear system of equations have
been proposed for the last 50 years [1] and even now there is a
urge for faster and more robust methods.
A power flow problem is considered solved when the
voltages and the angles of the entire system are found. With
the increasing complexity of today’s systems to find a system
solution could be very difficult and may spend a lot of CPU
time. Based on the availability of system solution, Milano
proposed a classification into four categories of power flow
problems [2]. For ill-conditioned cases and cases when the
system is on a bifurcation point, standard methods will failed
in find a solution where robust and continuations methods can
succeed.
A. Newton-Raphson Power Flow Method
The power system model can be express as a nonlinear
function of the state variables (x) [5]:
Affiliation footnotes:
J. F. Gutierrez is with the Universidad Nacional de Colombia – Sede
Manizales (e-mail: [email protected]).
C. A. Castro is with the Universidad Estadual de Campinas (e-mail:
[email protected]).
g ( x) = 0
(1)
Based on Taylor series expansions system of equations can
be represented. Making the assumption that the initial guess is
close to the system solution the high order terms can be
neglected yielding the Newton-Raphson method for ndimensional systems as :
(x
(2)
− xi ) = ∆xi = − G xi  g ( x i )
i
where Gx is the system’s Jacobian matrix.
In order to improve convergence of the iterative process
some variations were proposed based in the use of an optimal
multiplier (µ).
−1
i +1
∆x i = − µ G xi  g ( x i )
−1
(3)
B. Synthetic Dynamics Power Flow Method (SDPF)
This technique is based in the fact that a dynamic response
of a stable system always decays to a stable equilibrium point.
The method solves a synthetic dynamic stability model whose
solution is the solution of the power flow problem [7].
The idea was first proposed by Galloway [3] using a second
order dynamic representation for the generators similar to that
used in transient stability problems. The SDPF method uses a
firs order dynamic model which improves its convergence.
In [2] it was shown that the simplest solution to a first order
differential equation:
(4)
xɺ = f ( x)
it is obtained using Euler’s method as:
∆x i = ∆t ⋅ f ( xi )
(5)
Assuming ∆t= 1 and setting f(xi) as:
f ( x ) = − G ix  g ( xi )
−1
(6)
Can be seen the similarity between those approaches to the
power flow problem.
III. SDPF METHOD
The load flow problem can be settled in terms of state
variables (x) and decision variables (y) as:
(7)
g ( x, y ) = 0
For each decision variable in [7] was synthesize a dynamic
equation as:
(8)
y ′ = ( x, y )
– 40 –
2
And a time domain solution using a implicit integration
method was obtained for the integration step ‘n’ as:
yn = β ⋅ h ⋅ z ( xn , yn ) + c
(9)
Equations (7) and (9) can be solved for each time interval n
using the Newton-Raphson method as:
 ∂f ∂f 
 ∂y ∂x   ∆y 
f

⋅
(10)
= − 
 ∂g ∂g   ∆x 
g
 ∂y ∂x 


Reference [2] states that an more efficient way to integrate (8)
is using explicit methods, because with those methods will not
be necessary to invert the Jacobian matrix.
The SDPF method will have iterate many times but only when
the system stability point is almost reach, a refinement of the
solution is needed.
IV. TEST CASES
The fundamentals of SDPF will be applied to two fictitious
small systems (3 busbars systems and 5 busbars systems) in
order to reproduce the results found in [8]. The results will be
confronted with those obtained using the basic FDLF method.
V. FUTURE WORK
The expected result of the project is to develop modifications
to the SDPF method in order to have a robust methodology
that allows to find a reliable solution however it exist and to
identify when there is not an stable operation point.
In order to achieve this objective the following work will be
done:
1) Control modeling: to represent common power system
controls as: PV busbars, ULTC, controlled shunt reactances,
etc.
2) Practical power systems: to prove the method prototypes
with practical power systems examples, with stable operating
point and with instable operating point in order to verify the
method robustness.
3) Optimal multiplier: to include the optimal multiplier
methodology in the SDPF. The hypothesis is that with the
optimal multiplier the SDPF method will:
a) Obtain solution to feasible systems in an more
efficient way.
b) Identify non feasible cases.
VI. REFERENCES
Periodicals:
[1]
[2]
[3]
[4]
B.Stott, “Review of Load Flow Calculation”. IEEE Proceedings of IEE.
Vol. 62, No. 7, July 1974.
F. Milano, "Continuous Newton’s Method for Power Flow Analysis".
IEEE Trans. Power Systems Vol. 24. Feb 2009.
R. H. Galloway, J. Taylor, W. D. Hogg and M. Scott, "New Approach
To Power-System Load-Flow Analysis In A Digital Computer". IEEE
Proceedings of IEE. Jan 1970.
S. Hetzler. “A Continuous Version of Newton’s Method. The College
Mathematics Journal Vol 28, Nov 1997.
Books:
[5]
[6]
M. Crow, “Computational Methods for Electric Power Systems”. CRC
Press, 2010, pp. 45-96.
J. D. Lambert, “Numerical Methods for Ordinary Differential Systems:
The Initial Value Problem”. Wiley, 1991.
Papers from Conference Proceedings (Published):
[7]
J. Jardim and B. Stott, "Synthetic Dynamics Power Flow," presented at:
IEEE General Meeting San Francisco Ca. USA, Jun. 2005.
[8]
J. Jardim, A. Y. Takahata, G. N. Taranto and M. Th. Schilling, " Fluxo
De Potência Robusto: Formulação Dinâmica Sintética," presented at:
SNPTEE, October 2005.
VII. BIOGRAPHIES
Jorge Fernando Gutiérrez-Gómez received the B.S. and M.S. degrees from
Universidad Industrial de Santander. He has been with the DEEC at
Universidad Nacional de Colombia Sede Manizales as an Assistant Professor
from 2001. His main areas of interests include power systems operation and
control, transmission lines and energy markets.
Carlos A. Castro received the B.S. and M.S. degrees from UNlCAMP in
1982 and 1985, respectively, and the PH.D. degree from Arizona State
University in 1993. He has been with UNICAMP since 1983, where he is
currently an Associate Professor. His main areas of interest include: power
systems operation, voltage stability, power flow analysis and transmission and
distribution planning.
– 41 –
1
SysPrev - Sistema de Suporte para Previsão de
Carga por Barramento
Ricardo Menezes Salgado (PE), Takaaki Ohishi (P) e Rosangela Ballini (PE)
I. I NTRODUÇ ÃO
M sistemas elétricos a programação da operação é uma
etapa importante no controle de sistemas de potência
que visa obter um cronograma operacional para as próximas
semanas, utilizada como base para a operação em tempo real.
Esta programação deve definir o número de máquinas, quanto
essas devem gerar em cada intervalo de hora (próximo dia ou
semana) e também qual será a linha utilizada para transportar
a carga até os centros consumidores. No cálculo do programa
de operação devem ser levados em conta diversas restrições,
tais como: caracterı́sticas operativas dos sistemas de geração
e transmissão, requisitos de carga, fatores de segurança e
redução de custos.
Dentre as variáveis que influenciam a operação no sistema
elétrico pode-se destacar o nı́vel de carga elétrica (global
ou por barramento) como uma variável de grande impacto
na operação do sistema. A preocupação com a estimação
da carga num dado instante vem do fato do conhecimento
da carga ser um insumo básico à programação da operação.
Informações precisas sobre o nı́vel de carga elétrica proporcionam melhorias no fluxo de potência, na análise de
estabilidade e segurança, no despacho econômico, no planejamento da produção, no controle e na operação de redes de
transmissão/distribuição.
Na rede elétrica de transmissão existem pontos especı́ficos,
denominados nós ou barramentos, que alimentam um conjunto
de consumidores. A demanda em um dado nó depende de
todos os usuários conectados, e os fluxos de potência nas
linhas conectadas a essa barra também dependem da demanda
especı́fica deste nó. Assim, para analisar a operação do sistema
de transmissão é essencial que se tenha uma estimativa das
demandas em cada ponto de entrega de energia, isto é, em cada
barramento do sistema. O conhecimento do consumo elétrico
por barramento é importante em várias decisões: operação
do sistema, estratégias comerciais e também na definição dos
preços das tarifas cobradas aos consumidores.
Para conhecer a demanda futura em um determinado barramento é necessário realizar um processo de previsão. A
previsão de carga elétrica global ou por barramento é um
problema que possui uma solução não trivial, haja visto
que uma série de carga pode ter diversos padrões, e tais
E
Ricardo M. Salgado is with Laboratory of Computational Intelligence
(LInC), Department of Exact Science, Federal University of Alfenas, Alfenas
- Minas Gerais - Brazil e-mail: [email protected]
Takaaki Ohishi is with Department of System Engineering, School of
Electrical and Computer Engineering, University of Campinas, Campinas São Paulo - Brazil e-mail: [email protected]
R. Ballini is with Institute of Economics, University of Campinas, Campinas - São Paulo - Brazil e-mail: [email protected]
comportamentos podem não ser tratados de maneira conjunta
em um único modelo de previsão. O comportamento da série
de carga tem caracterı́stica não-linear e a complexidade do
problema pode variar de acordo com o perı́odo e número de
séries a serem previstas. Embora nas últimas décadas muito
desenvolvimento tenha ocorrido na área de previsão ainda não
é possı́vel determinar, a priori, qual é a melhor metodologia
para a previsão de uma dada série temporal. Ainda hoje, a
modelagem é definida a partir de processos empı́ricos baseados
em tentativa e erro.
Neste contexto, esta pesquisa apresenta um sistema computacional denominado SysPrev (Sistema de Suporte para Previsão de Carga e Análise de Dados) desenvolvido no trabalho
[6] de para auxiliar a programação da operação através de
facilidades para análise de dados e previsão da carga elétrica
global e por barramento. O SysPrev é composto por um
subsistema gerenciador de dados, um subsistema de modelos e
um subsistema de interfaces. O aplicativo proposto apresenta
facilidades em termos de janelas gráficas, como também na
estrutura, visualização de dados, combinação e utilização dos
modelos. Para testar a capacidade de usabilidade e solução do
modelo o SysPrev foi utilizado para analisar um subsistema de
transmissão pertencente a região nordeste do Brasil composto
por 73 barramentos com diversas caracterı́sticas e perfis. Os
resultados mostraram que o sistema possibilitou a análise
conjunta dos dados provendo informações e previsões que
contribuı́ram para a etapa de programação da operação em
sistemas e potência.
II. D ESCRIÇ ÃO F UNCIONAL - SysPrev
Na programação de sistemas energéticos é inviável testar
manualmente todas as abordagens da literatura para encontrar
o modelo que apresenta melhores condições de previsão em
um curto intervalo de tempo. O sistema computacional apresentado visa facilitar a tarefa de busca por uma boa previsão
através de um ambiente que proporcione ao usuário condições
favoráveis para analisar e testar as metodologias encontrando
a configuração que ofereça melhores resultados.
O principal objetivo do SysPrev é dar suporte ao processo
de análise das variáveis utilizada na programação da operação
especificamente na previsão de carga. Para isto, o sistema foi
projetado com três módulos: Dados, Modelos e Interfaces.
O módulo de Dados visa apoiar as atividades de armazenamento, manipulação e gerenciamento de dados; o módulo
de Modelos foi idealizado para a etapa de configuração e
escolha de modelos; e o módulo de Interfaces fornece suporte
para visualizações múltiplas viabilizando análises dos dados e
comparações no desempenho dos modelos.
– 42 –
2
A. Módulo de Administrador de Dados
O SysPrev possui uma estrutura de armazenamento e
gerenciamento de dados formada por um banco de dados
responsável por controlar e catalogar as séries de carga elétrica
entre outras informações relevantes (temperatura, luminosidade, cobertura, entre ouras). Este módulo prove o acesso
a qualquer informação necessária, concatenando e gerando
visões dos dados através de combinações de diversas variáveis.
Por meio deste também é possı́vel carregar e/ou importar
outras fontes de informação para análise posterior.
E. Comentários - SysPrev
Na Figura 1 é mostrada uma tela de controle para carregamento e visualização de dados. Pode-se observar uma estrutura
de visualização em árvores que facilitam o acesso a cada série
temporal de carga elétrica carregada no SysPrev. Na tela de
exibição gráfica é possı́vel plotar um gráfico com vários tipos
de visualizações das séries disponı́veis na base de dados.
B. Módulo de Modelos
O módulo de modelos implementado no SysPrev cuida
de toda a estrutura de ferramentas de previsão, modelos
para análise de dados e ferramentas estatı́sticas existentes no
sistema. Este módulo suporta o carregamento e a execução
simultânea de várias ferramentas que podem ser utilizadas para
resolver problemas em paralelo.
O módulo de modelos conta com um conjunto de ferramentas desenvolvidas para auxiliar as tarefas de análise e
consolidação de dados. Entre as ferramentas disponı́veis podese destacar: modelos de regressão linear múltipla [2], redes
neurais artificiais [3], modelos de agrupamento tais como: KMeans [5], Fuzzy C-Means [1] e Self-Organized Maps [4]
entre outros modelos estatı́sticos.
O SysPrev conta com um modelo especı́fico para a previsão
de carga por barramento proposto por [6]. Este modelo foi
testado em diversos cenários e tem se mostrado eficiente.
Devido a sua rapidez e eficiência o modelo de previsão por
barramento implementado no SysPrev pode ser utilizado com
sucesso para prever a carga por barramento em um sistema de
grande porte em um curto espaço de tempo.
C. Módulo de Interfaces
O módulo de interfaces conta com pacotes de GUI (graphical user interface) que proporcionam um ambiente computacional amigável e eficiente facilitando a integração do SysPrev
e seus usuários. O sistema de janelas gráficas é responsável
por controlar as estruturas existentes no sistema.
Por meio de comandos na interface, o usuário tem a
possibilidade de realizar inúmeras análises: avaliar o nı́vel de
carga, executar simulações de previsão e/ou agrupamento e
utilizar de ferramentas estatı́sticas para validar os resultados
de maneira gráfica amigável e simples.
D. Caracterı́sticas Importantes
Uma das vantagens do SysPrev é a sua construção modularizada. Com esta arquitetura, cada componente do SysPrev
é produzido de maneira independente, podendo ser inserido
sem a necessidade de alterações no sistema principal. Este
recurso é importante, pois facilita a incorporação de novos
modelos, fazendo com que o sistema esteja sempre atualizado
e contextualizado com as novas técnicas desenvolvidas na literatura. A grande maioria dos sistemas de previsão existentes
são estáticos, não permitindo que o usuário crie ou personalize
uma ferramenta especı́fica para compor o sistema.
Fig. 1.
SysPrev - Controle de dados e Visualização Gráficas.
O SysPrev foi projetado para facilitar a análise múltipla
de diversos conjuntos de dados sendo altamente recomendado
para problemas onde existem diversas variáveis que devem
ser processadas em conjunto. O sistema também pode ser
empregado para analisar outras séries temporais, tais como de
vazões afluentes, de temperatura, de cobertura, luminosidade
entre outras variáveis relevantes para o controle de um sistema
elétrico de potência.
Por meio de sua interface gráfica o SysPrev proporciona
acesso a diversas ferramentas para controle de dados, agrupamento e previsões despontando como um sistema essencial para análise e obtenção de resultados no setor elétrico
Brasileiro.
ACKNOWLEDGMENT
Esta pesquisa contou com o apoio da Fundação de Amparo
à Pesquisa do Estado de São Paulo (FAPESP) através dos
processos números: 99/12737-9, 02/06733-5, 03/10019-9 e
04/07879-9.
R EFERENCES
[1] J. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms.
New York: Plenum Press, 1981.
[2] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting
and Control, 2nd ed. Holden Day, 1994.
[3] K. Ho, Y. Hsu, and C. Yang, “Short-term load forecasting using a
multi-layer neural network with an adaptative learning algorithm,” IEEE
Transactions on Power Systems, vol. 7, pp. 141–149, 1992.
[4] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Proceedings of the Biological Cyberneticys, vol. 43, pp. 59–69,
1982.
[5] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1, pp. 281–297, 1967.
[6] R. M. Salgado, “Sistema computacional para previsão de carga por
barramento,” Ph.D. dissertation, Unicamp, 2009.
– 43 –
1
Análise da propagação de ondas em linhas de
transmissão utilizando transformadas inversas
de Laplace
A. R. J. Araújo (IC), S. Kurokawa (PE), J. Pissolato (P), A. J. Prado (PE), L. F. Bovolato (PE)
Resumo Este trabalho mostra a aplicação da transformada
inversa de Laplace em simulações de transitórios
eletromagnéticos resultantes das operações de manobras e
chaveamentos que ocorrem em linhas de transmissão. O método
foi aplicado para simular o processo de energização de uma linha
monofásica, de 100 km de comprimento, cujos parâmetros são
considerados constantes. A transformada inversa de Laplace foi
obtida por meio de um método numérico disponível no
MATLAB .
de
transmissão,
Palavras-chave Linhas
eletromagnéticos, transformada inversa de Laplace.
resposta no domínio do tempo será obtida por meio do uso de
um algoritmo que calcula numericamente a transformada
inversa de Laplace.
II. EQUAÇÕES DE CORRENTES E TENSÕES NOS TERMINAIS DE
UMA LINHA MONOFÁSICA
Considere uma linha de transmissão monofásica, de
comprimento d, disposta sobre um solo não ideal, conforme a
figura 1.
transitórios
I. INTRODUÇÃO
U
MA linha de transmissão é caracterizada pelo fato de seus
parâmetros serem distribuídos ao longo de seu
comprimento. Este fato faz com que as tensões e
correntes ao longo da linha comportem-se como ondas [1]. A
tensão e a corrente em qualquer ponto da linha de transmissão
são descritas por equações diferenciais temporais.
As soluções analíticas, no domínio do tempo, destas
equações diferenciais somente são conhecidas para o caso de
linhas sem perdas. No entanto, modelos mais precisos de
linhas exigem que sejam consideradas as perdas nas mesmas.
Para o caso de linhas em que se considera as perdas nas
mesmas, as equações diferencias podem ser de difícil
resolução analítica no domínio do tempo devido as integrais de
convolução presentes nas mesmas.
Uma alternativa, portanto, é trabalhar com essas equações
no domínio da freqüência, encontrar a solução destas e, em
seguida, convertê-las para o domínio do tempo utilizando a
transformada inversa de Laplace [2]. Neste caso, a
transformada inversa de Laplace é obtida por meio de métodos
numéricos [2].
Neste trabalho serão realizadas simulações de transitórios
eletromagnéticos, em uma linha de transmissão monofásica,
resultantes de operações de manobras e chaveamentos. A
Este trabalho foi desenvolvido com recursos financeiros concedidos pela
FAPESP e pelo CNPq.
A. R. J. Araújo, S. Kurokawa, A. J. Prado e L. F. Bovolato estão
vinculados ao Departamento de Engenharia Elétrica da Faculdade de
Engenharia de Ilha Solteira, UNESP (e-mail: [email protected],
[email protected],[email protected],[email protected].
br).
J. Pissolato está vinculado ao DSCE/FEEC/UNICAMP (e-mail:
[email protected]).
Fig. 1. Linha de transmissão monofásica de comprimento d
nestes terminais.
A linha mostrada na figura 1 possui uma impedância
longitudinal Z e uma admitância transversal Y, distribuídas
uniformemente
ao
longo
do
seu
comprimento.
Desconsiderando o efeito da frequência, os termos Z e Y
podem ser escritos como sendo:
! # !
$& % ( R"' &j L
G j C
Z
Y
(1)
(2)
Em (1) e (2), os parâmetros longitudinais R e L são a
resistência e a indutância, respectivamente, enquanto que os
parâmetros transversais C e G são a capacitância e a
condutância, respectivamente.
As correntes e tensões nos terminais da linha mostrada na
figura 1 obedecem as seguintes relações [1]:
+ .
IA ( )
– 44 –
,+
+
)+ *
1
ctgh ( ( ) d) VA
ZC ( )
-
+
,+
+
1
VB ( )
Z C ( ) senh ( ( ) d)
(3)
2
1
ctgh ( ( ) d) VB
ZC ( )
50
40
1
VA ( )
ZC ( ) senh ( ( ) d)
(4)
tensão (kV)
I B ( ) Em (3) e (4) ZC( ) e ( ) são a impedância característica e
a função de propagação da linha, respectivamente, e são
escritos como sendo:
30
20
10
0
-10
0
Z
( ) Y
( )
0.005
(5)
0.01
0.015
0.02
0.025 0.03
tempo (s)
0.035
0.04
0.045
0.05
Fig. 3. Linha sem perdas: Tensão no terminal B da linha
ZC
Considerando a linha ideal, a tensão mantém seu valor em
(6) todo o regime indefinidamente, pois não há dissipação de
energia conforme a referência [1].
Z( )
Y( )
50
A partir de (3) e (4) é possível obter as correntes e tensões
no domínio do tempo como sendo:
i A (t)
y AA ( t
) vA ( ) d
y AB ( t
) vB ( ) d
tensão (kV)
40
( 7)
i B ( t ) y BA ( t
) vA ( ) d
y BB ( t
) vB ( ) d
30
20
10
0
(8)
-10
0
As equações (7) e (8) são as respostas temporais de (3) e
(4). Devido à integrais de convolução, (7) e (8) são de modo
geral de difícil resolução analítica. No entanto pode-se calcular
as correntes e tensões no domínio da freqüência, utilizando
(3) e (4) e, em seguida, estas grandezas são convertidas para o
domínio do tempo utilizando métodos numéricos que calculam
a transformada Inversa de Laplace.
III. RESULTADOS OBTIDOS
O método numérico que calcula a transformada de Laplace,
proposto em [2], foi utilizado para simular a energização da
linha monofásica de 100 km de comprimento mostrada na
figura 2.
0.005
0.01
0.015
0.02
0.025 0.03
tempo (s)
0.035
0.04
0.045
0.05
Fig. 4. Linha com perdas: Tensão no terminal B da linha
A tensão inicialmente tem seu valor inicial duplicado e em
seguida, devido a resistência, decresce até atingir o valor de
1V em regime,conforme a referência [1]
IV. CONCLUSÕES
As soluções das equações diferenciais que descrevem
o comportamento da tensão e da corrente elétrica em uma
linha de transmissão podem ser de difícil resolução. Utilizando
a transformada de Laplace é possível resolver estas equações
no domínio da freqüência e em seguida com a transforma
inversa de Laplace, implementada numericamente, pode-se
encontrar resposta no tempo.
Assim aplicando o método numérico da transformada
inversa de Laplace nas equações diferenciais da corrente e da
tensão , foi possível obter a resposta temporal das mesmas
conforme as figuras 3 e 4.Assim verificou-se a validade do
método numérico para o calculo de transitórios
eletromagnéticos.
Fig. 2. Energização da linha em aberto
V. REFERÊNCIAS
Considerou-se que )*+,
os parâmetros
da linha mostrada na
- . +/ )*+, 0 .. .. 12)*+ 3
!" #$%&%' (
$
$
&
G=0.05 µS/km. A linha foi energizada, no instante t=0, com
uma tensão constante de 20 kV.
As figuras 3 e 4 mostram a tensão no terminal B da linha,
considerando a mesma sem e com perdas, respectivamente.
[1]
[2]
– 45 –
R. D. Fuchs, Transmissão de Energia Elétrica: Linhas Aéreas. Teoria
das Linhas em Regime Permanente, E. Clarke, Circuit Analysis of AC
Power Systems, 2a edição, Livros
Técnicos e Científicos,
RJ, 1979.
E
G
E K E
F H9 :I>98? J
89: 9 ;
> ?89@
>D 9>9:F F? :
A BC
45 6 7
7
5 <=
= 7 7
=
F8 :LG 8>M ; 89N?9OP
A IEEE Trans. Power Delivery, vol. 23,
=
7
2599-2609, out. 2008.
=
D
=
J9
No 4, pp.
1
Estudo sobre a redução do consumo de energia
no horário de pico via gerenciamento de refrigeradores
Glauco Niro (M), Luiz C. P. da Silva (P)
DSEE – FEEC – UNICAMP
de tempo sem causar prejuízos.
Resumo— Entre as possibilidades para as redes elétricas do
futuro vem aumentando o estudo sobre as chamadas Smart Grids.
Essas redes incorporarão novas tecnologias que poderão tornar o
sistema elétrico mais eficiente, confiável além de integrar o consumidor na operação do sistema. Essa integração será um dos
pilares desse tipo de rede e através da implementação de medição
digital, permitirá o gerenciamento de equipamentos de acordo
com a conveniência da concessionária e do consumidor. Neste
trabalho será apresentado um modelo que representa um refrigerador e o potencial de ajuda que estes aparelhos poderão dar nesse novo conceito de rede, através da implementação de controles
que permitem gerenciar seu funcionamento.
I. INTRODUÇÃO
Um modelo de rede que tem despertado interesse de estudo é a chamada Smart Grid, rede inteligente, que consiste na
integração de tecnologias e ferramentas com as quais pretendese tornar a rede mais moderna, eficiente, econômica e segura,
[1].
Este tipo de rede apresenta como algumas características a
capacidade de detectar e sanar problemas antes que possam
causar grandes impactos, amplo conhecimento do estado do
sistema, permitir que cargas e outros dispositivos possam participar ativamente da operação e integração da geração distribuída. Essas características podem trazer benefícios, dentre os
quais: economia, graças à operação automatizada, rápida recuperação após a ocorrência de distúrbios, opção de o consumidor gerenciar o uso da energia e seus custos, geração de novas
oportunidades através de programas de P&D e preservação
ambiental [2].
Smart grid oferecerá vantagens para os consumidores, que
poderão ajustar seu perfil de consumo, escolhendo o horário
mais barato e para as concessionárias, que ao fixar o preço de
energia mais caro quando a demanda é maior, terá uma redução no consumo e sua rede operará com uma maior margem de
segurança. Um dos equipamentos domésticos que apresentam
potencial para operar nessa nova rede é o refrigerador, pois
sua inércia térmica permite seu desligamento por um intervalo
II. PAPEL DE REFRIGERADORES EM SMART GRIDS
Pode-se dizer que o Brasil apresenta um grande número de
refrigeradores, já que de acordo com o PNAD (Pesquisa Nacional por Amostra de Domicílios) 2008 há refrigeradores em
92,1% (52.989.000) dos domicílios [3]. O bom isolamento e
inércia térmica, que permite desligamento por um intervalo de
tempo sem danos aos usuários, aliado ao grande número de
refrigeradores no país, oferece uma possibilidade de gerenciamento e integração nas Smart Grids.
A. Modelo térmico do refrigerador
A equação 1 representa o funcionamento de um aquecedor
térmico e com pequenas mudanças, pode representar a dinâmica térmica de um refrigerador [4], onde C é o calor específico
do ar, G é a condutividade térmica, T a temperatura interna, Ta
a temperatura ambiente, P a potência e w o sinal de controle (
1 para ligar quando T < Tlim.superior e 0 para desligar, quando T
> Tlim.inferior). Para descrever o comportamento de um refrigerador, basta ajustar o controle w e considerar a potência como
sendo de refrigeração.
C
dT
+ G (T − Ta ) = wP
dt
O valor de G na equação (1) é obtido através do inverso
da resistência térmica total. Num refrigerador, as resistências
são três por parede: de convecção (interna e externa) dada pela
equação (2) e de condução, dada pela equação (3) [5].
Rc =
1
hA
(2)
Na equação (2), RC é a resistência térmica de convecção,
h é o coeficiente de transferência de calor por convecção e A é
a área de transferência de calor.
Rk =
Esse trabalho é financiado pelo Conselho Nacional de Desenvolvimento
Científico e Tecnológico.
G. Niro e L. C. P. da Silva são do Departamento de Sistemas de Energia
Elétrica da Faculdade de Engenharia Elétrica e de Computação da Universidade Estadual de Campinas, (DSEE/FEEC/UNICAMP), Campinas, São Paulo, Brasil (emails: (gniro,lui)@dsee.fee.unicamp.br)
(1)
L
kA
(3)
Na equação (3), Rk é a resistência térmica de condução, L é
a espessura da parede, k a condutividade térmica e A é a área
de transferência de calor. A resistência de cada parede é for-
– 46 –
2
mada pela soma das três resistências (associação em série) e a
resistência total do refrigerador é dada pela associação em
paralelo das paredes laterais e superior. O inverso da resistência total é o coeficiente G da equação (1), que no modelo é
dinâmico, variando com a temperatura interna, assim como os
outros parâmetros[6].
B. Validação do Modelo
As características, como dimensões e potência, consideradas foram baseadas em [7]. Para análise considerou-se a temperatura interna do freezer em –18°C com variação de ±2°C,
uma aproximação do obtido em [8] para a temperatura interna
no topo do congelador. Na Figura 1 tem-se o perfil de temperatura obtido através da simulação com temperatura ambiente
constante em 25°C, sem abertura de portas e com refrigerador
vazio.
−16
Temperatura (°C)
−17
−18
−19
12.5
Potencia (kW)
10.0
7.5
5.0
2.5
19:30
Sem Controle
Com Controle
19:40
19:50
20:00
20:10
Tempo (Horas)
20:20
20:30
Figura 2. Comparação do consumo de potência de um grupo de 100 refrigeradores com e sem controles adicionais
Com a perspectiva de aumentar a eficiência dos refrigeradores algumas melhorias podem ser implementadas. Com o
aumento da isolação térmica, há menos troca de calor com o
ambiente e o refrigerador consome menos emergia. Diminuindo a troca de calor quando a porta é aberta, com cortinas de
vento, por exemplo, menos ar quente entra no refrigerador,
fazendo com que ele fique menos tempo ligado. O mesmo é
obtido quando se utilizam métodos para evitar que a porta seja
aberta, como reservatórios de água e gelo.
−20
00:00
01:00
Tempo (Horas)
III. CONCLUSÕES
02:00
Figura 1. Perfil de temperatura interna do refrigerador.
Na Figura 1 observa-se que a temperatura varia entre –
20°C e –16C, não ultrapassando esses valores. Na Tabela 1
tem-se o dados referente ao funcionamento desse caso.
TABELA 1. DADOS DE FUNCIONAMENTO DE UM REFRIGERADOR VAZIO E SEM
ABERTURA DE PORTAS A 25°C CONSTANTE.
Tempo de funcionamento 6,1 horas / dia
Consumo diário
0,89 kWh
Consumo mensal
26,7 kWh
C. Implementação de controles adicionais para redução de
consumo no horário de pico.
Visando usufruir a característica dos refrigeradores permanecerem desligados por um intervalo, implementou-se um
controle para gerenciar o instante de ligar e desliga-lo. Uma
vez que cada um é acionado, o controle passa a ser o normal
do refrigerador, ou seja, se o refrigerador está ligado e a temperatura atinge o limite inferior, ele é desligado, analogamente
para o controle de desliga. Ao implementar-se esse controle
fazendo todos os refrigeradores ligarem ao mesmo tempo, há
um pico no consumo de energia e eles entram em sincronismo
de funcionamento, mantendo o consumo com picos durante
algum tempo.
Para sanar esse problema, os refrigeradores foram divididos em grupos e cada um foi ligado num instante de tempo,
iniciando-se as 19:40 e a cada 2 minutos sucessivamente. A
figura 2 mostra o consumo de potência com e sem os controles. O consumo com a implementação desses controles fica 15
minutos abaixo do que o normal, propiciando uma redução no
consumo de energia no período de pico.
Um dos pilares da Smart Grid é a integração do consumidor como agente ativo no sistema elétrico que em troca de
preços diferenciados, fará uso eficiente de seus equipamentos.
Um dos equipamentos que apresenta potencial para operar nas
Smart Grids é o refrigerador. Seu potencial se deve ao fato de
poder ser desligado por um intervalo de tempo sem acarretar
prejuízos para o usuário.
Com a adoção de medição digital, o refrigerador também
pode desempenhar outros papéis além de contribuir com a
redução da demanda no horário de pico, como, por exemplo,
auxiliar no controle de tensão e de freqüência através de comandos para desligar e ligar quando necessário. Essas análises
serão desenvolvidas e incorporadas em trabalhos futuros, bem
como o estudo dos benefícios observados pelo lado da distribuidora de energia.
IV. REFERÊNCIAS
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
– 47 –
San Diego Smart Grid Study – Final Report. The Energy Policy Initiatives Center University of San Diego School of Law. October 2006.
Momoh, J. A. (2009). Smart Grid Design for Efficient and Flexible
Power Networks Operation and Control. Power Systems Conference and
Exposition IEEE.
PNAD. IBGE. Domicílios particulares permanentes, por existência de
alguns bens duráveis segundo as Unidades da Federação, 2007.
Z. Xu, J. Østergaard, M. Togeby and C. Marcus Møller. Design and
Modeling of Thermostatically Controlled Loads as Frequency Reserve.
Kreith, F. e Bohn, M. S.. Princípios de Transferência de Calor.
O. Laguerre, D. Flick. Heat transfer by natural convection in domestic
refrigerators. 2003.
Manual refrigerador Frost-Free Brastemp BRM33A 330 Litros
J. R. Gonçalves. Desempenho de um congelador doméstico na rotina
caseira. Dissertação de Mestrado. 1989. FEA, Unicamp.
1
A Second-Order Method to Estimate the Active
Power Losses Regarding the Presence of
Distributed Generation
Hugo M. Ayres (D), Marcos J. R. Flores (P), Luiz C. P. da Silva (P), and Walmir Freitas (P)
Abstract—The connection of generators on distribution feeders
may cause significant impact on the steady-state performance of
the network. Quantification of the impacts on power losses, in a
systematic way, is a difficult task due to the complexity of
network operation since generators can operate with different
lead and lag power factors and, occasionally, can inject variable
active power on the network. This paper evaluates the impact of
distributed generators on the active and reactive power losses of
the system by using a second-order sensitivity-based method.
From one base case power flow solution it is possible to estimate
the active and reactive power losses for a new generator installed
at any bus of the system, for any combination of active power
injection, and also for any operating power factor. The effects of
varying the location, generation level and operating mode of the
generators can be easily assessed by using the analytical method.
The method is applied to a 70-bus distribution network. The
simulations results are compared with those obtained by the
repetitive power flow solutions in order to validate the results
obtained by the sensitivity-based method.
Index Terms—Distributed generation, distribution networks,
sensitivity analysis, power system losses.
I. INTRODUCTION
M
ANY distributed generation (DG) systems have been
installed directly in distribution systems or customer
sites [1]-[3]. Supported by current political policies and global
environmental issues, DG is expected to play an important role
in electrical power systems in the future [1]-[2],[4]. Although
the insertion of DG plants into the distribution system may
benefit utilities, customers, and the environment, DG may also
cause operation and safety problems [2], [5]-[8]. One of the
most important technical problems concerning the installation
of DG in distribution systems is the power loss. Characteristics
such as the size, location, and operation mode of the
distributed generators are decisive in determining the impacts
of DG on power losses of distribution systems. Due to the
complexity of the networks, identify which generators can
reduce the power losses may be a difficult task. Especially in
multi-DG systems, successive power flow studies must be
carried out.
So, this paper presents a second-order sensitivity-based
method to directly estimate the total active and reactive power
losses of a distribution system by applying basic matrix
operations and one power flow solution. This method can be
This work was supported by FAPESP and CNPQ.
H. Ayres, M.Flores, L. da Silva, and W. Freitas, are with the Power System
Department, University of Campinas, C.P.6101, 13.083-852, Brazil (emails:
{hmayres, mjrider, lui, and walmir}@dsee.fee.unicamp.br).
useful, for instance, for optimum short-term operation planning
or optimum allocation and sizing of distributed generators.
The proposed method is based on the determination of loss
sensitivities with relation to active and reactive power
injections. It can be used to assess the impact of the location,
generation level, and generator operating mode on power
losses. The comparison of the results obtained by the proposed
method with those provided by repetitive power flow solutions
shows that the proposed method has a very good accuracy.
II. LOSS SENSITIVITY DETERMINATION
The aim here is to calculate the losses sensitivities from the
power injections in each bus system. The total active power
losses of a line lumped model are expressed as
∑ [g
nL
Ploss =
2
km (Vk
+ Vm2 − 2VkVm cosθ km )
i =1
]
(1)
where nL is the number of lines of the network; Vk and Vm are,
respectively, the nodal voltage of bus k and bus m; gkm, bkm are,
respectively, the conductance and the susceptance of the line
k-m; and km is the phase angle difference between the busses k
and m.
The total power losses can be expressed as function of the
active power injection (P) and reactive power injection (Q),
which in turn depend on the network state (V, ).
A. First-Order Loss Sensitivity
Using partial derivatives, the total active losses can be
expressed as follows
∂Ploss ∂Ploss  ∂P  ∂Ploss  ∂Q 
=
+



∂θ
∂P  ∂θ  ∂Q  ∂θ 
∂Ploss ∂Ploss  ∂P  ∂Ploss  ∂Q 
=
+



∂V
∂P  ∂V  ∂Q  ∂V 
(2)
Manipulating (2), it can be rewritten as
 ∂P T    ∂P T
 loss    

 ∂θ   =   ∂θ 
T
 ∂P    ∂P T
 loss   

 ∂V    ∂V 
T
T
 ∂Q    ∂Ploss  

  

 ∂θ   ⋅  ∂P  
T
T

 ∂Q    ∂Ploss  

  

 ∂V    ∂Q  
(3)
Finally, the first-order loss sensitivities with respect to the
power injection in each bus system are expressed by [9]-[10]
– 48 –
2
 ∂Ploss 
 J   ∂P 
T
  =  ∂P  = J
loss
J

  
 ∂Q 
 ∂Ploss 

−1 
⋅  ∂θ 
∂Ploss


 ∂V 
[ ]
'
P
'
Q
(4)
where J’P is the first-order loss sensitivity related to the active
power injection and J’Q is the first-order loss sensitivity related
to the reactive power injection, J is the Jacobian matrix of
power flow, and the superscript T indicates the transpose. Note
that, these two sensitivities are column vectors with dimension
of number of the system busses (nbus).
B. Second-Order Loss Sensitivity
For a small generators installed at a system, first-order
sensitivities are enough to estimate the power losses. However,
in multi-DG systems with large generators, accurate methods
are needed since power losses present even more non-linear
behavior in this case. Regarding (1), the second-order
sensitivities can be as follows
2
∂P 2
∂Ploss
∴ J θ''V = loss
2
∂θ∂V
∂θ
2
∂P
∂P 2
''
= loss ∴ JVV
= loss2
∂V∂θ
∂V
Jθθ'' =
JV''θ
(5)
C. Power Losses Estimation
For a given distribution system, after solving the power
flow, the Jacobian matrix and the voltages (magnitudes and
phase angles) are used to calculate the (first and second)-order
loss sensitivities according to (4) and (5), and the active power
loss deviations (first and second-order) are defined as
[
 ∆P 
J Q'  DG 
∆QDG 
''
J
Jθ''V   ∆θ 
∆V ] θθ

''
''  
 JVθ JVV  ∆V 
'
∆Ploss
= J P'
''
∆Ploss
=
where
1
[∆θ
2
]
(6)
power flow solution and basic matrix operations given by (8),
the impact on power losses due to the connection of additional
generators at every bus of the system, with any capacity and
any lead or lag power factor, can be estimated. By using a 70bus test system, the results obtained by the proposed method
are compared with those provided by repetitive power flow
solutions. The accuracy of the method is very robust even in
the presence of large generators in multi-DG scenarios.
REFERENCES
[1]
Dispersed Generation, 1999. CIRED Working Group 4, CIRED, Tech.
Rep.. Available: http://www.cired.br
[2] N. Jenkins, R. Allan, P. Crossley, D. Kirschen, and G. Strbac,
Embedded generation, 1st ed. London, U.K.: Inst. Elect. Eng., 2000.
[3] A. Invernizzi, B. Buchholz, M. Stubbe, N. Jenkins, B. Dowd, and M.
Ceraolo, “Distribution Systems and Dispersed Generation: a New Focus
for CIGRE,” Electra, no. 213, pp. 17–21, Apr. 2004.
[4] Impact of Increasing Contribution of Dispersed Generation of the
Power Systems, 1999. CIGRÉ Working Group 37.23 CIGRÉ, Tech.
Rep.
[5] L. F. Ochoa, A. Padilha-Feltrin, and G. P. Harrison, “Evaluating
Distributed Generation Impacts with a Multiobjective Index,” IEEE
Trans. Power Del., vol. 21, no. 3, pp. 1452-1458, July 2006
[6] V. H. M. Quezada, J. R. Abbad, and T. G. S. Roman, “Assessment of
Energy Distribution Losses for Increasing Penetration of Distributed
Generation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 533-540, May
2006.
[7] R. C. Dugan, and T. E. McDermott, “Distributed generation,” IEEE
Industry Applications Magazine, vol. 8, no. 2, pp. 19-25, March-April
2002 .
[8] S. Conti, S. Raiti, and G. Tina, “Small-scale embedded generation effect
on voltage profile: an analytical method,” IEE Proc. Gener. Transm.
Distrib., vol. 150, no. 1, pp. 78-86, Jan. 2003.
[9] S. Lee, “Calculation of optimal generation for system loss minimization
using loss sensitivities derived by angle reference transposition,” IEEE
Trans. Power Syst., vol. 18, no. 3, pp. 1216–1217, Aug. 2003.
[10] J. A. Greatbanks, D. H. Popovic, M. Begovic, A. Pregelj, and T. C.
Green, “On optimization for security and reliability of power systems
with distributed generation,” in Proc. Power Tech, vol. 1, Jun. 2003.
[11] M. E. Baran and F. F. Wu, “Optimal capacitor placement on radial
distribution systems”, IEEE Trans. Power Del., vol. 4, no. 1, pp. 725–
734, Jan. 1989.
(7)
PDG is nbus dimension diagonal matrices formed by
the elements ( PDG1, PDG2,…, PDGn). Consequently,
'
∆Ploss
and ∆Ploss is nbus dimension column vector.
''
Thus, from (6) and (7), the total power losses after the
installation of any new generator are
0
'
''
Ploss = Ploss
+ ∆Ploss
+ ∆Ploss
where
0
Ploss
(8)
is the total active power losses for the base case.
The first-order loss sensitivities provide a good accuracy for
small generators. However, the studies, with large generators,
the second-order method shows a better accuracy for a fast
assessment of the DG impact in multi-DG systems.
III. CONCLUSION
In this paper, a second-order method based on power losses
sensitivity is proposed to directly estimate the total active
power losses of a distribution system. Based on only one
– 49 –
1
Estudo Comparativo entre Modelos Estocástico
e Determinístico para o Planejamento da
Operação Energética do
Sistema Interligado Nacional
André E. Toscano (D) e Secundino Soares Filho (P)
I. RESUMO
E
ste artigo apresenta um estudo comparativo entre duas
abordagens para o planejamento da operação energética do
Sistema Interligado Nacional (SIN).
O SIN compõe o sistema brasileiro de produção e transmissão
de energia elétrica, trata-se de um sistema de grande porte,
com forte predominância de usinas hidrelétricas. O SIN é
estruturado em subsistemas nas regiões Sul, Sudeste/CentroOeste, Nordeste e parte da região Norte.
Os modelos de planejamento energético aplicados ao SIN
devem fornecer o despacho de geração hidrotérmica que
atenda ao mercado de energia elétrica brasileiro de forma a
assegurar o atendimento das demandas de energia elétrica e
que minimize os custos operativos. Pela característica
hidrelétrica predominante no sistema brasileiro, o
planejamento visa determinar o despacho hidrelétrico
otimizado que minimiza a complementação termelétrica
necessária ao atendimento das demandas de energia elétrica do
SIN.
O modelo de planejamento energético de longo prazo em
vigor no sistema elétrico brasileiro é o modelo NEWAVE, um
modelo estocástico que representa o sistema através de
subsistemas equivalentes de energia e que tem sua solução
desagregada a usina individualizadas por outros modelos,
como o modelo DECOMP ou o SUISHI-O.
O modelo ODIN é a metodologia de planejamento energético
desenvolvida na UNICAMP. A estocasticidade das vazões
afluentes é tratada de forma indireta, através de um previsor de
vazões e um otimizador a usinas individualizadas, que a cada
intervalo de planejamento fornece as decisões de despacho
hidrotérmico por usina considerando as vazões previstas e a
otimização da geração hidráulica do sistema.
A abordagem estocástica é representada pelos modelos
NEWAVE/SUISHI-O. O modelo NEWAVE utiliza
Programação Dinâmica Dual Estocástica (PDDE) e representa
o sistema hidrelétrico como quatro subsistemas equivalentes
interligados. Para efeito de comparação a solução do modelo
NEWAVE foi desagregada a usinas individualizadas pelo
modelo SUISHI-O. A abordagem determinística é
representada pelo modelo ODIN, que utiliza um modelo de
otimização determinístico não linear que representa o sistema
hidrelétrico através de usinas individualizadas. A
estocasticidade das vazões é tratada de forma indireta através
de uma previsão de vazão realizada a cada intervalo do
horizonte de planejamento. A comparação foi feita por
simulação no histórico de vazões utilizando a configuração do
deck de dados NW200809 de setembro de 2008 da CCEE,
considerando 70 cenários hidrológicos. Os resultados indicam
um desempenho expressivamente melhor do modelo ODIN,
proporcionando mais segurança e economia ao SIN através do
aproveitamento mais eficiente dos recursos hidráulicos.
Palavras Chave -- planejamento da operação energética,
otimização não linear, otimização estocástica, regra de
operação de reservatórios, modelos de planejamento
energético, sistemas hidrotérmicos de potência, políticas
operativas, simulação por computador
II. REFERÊNCIAS BIBLIOGRÁFICAS
[1]
[2]
Este trabalho foi desenvolvido no âmbito do Programa de Pesquisa e
Desenvolvimento Tecnológico do Setor de Energia Elétrica regulado pela
ANEEL e consta dos Anais do V Congresso de Inovação Tecnológica em
Energia Elétrica (V CITENEL), realizado em Belém/PA, no período de 22 a
24 de junho de 2009.
Colaboraram na realização deste trabalho os Srs. R. Guedes, L. Nogueira e
E. Santos, da Companhia Energética de São Paulo - CESP (e-mails: rguedes
(lnogueira, erinaldo.santos_ter)@cesp.com.br).
A. Toscano, M. Zambelli, L. Martins, M. Kadowaki e S.Soares fazem
parte do grupo de pesquisas em Coordenação da Operação de Sistemas
Eletroenergéticos (COSE) na UNICAMP (e-mails: atoscano (monica,
leonardo,makoto,dino)@cose.fee.unicamp.br).
[3]
[4]
[5]
[6]
– 50 –
J. R. Stedinger, B. F. Sule, D. P. Loucks, “Stochastic Dynamic
Programming Models for Reservoir Operation Optimization”, Water
Resources Research, 20(11), pp. 1499-1505, 1984.
Bellman, R. E., “Dynamic Programming”, Princeton University Press,
Princeton, NJ, 1957.
Arvanitidis, N. V & Rosing, J., 1970, “Composite representation of a
multireservoir hydroelectric power system”, IEEE Transactions on
Power Apparatus and Systems PAS-89, 319-326.
Cruz, Jr. G. e Soares, S. “Non-Uniforme Composite Representation of
Hydroelectric Systems for Long-Term Hydrothermal Scheduling”, IEEE
Transactions on Power Systems, vol. 11, no. 2, pp. 701-707, 1996.
Pereira, M.V.F. e Pinto, L.M.V.G. “Stochastic Optimization of
Multireservoir Hydroelectric System: A Decomposition Approach”,
Water Resources Research, vol. 21, no. 6, pp. 779-792, Junho, 1985.
Pereira, M.V.F., Pinto, L.M.V.G.:Multi-stage stochastic optimization
applied to energy planning. Mathematical Programming 52(2), 359–375,
1991.
2
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
Valdes, J.B., Filippo, J.M.D., Strzepek, K.M., Restrepo, P.J.:
Aggregation-disaggregation approach to multireservoir operation. ASCE
Journal of Water Resource Planning Management 121(5), 345–351,
1995.
Turgeon, A.: Optimal operation of multireservoir systems with
stochastic inflows. Water Resour. Res. 16(2), 275–283, 1980.
Labadie, J. W. “Optimal Operation of Multireservoir Systems: State-ofthe-art Review”. Journal of Water Resources Planning and Management,
130(2), 93-111, 2004.
Dembo, R.S.: Scenario optimization. Annals of Operations Research
30(1), 63–80, 1991.
Escudero, L.F., a, J.L.G., Pietro, F.J.: Hydropower generation
management under uncertainty via scenario analysis and parallel
computation. IEEE Trans. on Power Syst. 11(2), 683–689, 1996.
Nabona, N.: Multicommodity network flow model for long-term
hydrogeneration optimization. IEEE Trans. on Power Syst. 8(2), 395–
404, 1993.
Martinez, L. & Soares, S., “Comparison between Closed-Loop and
Partial Open-Loop Feedback Control Policies in Long-term Hydrothermal Scheduling”, IEEE Trans. on Power Syst., 17(2), 2002.
Oliveira G.G. & Soares S. “A Second-Order Network Flow Algorithm
for Hydro-thermal Scheduling”, IEEE Trans. on Power Syst. 10(3),
1652–1641 (1995)
Rosenthal, R.E.: A nonlinear network flow algorithm for maximization
of benefits in a hydroelectric power system. Operations Research 29(4),
763–785, 1981.
M. S. Zambelli, T. G. Siqueira, M. A. Cicogna, S. Soares.
“Deterministic Versus Stochastic Models for Long-term Hydro-thermal
Scheduling”, In: 2006 IEEE Power Engineering Society General
Meeting, Montreal, Canada, June, 2006.
Philbrick, C. R. and Kitanidis, P.K. “Limitations of Deterministic
Optimization Applied to Reservoir Operations.” Jour. of Water Res.
Planning Management, 125(3), 135-142, 1999.
– 51 –
Análise de uma Estratégia de Controle e
Dimensionamento de um Filtro Híbrido com
Potência Reduzida no Inversor
Newton da Silva (D); José.Antenor Pomílio (P), Edson Adriano Vendrusculo (C)
Abstract-- This work analyzes the compensation of harmonic
currents through a Hybrid Filter. The Hybrid Filter consists of
an active power filter connected in parallel with the inductor of a
shunt passive tuned filter, resulting a lower voltage and current
stress over the active filter. The paper investigates the behavior of
an open loop control strategy, and discusses the dimensioning of
the power converter. Simulation results verify the system
operation.
Index Terms - Control Modelling, Harmonics Compensation,
Hybrid Power Filter.
I. INTRODUÇÃO
F
iltros Híbridos são usados a fim de minimizar custos e
fazerem reajustes em instalações onde já existe um filtro
passivo. Vários tipos de topologias de filtros híbridos
foram apresentados e implementados com sucesso nos últimos
anos [1] a [5].
Neste trabalho a topologia analisada é a que o filtro ativo é
conectado em paralelo com o indutor do filtro passivo, (Figura
1). A idéia principal é que a queda de tensão no capacitor
reduz a tensão do inversor, enquanto que o indutor desvia da
corrente harmônica ajustada.
Este trabalho estuda a técnica de controle apresentada em
[6]. A técnica de controle usa componentes das variáveis AC
referenciadas para o sistema dq. Os sinais processados são
usados para gerar o padrão PWM que controla o conversor do
filtro ativo.
II. ESTRATÉGIA DE CONTROLE DO FILTRO HÍBRIDO
Fig. 1. Topologia do Filtro Híbrido que consiste de um filtro passivo e
um filtro ativo conectado em paralelo com os indutores.
Nesta estrutura de controle, a corrente da fonte Is é medida,
e o inversor é comandado como uma fonte de tensão [1], tendo
como referências os sinais de corrente obtido da fonte. O
inversor trabalha em malha aberta.
O algoritmo de controle é desenvolvido no sistema de
referência síncrona dq. Os sinais de entrada (IS,IA,VS) são
transformados para este sistema, através da Transformação de
Park..Para detectar os harmônicos é suficiente usar um filtro
passa alta (HPF) [7] Controladores ressonantes são usados, um
para cada par de harmônica k = 6n 1, sendo que a equação
do controlador ressonante é um integrador harmônico
generalizado [8].
Nesta análise da estratégia de controle para o filtro ativo
[6], é utilizado o modelo equivalente monofásico mostrado na
Figura 2.
Este trabalho não possui financiamento de bolsa de pós-graduação. O
autor encontra-se em licença para e estudos, sendo financiado pela sua
instituição de origem.
Autores:
Newton da Silva, Universidade Estadual de Londrina, (email:
[email protected]).
José Antenor Pomílio, Universidade Estadual de Campinas, Faculdade de
Engenharia
Elétrica
e
Computação,
LCEE,
DSCE,
(email:
[email protected])
Edson Adriano Vendrusculo, Universidade Estadual de Campinas,
Faculdade de Engenharia Elétrica e Computação, LCEE, DSCE, (email:
[email protected])
Fig. 2. Diagrama geral simplificado do controle.
– 52 –
2
2K k s
dq
2
( s )
H APF
2
k 6 ,12 s k
(1)
A resposta em freqüência do filtro híbrido, considerando os
controladores ressonantes, é mostrada na Figura 3 onde o
gráfico indica a relação (dB) entre as correntes IS e IL.
III. ANÁLISE PARA UMA CARGA NÃO LINEAR
A Tabela I mostra os valores das correntes harmônicas nas
fontes utilizando-se o filtro híbrido e também quando somente
um filtro passivo é usado para compensação. Este resultado
considera um filtro trifásico.
Comparando-se os valores da Tabela I, observa-se a
redução das correntes harmônicas nas fontes. O filtro híbrido
melhora a atenuação das harmônicas a partir da 5ª harmônica e
reduz a taxa de distorção harmônica total.
Fig. 4. Formas de onda da tensão na fonte VS (200V/Div) e das correntes IS,
IL, IL (20A/Div )
TABELA I
CORRENTES HARMÔNICAS E THD NA FONTE
5th (A)
7th (A)
11th
(A)
(A)
Filtro
Híbrido
1.81
0.04
0.74
0.57
Filtro Passivo
1.74
2.31
1.84
1.05
Harmônicas
13th
V. REFERÊNCIAS
THD (%)
7.11
12.51
A figura 4 mostra a formas de onda (para uma fase) da
tensão na fonte e das correntes na fonte, carga, e no filtro
híbrido.
IV. CONCLUSÃO
Uma estratégia de controle para um filtro híbrido foi
analisada.
Resultados de simulação são apresentados, indicando que o
filtro hibrido apresenta um melhor desempenho que o filtro
passivo puro.
[1] Fujita, H.and Akagi H. (1991). “A practical approach to
harmonic compensation in power systems-series
connection of passive and active filters”, IEEE Trans. Ind.
App., Vol. 27, No. 6, pp. 1020 1025.
[2] Balbo, N; Sella, D.; Penzo, R.; Bisiach, G.; Cappellieri,
D.; Malesani, L.and Zuccato A. (1993), “Hybrid active
filter for parallel harmonic compensation” Power
Electronics and Applications, 1993., Fifth European
Conference on, 13-16 Sep 1993 Page(s):133 - 138 vol.8
[3] Bhattacharya, S. and Divan, D. M. (1995). “Synchronous
reference frame based controller implementation for a
hybrid series active filter system", in Conf. Rec. IEEEIAS. Annu. Meeting., pp. 2531-2540.
[4] Rastogi, M.; Mohan, N.; Edris, A.A. (1995). "HybridActive Filtering of Harmonic Currents in Power Systems,"
IEEE Trans. on Power Delivery, vol. 10, no.4, pp. 19942000.
[5] Bhattacharya, S. and Divan, D. M. (1997). "Hybrid
Solutions for Improving Passive Filter Performance in
High Power Applications", IEEE Trans. Indus. Appl.,
Vol. 33, No. 3, pp. 1312-1321.
[6] Asiminoaei, L.; Wiechowski, W.; Blaabjerg, F.;
Krzeszowiak, T.and Kedra, B. (2006). “A New Control
Structure for Hybrid Power Filter to Reduce the Inverter
Power Rating,” IEEE Industrial Electronics, 32nd Annual
Conference on, pp. 2712-2717, Nov.
[7] Bhattacharya, S.; Frank, T.M.; Divan, D.M. and Banerjee,
B. (1998). “Active filter system implementation”, IEEE
Trans. on Ind. App., Vol.4, No. 5, pp. 47 – 63.
[8] Newman, M. J.; Zmood, D.N.; and Holmes, D.G. (2002).
“Stationary frame harmonic reference generation for
active filter systems”, IEEE Trans. on Ind. App., Vol. 38,
No. 6, pp. 1591 – 1599.
Fig. 3. Resposta em frequência do filtro híbrido com o controle
Is(h)=f(IL(h)).
2
– 53 –
– 54 –
– 55 –
1
Abordagem Prática para Implementação de
Modulação por Vetores Espaciais para Inversor
de Três Níveis
Marcos Espindola (M), Ernesto Ruppert (P)
Resumo--Este artigo apresenta contribuições teóricas e
aspectos práticos sobre a implementação do algoritmo de
modulação por largura de pulsos usando vetores espaciais para
inversor de três níveis com neutro grampeado usando DSP(Digital
Signal Processor) TMS320F2812.
I. INTRODUÇÃO
O objetivo deste trabalho é mostrar um estudo detalhado
sobre o funcionamento e a implementação do algoritmo de
modulação por largura de pulsos (MLP) usando vetores
espaciais para inversores de três níveis, encontrado em [1]
Seixas (2000). Alguns aspectos que normalmente não são
tratados com muita clareza na literatura são revistos neste
artigo e, além do propósito de revisitar a literatura, com um
enfoque diferenciado e didático realizado objetivamente para a
implementação do algoritmo no DSP, uma abordagem
diferente sobre a identificação dos setores é apresentada.
A intenção deste trabalho é que as informações contidas
neste artigo possam rapidamente viabilizar a simulação e a
implementação no DSP do algoritmo de modulação por
largura de pulsos usando vetores espaciais para o inversor
fonte de tensão de três níveis com neutro grampeado da Fig. 1.
A plataforma F2812 foi escolhida devido ao fato de ser uma
importante família de processadores de ponto fixo de baixo
custo, com excelente desempenho e ótima relação custobenefício em aplicações industriais.
Entretanto, deve-se destacar que as informações contidas
neste artigo não são exclusivas para o DSP escolhido. A teoria
e o algoritmo mostrados são portáveis a qualquer DSP ou
processador que possua recursos semelhantes ao F2812.
As chaves usadas são módulos de meia ponte IGBTs e
também vale a portabilidade para qualquer tecnologia de
chaves resguardado as características de acionamento de cada
tecnologia. No site na internet a seguir estão os códigos de
programação no MATLAB e do F2812. Estão disponíveis para
download gratuito, sob a licença GNU de software livre.
“http://code.google.com/p/algoritmo-vetores-espacias/”
Este trabalho foi fomentado com recursos da UNICAMP e do CNPq para
trabalho de dissertação de Tese de Mestrado.
FEEC/UNICAMP
[email protected], [email protected]
II. ESTRUTURA DO CONVERSOR
A Fig. 1 ilustra a estrutura do conversor que utiliza a
estratégia de modulação em largura de pulsos estudada neste
trabalho. Trata-se de um inversor fonte de tensão de três níveis
com neutro grampeado. Esta estrutura foi apresentada em [2]
Takahashi (1981). Esta estrutura tem se mostrado bastante
interessante em aplicações industriais, pois pode utilizar
módulos de meia ponte já disponíveis em larga escala no
mercado. A vantagem do inversor multinível é estender a faixa
de tensão na qual o inversor pode operar, o que é muito
importante no caso de aplicações que excedem a tensão de
ruptura de 1200 V, que é padrão no mercado e normalmente é
o máximo que se consegue com chaves do tipo IGBT.
Fig. 1. Inversor de três níveis com neutro grampeado.
III. RELAÇÕES GRÁFICAS ENTRE AS REGIÕES ABC E AS REGIÕES
DQ
Fig. 2. Padrão trifásico no tempo e respectiva correlação dos setores
da figura 3 ao lado.
– 56 –
2
Figura 6. Resultado numérico interno ao DSP.
Fig. 3. Regiões assinaladas no plano dq em correlação à Fig. 2.
Tabela 1. Condições para identificação dos setores em
correlação com as Fig. 2 e Fig. 3.
Setor Condição
Setor Condição
A Va>Vb>Vc
D Vc>Vb>Va
B Vb>Va>Vc
E Vc>Va>Vb
C Vb>Vc>Va
F Va>Vc>Vb
IV. SIMULAÇÃO DO F2812 EM MATLAB E RESULTADO NO DSP
Figura 7. Resultado após a comutação das chaves.
V. AGRADECIMENTOS
Figura 4. Estrutura de software. Simulação de interrupção por
período de PWM
Este trabalho foi realizado com recursos da Universidade
Estadual de Campinas e do CNPq. Foram empregados
semicondutores gentilmente doados pela Semikron e uma
placa de desenvolvimento eZdsp TMS320F2812 doada pela
Texas Instruments. Agradecimento também à infra-estrutura
técnica e humana do Laboratório de Eletrônica de Potência e
dos arredores de espaço verde do laboratório proporcionada
pela Faculdade de Engenharia Elétrica e de Computção da
UNICAMP.
VI. REFERÊNCIAS
[1]
Seixas, P.F. and Mendes, Severo M.A. and Garcia, Donoso and Lima, P.
A Space Vector PWM Method for Three-Level Voltage Source
Inverters. Publication Year: 2000 , Page(s): 549 - 555 vol.1. Applied
Power Electronics Conference and Exposition, 2000. APEC 2000.
Fifteenth Annual IEEE
[2]
Takahashi, Isao and Nabae, Akira and Hirofumi Akagi. A new
neutral-point clamped pwm inverter. In IEEE lhnsactions on Industry
Applications, volume IA-17, pages 518-523, septem-ber/october
1981.
Figura 5. Estrutura de hardware. Simulação da MLP.
– 57 –
1
Geração Descentralizada de Reservas
Operativas A partir de Resíduos Sólidos
Urbanos, Fonte de Energia Renovável
Gerardo M A Lescano (D, FEEC/UNICAMP), Mariella R C Aurich (D, FEEC/UNICAMP), Takaaki
Ohishi (P, FEEC/UNICAMP)
I. Resumo
Os resíduos sólidos urbanos são uma fonte de energia
renovável, disponível e alternativa com enorme potencial.
Estes resíduos podem ser convertidos em energia por diversas
maneiras, entre elas pela sua queima em caldeiras para
geração de vapor e conseqüente acionamento de uma turbina.
Os Resíduos sólidos Urbanos podem ser utilizados como fonte
para a geração de Reservas Operativas como complemento à
eletricidade gerada pelas hidroelétricas em períodos de seca.
As reservas operativas são necessárias para melhorar o nível
de segurança operativo, principalmente em relação às perdas
de unidades geradoras e desvios significativos na demanda de
carga prevista. Usualmente as reservas operativas são alocadas
levando-se em conta somente o aspecto econômico. Porém,
outros fatores devem ser considerados tais como a sua
localização e a sua capacidade de resposta ante uma variação
de carga. Este trabalho analisou tecnicamente algumas
características envolvidas no aproveitamento energético dos
resíduos sólidos e a viabilidade de implementar pequenas
centrais termelétricas próximas aos nós de demanda para a
geração de Reservas Operativas.
II. Introdução
No Brasil o parque elétrico nacional é majoritariamente
hidrelétrico e centralizado, gerando mais de 80% da energia
elétrica brasileira, essa característica o torna extremamente
dependente dos regimes de chuvas. Durante as temporadas de
seca, que tendem a ficar cada vez mais extensas por conta do
aquecimento global, são acionadas usinas termelétricas
movidas a combustíveis fósseis como carvão, óleo
combustível e gás natural, insumos caros e que emitem
grandes quantidades de gases do efeito.
O estímulo à geração de energia renovável não é apenas uma
questão ambiental, é também econômica e de segurança
energética. A geração de energia renovável tem uma
característica importante para a economia, ela acontece mais
__________________________________________________
Gerardo M A Lescano, e doutorando do departamento de
Engenharia de Sistemas da Universidade estadual de
Campinas (e-mail: [email protected]).
Mariella R C Aurich é doutoranda do departamento de
Engenharia de Sistemas da Universidade estadual de
Campinas (e-mail: [email protected]).
Takaaki Ohishi e docente da FEEC/UNICAMP (e-mail:
[email protected])
próxima aos locais de demanda, o que reduz custos e perdas
nas linhas transmissão de energia.. A produção de energia
próxima dos centros de consumo também tem a vantagem de
criar postos de trabalho na região, alavancando o
desenvolvimento local.
Com base nestas preocupações, a política de geração de
Reservas Operativas descentralizadas de qualquer sistema
elétrico de potência, precisa definir sob o aspecto técnico, o
nível de confiabilidade e a quantidade de reserva necessária
para obtê-lo, e sob o aspecto econômico, o montante de
recursos financeiros que poderiam ser gastos com as reservas.
A geração descentralizada de Reservas Operativas, usando
como combustível os resíduos sólidos urbanos, por outro lado,
poderiam complementar a oferta de energia no período de
menor produtividade hidrelétrica. O período de seca no Brasil,
no qual a atividade das usinas hidrelétricas é menor, afetam a
produção de energia nesse período, já o combustível a partir
dos resíduos sólidos urbanos não é sazonal e poderia
contribuir com energia elétrica o ano inteiro.
A unidade descentralizada de Reservas Operativas utilizará o
combustível derivado dos resíduos (CDR), provenientes da
coleta e tratamento de resíduos de origem domiciliar e
comercial dos municípios. O CDR com poder Calorífico
Inferior de 3.500 kcal/kg será queimado em caldeiras de alto
rendimento, sendo que o vapor produzido pelas mesmas
proporcionará energia térmica e acionará conjuntos geradores
síncronos, com turbinas a vapor para a produção de energia
elétrica. Como a produção desta energia elétrica se dará
através do processo de ciclo térmico, “tipo Rankine”, a energia
contida no vapor na entrada da turbina se transformará em
energia mecânica para o acionamento do gerador de energia
elétrica, e parte será extraída para retornar ao ciclo térmico em
forma de condensados em circuito fechado.
É assim que o modelo apresentado a seguir tem como função
objetivo minimizar o custo total da operação para o despacho
de Energia Básica e Reservas Operativas atendendo as
restrições de balanço, as perdas do sistema também são
levadas em consideração, os limites operacionais dos
geradores, a capacidade de resposta dos mesmos ante uma
variação de carga (regulação de freqüência), limites de
capacidade nas linhas de transmissão e por ultimo os limites
de operacionais de geração.
Dado este contexto, o objetivo é avaliar a viabilidade técnica e
econômica de geração de Reserva Operativas de forma
– 58 –
2
descentralizada, a partir dos Resíduos Sólidos Urbanos (RSU),
como fonte de energia renovável, integrada ao sistema
centralizado de energia elétrica.
A restrição dada pela Equação (1.5) estabelece uma relação
linear entre o fluxo de potência ativa nas linhas de transmissão
e a injeção de potência ativa nas barras
III. Metodologia
Há várias classes de modelos de despacho econômico,
variando principalmente no nível de detalhamento da
representação da operação do sistema. Os modelos mais
simples asseguram apenas o atendimento da demanda global,
enquanto que as abordagens mais sofisticadas consideram uma
representação detalhada do sistema de transmissão através das
equações de fluxo de carga.
Foi considerada também a localização dos geradores de
reservas operativas, associando esta localização a um fator de
Punição que depende da distância da reserva ao “centro de
carga”, e com isto minimizar as perdas nas linhas de
transmissão. Se alocarmos reservas em unidades que se
encontram longe dos centros de carga com custo de operação
menor terá como conseqüências perdas maiores e o sistema
receberá só uma parte da reserva gerada. Seria mais
conveniente manter a reserva o mais perto possível ao lugar da
demanda para obter uma maior segurança. Uma maneira de
considerar a influência das perdas nas linhas de transmissão
sobre a distribuição econômica da carga entre os diferentes
geradores do sistema é determinar para cada gerador um
Coeficiente de Punição (Punishment Factor), PFi , expressado
na equação (1.9).
∂Lp
(1.9)
PF = 1 −
NG

 NG
MIN ∑ Ci ( Pi ) + ∑ Cri ( Ri )
i =1

 i =1
NG
NG
∑P +∑R
i
i =1
i =1
i
(1.1)
= Dp + Lp
(1.2)
Pi min ≤ Pi ≤ Pi max
min
i
R
(1.3)
≤ Ri ≤ R
max
i
i
(1.4)
Pkmmin ≤ Pkm + Rkm ≤ Pkmmax
(1.5)
Ri = PFi ⋅ SRi
(1.6)
Pi ≥ 0; SRi ≥ 0
(1.7)
f
min
≤ f ⋅ (1 −
FCRi
)≤ f
100
max
O PFi representa as perdas incrementais do sistema como
resultados da variação da injeção de energia em nó “i”, tendo
como referência o nó de mercado.
A capacidade de regulação de cada unidade, que é medida
pelo Fator de Capacidade de Resposta ( FCRi ) mostrado na
(1.8)
equação (1.10) é a variação em porcentagem da velocidade da
unidade, quando a carga é alterada, considerando que uma
central termelétrica opere segundo os dados fornecidos pelo
operador do sistema, o mesmo depende das cargas máximas e
mínimas de operação da mesma, e da velocidade com que esta
pode passar de uma carga a outra, tanto durante o aumento da
mesma (tomada de carga) como durante a sua diminuição
(retirada de carga).
Onde:
Pi
: Energia elétrica no nó “i”.
SRi : Reserva Requerida no nó “i”.
Ci
: Custo de geração por unidade de energia elétrica.
: Custo de geração por unidade de reserva operativa.
Dp : Demanda Total de energia elétrica.
Lp : Perdas totais de energia elétrica.
Pi min , Pi max : Limites de geração na unidade “i”.
Cri
FCRi =
Pkm
S km
Ri
PFi
: Limites de fluxo na linha “km”.
∆SRi ⋅Vpi
SRimax
(1.10)
Onde
∆SRi : Faixa de variação da potência (MW)
SRimin , SRimax : Limites de geração de reserva da unidade “i”.
Pkmmin , Pkmmax
∂Pi
Vp i : Velocidade de variação da potência (%)
Onde
f
: Fluxos de energia básica na linha “km”.
: Fluxos de energia básica na linha “km”.
: Reserva efetiva da unidade “i”.
: Fator de punição da unidade “i”.
A Função Objetivo (1.1) é em geral o custo de geração. A
primeira restrição, Equação (1.2), assegura o atendimento da
demanda de carga e considera as perdas na linha de
transmissão ( Lp ); as Restrições (1.3) e (1.4) são os limites
operativos para a geração e para o carregamento em termos de
potência ativa nas linhas de transmissão, respectivamente.
: Freqüência da rede (60 Hz)
IV. Referência Bibliográfica.
[1] Dias S., Silva R. B., Avaliação do Potencial de Produção e
Utilização de CDR em Portugal Continental 2006.
[2] Kai K., Marzi T. Europe Study on RDF 2002.
[3] Lescano G.M. “Um modelo de despacho econômico para
reservas operativas”, Tese de Mestrado, Universidade
Estadual de Campinas, 2004.
[4] Loira E E, Nascimento M. A., Geração termelétrica,
Plenejamento, projeto e operação, 2008.
[5] Moran M. , Shapiro H., Princípios de termodinâmica para
enegenharia, 4 edição, 2007.
[6] Santos N. O., Termodinâmica aplicada às termelétricas,
segunda edição RJ, 2006.
– 59 –
A Review of Wind Power Development
in Brazil
João Gorenstein Dedecca (M, FEM/UNICAMP), Vivaldo Fernando da Costa (P)
ABSTRACT – This paper is the result of the
research undertaken during the crafting of the
graduation paper in Faculdade de Engenharia
Elétrica e de Computação - FEEC/UNICAMP.
An introduction of the history of wind power
worldwide is realized. Then a review of the
development of wind power in Brazil and main
mechanisms implemented by the successive
Brazilian governments is presented, thus allowing
a general assessment of the current status of wind
power industry in Brazil and the efficacy of the
incentive methods utilized so far.
Keywords: Wind Power in Brazil, Wind Power
Industry, Development Mechanism, PROINFA,
Leilão de Energia de Reserva, Wind Turbine
I.Introduction
Wind turbines allow for the transformation of
wind energy into mechanical energy. Although the
application of wind turbines for the generation of
electrical power began in the eighteenth century,
modern designs applied in an industrial scale date no
more than thirty years [1]. Wind power generation
began in Denmark, but modern development of this
source started in California in 1980, but due to the end
of some of the existent financial incentives (state and
federal), the first wind power boom ended. It would
resurge in a different region, Europe, during the
second half of the decade of 1990, more specifically
in Denmark and Germany [2][3]. The former was
already responsible for the manufacturing, through
Vestas, of most of the wind turbines installed
previously in California.
Recently there have been spectacular
developments in other countries, such as Spain, China,
India and again in the US [4], but although each
development period may present differences such as
the main wind entrepreneurs (e.g. cooperatives, public
vertically-integrated utilities or private generation
companies), the success of the wind power industry in
each country was always associated with the
development of local manufacturing companies
(whether national or transnational) and the
implementation of adequate incentive mechanisms,
such as feed-in tariffs, green quotas, fiscal incentives,
favorable amortization and special bidding systems.
Moreover, due to the specific characteristics of
wind power such as its limited predictability, research
is still ongoing on how to integrate this power source
into the power system, and preferential dispatch is
frequently a prerequisite for the financial feasibility of
wind power projects [1].
II.
The Electric Sector Crisis
The Brazilian interconnected system is based
mainly on hydroelectricity, and was consolidated
throughout the twentieth century [5]. Like other
developing countries, Brazil faced ever-increasing
economic problems from the first energy crisis on
(1973), and the planning and expansion of the hydro
complex suffered accordingly from unfavorable
international loan rates, financial constraints imposed
by the federal government and the general
macroeconomic situation. This motivated the
liberalizing and re-regulation reforms implement by
successive Brazilian governments during the 1990’s,
which, together with the previous crisis would result
in the energy crisis of 2001. By then, the electrical
sector had been profoundly transformed, with many
utilities privatized (especially at state level), and an
independent regulator (Aneel) and system operator
(ONS) instituted. Previous programs for the wind
power generation existed in Brazil [6], but it was the
Program for the Incentive of Alternative Energy
Sources, PROINFA, that was the most effective.
III.
Past Wind Industry Development
The development of a national wind power
industry requires the existence of local manufacturers,
the publishing of wind and wind power potential
studies, and the proper regulatory frame and
incentives.
Previously to the PROINFA, many of those
conditions existed at a base level. Many states had
crafted a wind atlas, such as Ceará, and a national
atlas had been published by CEPEL in 2001 [7]. A
german manufacturer, Enercon (synchronous gearless
generators), established itself in the state of São Paulo
in the middle of the 1990’s, manufacturing mainly for
exports, as did TECSIS, in 1995, a national enterprise
that manufactures turbine blades.
Other companies have since established
themselves in Brazil. Argentine turbine constructor
João Gorenstein Dedecca é aluno de mestrado do curso de
planejamento energético da FEM/UNICAMP
Vivaldo Fernando da Costa é professor da FEEC/UNICAMP
– 60 –
Impsa Wind (permanent magnet synchronous gearless
generators) opened a facility in the state of
Pernambuco, while S.A.W.E. constructs wind turbine
towers and foundations in the state of São Paulo. GE
Wind announced it would adapt its production line in
Campinas, SP, to manufacture wind turbines from
January, 2010. These recent developments are due to
the perceived past and future unfolding of the wind
power industry in Brazil, mainly with the PROINFA
and the reserve energy auctions.
.
IV.
PROINFA and LER
Instituted mainly as a response to the 2001
energy crisis (much like the thermoelectric emergency
program), PROINFA, created by law nº 10.438/2002,
aimed, in its first phase, at the auction of 3300 MW
equally distributed among wind, small hydro and
biomass generation. During the auction process
undertaken during 2004, due to the small biomass
offer, the final wind power contracted was 1423 MW
[8]. Some measures were criticized, such as the
minimum wind turbine nationalization coefficient
(50% later augmented to 60%), but through stable 20year contracts, priority access to the grid and lax
connection regulation (comparatively), and financial
support from the state development bank, BNDES,
PROINFA succeeded in developing a national wind
industry, albeit with notable lags. Originally
conceived to be finished by 2006, the first phase of
PROINFA is still ongoing, and as of 15/02/2010
681,73 MW were in commercial operation (47,9%),
with more 154,4 MW without impediments to go
online in 2010 [9].
A second phase of PROINFA is regulated
by law, but the current situation does not indicate
any measure of its implementation. With the
government change of 2003, along with many
changes in the power sector (such as the
institution of Energy Research Enterprise, EPE,
and reregulation of the power market), new
mechanisms were adopted for the development of
alternative electric generation sources. The main
new mechanism is the Reserve Energy Auction,
LER, of which two were realized, and the second
(realized in 12/2009) treated exclusively with
wind power. Aiming at the reduction of costs of
wind power generations, the auction achieved a
total of 1805,7 MW of contracted power (of more
than 10 GW offered) due to go online in 2012 (or
132 TWh), at an average price of 148,39
R$/MWh, significantly lower than the PROINFA
contract tariff [10].
V.
Conclusions and Future Outlook
The Brazilian Government has already
announced a third LER, for all three alternative
sources of PROINFA, which indicates a more
consistent policy for its promotion. With a more
mature wind turbine components industry, the future
outlook for wind power in Brazil looks promising,
although significant reductions in generation costs is
necessary if the source is to be competitive with
conventional ones. As for past developments, the
measures adopted succeeded in promoting a take-off
of the national wind power industry, albeit at a pace
much too slow and with partial efficacy only.
References and Bibliography
[1] T. ACKERMANN, org, Wind Power in
Power Systems. 2005, John Wiley & Sons, Ltd
[2] S. FRANDSEN ; P. D. ANDENSEN.
“Wind Farm Progress In Denmark” in Renewable
Energy, Vol. 9, 1-4, Sept.-Dec., 1996, p. 848-852
[3] DEWI - Deutsch Windenergie Institut,
“WindEnergy Study 2008- Assessment of the
Wind Energy Market Until 2017”, Sept., 2008
[4] GWEC – Global Wind Energy Council.
Global Wind 2008 Report. GWEC
[5] A. D. Leite, A Energia do Brasil, 2º
Edition, Elsevier, 2007
[6] R. M. DUTRA ; A. S. SZKLO,
“Incentive Policies for Promoting Wind Power
Production in Brazil: Scenarios for the Altenative
Energy Sources Incentive Program (PROINFA)
under the New Brazilian Electric Power Sector
Regulation”, in: Renewable Energy, Vol. 33,
2008, p.65-76, Elsevier
[7] CEPEL – Centro de Pesquisas de
Energia Elétrica, Atlas do Potencial Eólico
Brasileiro. 2001, CEPEL
[8] ELETROBRÁS, Apresentação
situação do Proinfa, 01/2009
da
[9] ANEEL, Agência Nacional de Energia
Elétrica,
Acompanhamento
das
Centrais
Geradores do PROINFA, Versão de 15/02/2010
[10] CCEE, Câmara de Comercialização de
Energia Elétrica, “2º Leilão de Energia de
Reserva – Resumo Resultado Completo”, 2010
– 61 –
1
Optimal power generation scheduling in multi-area
interconnected hydrothermal systems
L. S. A. Martins (PD), A. T. Azevedo (PE, FEG/UNESP), and S. Soares (P)
CHEDULING power generation in hydrothermal systems
in an optimal manner is a large-scale complex problem
due to several aspects, such as the nonlinearities present in
hydropower generation and thermal operation cost functions,
as well as the stochastic nature of water inflows. In order to
solve this problem, several approaches have been proposed
over the past decades [1]. The differences between them lie
in the way the many aspects of the problem are handled by
each of the approaches. Inflows stochasticity, for instance, has
been dealt with by employing dynamic programming and its
derivatives [2], multiple scenarios techniques [3], [4], [5], and
open-loop feedback control methods [6], [7], [8].
Because dynamic programming-based approaches are affected by the curse of dimensionality effect, techniques for
reducing the search space have been proposed over the years,
such as the use of composite reservoirs [9], aggregation of
hydro and thermal plants [10], iterative reservoir composition/decomposition in a river basis [11], and dual stochastic
dynamic programming [12]. All those techniques, however,
imply further simplification of the underlying power systems,
such as the linearization of the hydro production function.
On the other hand, multiple scenario and open-loop feedback control approaches handle stochasticity in an indirect
manner, allowing a more detailed representation of the system by employing deterministic optimization models. Many
different optimization methods to solve the long-term hydrothermal scheduling problem in its deterministic version have
been proposed in the literature. Some of them were based
on linear programming [13], and some on general nonlinear
programming algorithms [14], while others have exploited the
problem’s inherent network flow structure [15], [16], [17],
[4], [18]. Interior-point methods have also been suggested.
Although initially, in this case, the nonlinear aspect of the
problem has been handled by piecewise or sucessive linearizations [19], [20], [21], a convex formulation of the problem
has also been explored [22]. These, however, do not consider
the possibility of power exchange in multi-area interconnected
systems where exchange constraints are enforced. A few works
have proposed hydrothermal scheduling models with network
constraints over the years. Such approaches, though, were targeted at short-term scheduling problems only [23], [24], [25],
and are not capable of rendering conclusions on the effects
of network constraints over reservoir operation in the long
run. Considering power exchange in multi-area interconnected
S
hydrothermal systems is economically desirable for it broadens
the options for the minimization of complementary thermal
generation costs by increasing water usage efficiency. The
ability to exchange power enables the use of water available in
areas with different rainfall regimen. In a world where large
projects for water storage are failing to justify their investment costs [26], increasing the efficiency of water usage by
providing more hydroelectricity seems to be the best decision.
Additionally, considering power exchange constraints in longer
term models may provide more precise coupling of long-term
and short-term schedules.
This paper presents the solution of the optimal power
generation scheduling problem in multi-area interconnected
hydrothermal systems with consideration of constrained power
exchange between them. The proposed model explicitly represents power balance nonlinear equations, defined as the sum
of hydro and thermal outputs, and net power imports such
that load demand is strictly attained at each of the systems.
This problem can be further described as the search for an
optimal hydraulic operation x for all hydro plants i ∈ Ik
distributed among systems k ∈ K subject to power exchange
flows y, such that the sum of operation costs Ψ(z) at each
thermal plant t ∈ Tk over the planning horizon, discretized
in intervals j ∈ J , be minimal. Uncertainties associated with
natural inflows b and load demand d are ignored.
Algebraic and computational difficulties arisen by the problem formulation are overcome by the use of a nonlinear
primal-dual interior-point line search filter method based
on [22], [27]. A line search filter procedure is chosen over
its alternatives for these are known to generally outperform
penalty merit functions. Although the implementation proposed in this paper does not guarantee global convergence, it
is shown to be very efficient for all numerical tests performed.
Additionally, problem’s block-constraint structure is exploited
for improved computational efficiency.
Case studies based on real data from the Brazilian power
system illustrate the application of the proposed model. These
case studies consisted of over 18,800 variables and 1,200
equality constraints representing 95 hydro and over 100
thermal plants distributed over 4 interconnected areas for a
planning horizon of one year discretized in 12 months. The
results obtained showed the proposed model and method to
provide an average 1% increase in hydropower generation over
alternative methodologies.
This research was supported in part by the São Paulo State Research
Foundation (FAPESP) under grant 2005/02168-0, Companhia Energética de
São Paulo (CESP), and Duke Energy Geração Paranapanema. The authors
would like to thank A. R. L. Oliveira and M. Zambelli for their support
during the development of this work.
– 62 –
2
R EFERENCES
[1] J. W. Labadie, “Optimal operation of multireservoir systems: state-ofthe-art review,” Journal of Water Resources Planning and Management,
vol. 130, no. 2, pp. 93–111, 2004.
[2] W. Yeh, “Reservoir management and operations models: a state of the
art review,” Water Resources Research, vol. 21, no. 12, pp. 1797–1818,
1985.
[3] R. Dembo, “Scenario optimization,” Annals of Operations Research,
vol. 30, no. 1, pp. 63–80, 1991.
[4] N. Nabona, “Multicommodity network flow model for long-term hydro
generation optimization,” IEEE Transactions on Power Systems, vol. 8,
no. 2, pp. 395–404, 1993.
[5] L. Escudero and F. Pietro, “Hydropower generation management under uncertainty via scenario analysis and parallel computation,” IEEE
Transactions on Power Systems, vol. 11, no. 2, pp. 683–689, 1996.
[6] C. H. Dagli and J. F. Miles, “Determining operating policies for a water
resource system,” Journal of Hydrology, vol. 47, pp. 297–306, 1980.
[7] L. Martinez and S. Soares, “Comparison between closed-loop and
partial open-loop feedback control policies in long term hydrothermal
scheduling,” IEEE Transactions on Power Systems, vol. 17, no. 2, pp.
330–336, 2002.
[8] M. Zambelli and S. Soares, “A predictive control approach for long term
hydrothermal scheduling,” in Proc. IEEE Power Systems Conference &
Exposition, Seattle, WA, 2009.
[9] N. V. Arvanitidis and J. Rosing, “Composite representation of a multireservoir hydroelectric power system,” IEEE Transactions on Power
Apparatus and Systems, vol. PAS-89, no. 2, pp. 319–326, 1970.
[10] Z. Yu, F. T. Sparrow, and D. Nderitu, “Long-term hydrothermal scheduling using composite thermal and composite hydro representations,” IEE
Proceedings on Generation, Transmission and Distribution, vol. 145,
no. 2, pp. 210–216, 1998.
[11] A. Turgeon and R. Charbonneau, “An aggregation-disaggregation approach to long-term reservoir management,” Water Resources Research,
vol. 34, no. 12, pp. 3585–3594, 1998.
[12] M. V. F. Pereira, “Optimal stochastic operations scheduling of large
hydroelectric systems,” Electrical Power and Energy Systems, vol. 11,
no. 3, pp. 161–169, 1989.
[13] M. Barros, F. Tsai, L. Y. S-L., and W. Yeh, “Optimization of large-scale
hydropower systems operations,” Journal of Water Resources Planning
and Management, vol. 129, no. 3, pp. 178–188, 2003.
[14] C. Gagnon, R. Hicks, S. Jacoby, and J. Kowalik, “A nonlinear programming approach to a very large hydroelectric system optimization,” IEEE
Transactions on Power Systems, vol. 6, no. 1, pp. 28–41, 1974.
[15] R. E. Rosenthal, “A nonlinear network flow algorithm for maximization
of benefits in a hydroelectric power system,” Operations Research,
vol. 29, no. 4, pp. 763–785, 1981.
[16] M. F. Carvalho and S. Soares, “An efficient hydrothermal scheduling
algorithm,” IEEE Transactions on Power Systems, vol. PWRS-2, no. 3,
pp. 537–542, 1987.
[17] C. Lyra and H. Tavares, “A contribution to the midterm scheduling of
large scale hydrothermal power systems,” IEEE Transactions on Power
Systems, vol. 3, no. 3, pp. 852–857, 1988.
[18] G. G. Oliveira and S. Soares, “A second-order network flow algorithm
for hydrothermal scheduling,” IEEE Transactions on Power Systems,
vol. 10, no. 3, pp. 1635–1641, 1995.
[19] K. Ponnambalam, V. H. Quintana, and A. Vannelli, “A fast algorithm
for power system optimization problems using an interior point method,”
IEEE Transactions on Power Systems, vol. 7, no. 2, pp. 892–899, 1992.
[20] M. Christoforidis, M. Aganagic, B. Awobamise, S. Tong, and A. Rahimi,
“Long-term/mid-term resource optimization of a hydro-dominant power
system using interior point method,” IEEE Transactions on Power
Systems, vol. 11, no. 1, pp. 287–294, 1996.
[21] J. Medina, V. H. Quintana, and A. J. Conejo, “A clipping-off interiorpoint technique for medium-term hydro-thermal coordination,” IEEE
Transactions on Power Systems, vol. 14, no. 1, pp. 266–273, 1999.
[22] A. Azevedo, A. Oliveira, and S. Soares, “Interior point method for longterm generation scheduling of large-scale hydrothermal systems,” Annals
of Operations Research, vol. 169, no. 1, pp. 55–80, 2009.
[23] M. R. Piekutowski, T. Litwinowicz, and R. Frowd, “Optimal short-term
scheduling for a large-scale cascaded hydrosystem,” in Proc. Power
Industry Computer Application Conference, vol. 1, Scottsdale, AZ, 1993,
pp. 292–298.
[24] C. Wang and S. M. Shahidehpour, “Power generation scheduling for
multi-area hydro-thermal systems with tie line constraints, cascaded
reservoirs and uncertain data,” IEEE Transactions on Power Systems,
vol. 8, no. 3, pp. 1333–1340, 1993.
[25] P. E. C. Franco, M. F. Carvalho, and S. Soares, “A network flow model
for short-term hydro-dominated hydrothermal scheduling problems,”
IEEE Transactions on Power Systems, vol. 9, no. 2, pp. 1016–1022,
1994.
[26] “Dams and development: a new framework for decision-making,” World
Commission on Dams, Tech. Rep., 2000.
[27] A. Wächter and L. T. Biegler, “On the implementation of an interiorpoint filter line-search algorithm for large-scale nonlinear programming,”
Mathematical Programming, Series A, vol. 106, no. 1, pp. 25–57, 2006.
– 63 –
1
Metodologia Agregada para Previsão de Carga por
Barramento
Ricardo Menezes Salgado (PE), Takaaki Ohishi (P) e Rosangela Ballini (PE)
I. I NTRODUÇ ÃO
Os sistemas elétricos de potência (SEP), uma das grandes
preocupações é garantir que a energia, ou carga elétrica,
gerada seja entregue ao consumidor final com a devida
eficiência. No acompanhamento da carga um dos focos de
atenção é a rede de transmissão/distribuição responsável por
escoar a produção de energia elétrica através de nós que
interligam as linhas, subestações, transformadores e consumidores. Estes nós, denominados barramentos ou simplesmente
barras, podem ser enxergados como supridores de energia
elétrica e, associado a cada um destes, pode-se levantar e
estimar um histórico de consumo elétrico, e através deste
é possı́vel executar diversas tarefas de controle, estudos e
operações de segurança na rede.
Para realizar a programação da rede elétrica, a operação
do sistema em tempo real e avaliar o impacto do envio da
carga elétrica sobre o sistema de transmissão, é essencial que
se conheça a distribuição da potência ao longo da rede, pois
os carregamentos nas linhas de transmissão e nos transformadores dependem da demanda de energia em cada ponto
de interligação do sistema elétrico em diversos horizontes de
tempo.
Uma das formas de conhecer a potência elétrica em cada
nó do sistema é através da estimação da carga via modelos de previsão que geralmente levam em consideração o
histórico de consumo elétrico com o qual é possı́vel estabelecer relações lógicas e obter informações que possibilitem a
estimação da potência ou carga elétrica. Dentre as aplicações
da previsão de carga pode-se citar: fluxo de potência ótimo,
análise de estabilidade e segurança, despacho econômico,
planejamento da produção, controle e operação de redes de
transmissão/distribuição, entre outras.
Uma maneira de fazer a previsão de carga em cada barramento é realizar a previsão aplicando um tratamento individual, ou seja, ajustando-se um modelo e previsão para cada
barra do sistema. A vantagem da utilização de um modelo
individual para cada barramento é a especialização do previsor
para uma determinada série, possibilitando o aprendizado especı́fico dos seus comportamentos e perfis particulares. Entretanto, esta alternativa exige um trabalho minucioso e demanda
grande esforço computacional para o processamento individual
N
Ricardo M. Salgado is with Laboratory of Computational Intelligence
(LInC), Department of Exact Science, Federal University of Alfenas, Alfenas
- Minas Gerais - Brazil e-mail: [email protected]
Takaaki Ohishi is with Department of System Engineering, School of
Electrical and Computer Engineering, University of Campinas, Campinas São Paulo - Brazil e-mail: [email protected]
R. Ballini is with Institute of Economics, University of Campinas, Campinas - São Paulo - Brazil e-mail: [email protected]
de todos os barramentos não sendo adequada para decisões de
curto prazo e operações em tempo real nos sistemas elétricos
de potência.
Neste sentido, esta pesquisa investigou uma alternativa para
solucionar esta questão, baseada no desenvolvimento de um
modelo agregado que realiza automaticamente a previsão de
um conjunto de barramentos. A metodologia proposta busca
resolver o problema em um tempo menor de processamento,
garantindo a qualidade da solução e possibilitando o uso das
previsões em operações de curto prazo do sistema elétrico.
II. M ETODOLOGIA AGREGADA
A. Motivação
De acordo com [3] barramentos que apresentam
semelhanças em seu perfil de consumo diário tendem a
manter esta similaridade ao longo do histórico de cargas,
tendo em vista que refletem os hábitos de cada região e os
clientes atendidos [4]. Com base nesta premissa, o modelo
de previsão de carga por barramento, proposto neste trabalho,
concentra suas análises nos pontos da rede elétrica que
possuem perfil de consumo similar. Destarte, em [3], pode-se
observar que os grupos de barramentos com perfil similar
concentram a maior parte da carga elétrica do sistema. Neste
sentido, bons resultados de previsão nos grupos ocasionam
boas estimativas da carga nos barramentos do sistema,
proporcionando informações relevantes para um processo de
operação seguro e eficiente no sistema elétrico. A utilização
dos grupos de barras com perfil similar, para realização de
procedimentos de previsão, não é uma ideia inovadora, sendo
utilizada, com bons resultados, nos trabalhos de [2] e [1].
A metodologia desenvolvida neste trabalho propõe uma
abordagem que utiliza as informações dos grupos de barras
semelhantes para criar uma estrutura agregada que represente
as informações de diversos barramentos em um único dispositivo. Assim sendo, um previsor capaz de aprender as
informações desta estrutura estará mapeando, implicitamente,
as relações dos barramentos pertencentes ao mesmo grupo.
De forma prática, a previsão agregada objetiva estimar, por
meio de um único previsor, a carga de vários nós do sistema
elétrico.
B. Ilustração: Metodologia de Previsão
A metodologia de previsão agregada desenvolvida nesta
pesquisa baseia-se em uma sistemática que agrega diversas
séries temporais e realiza uma única previsão para todas
as séries agregadas. Por exemplo, para aplicar o modelo
agregado no conjunto formado pelos barramentos #33 e #40,
– 64 –
2
a ideia é criar uma estrutura que represente simultaneamente
as informações de cada barramento e, através dessa, realizar
a previsão das séries agregadas.
Na Figura 1 é possı́vel observar a estrutura agregada desenvolvida, na qual podem ser observados os padrões de entrada
e as respectivas saı́das para os barramentos #40 e #33. Podese notar que, com este arranjo de dados, um conjunto com
barramentos distintos foi representado por meio de uma única
estrutura. O objetivo desta abordagem é condensar diversas
séries temporais em um único dispositivo, simplificando a
representação por intermédio da utilização de apenas um bloco
de dados input × output.
Em termos práticos, observando a Figura 1, é possı́vel
verificar que o padrão relacionado ao barramento #40 é
expresso por meio de duas entradas e uma saı́da, enquanto
o #33 tem seu comportamento descrito por uma entrada e
uma saı́da. Como as informações de diferentes barramentos
estão na mesma estrutura, são utilizados valores nulos como
critério de separação entre os padrões de cada barramento.
Esta estratégia faz com que parâmetros do modelo de previsão
sejam utilizados para representar, especificamente, cada um
dos barramentos mantendo a estrutura individual e respeitando
as caracterı́sticas (input × output) de cada série de carga.
Fig. 1.
Diagrama de Estrutura Agregada.
A estrutura agregada mantém a representatividade individual
dos pontos de medição #40 e #33 expressando fielmente
os padrões em relação às suas entradas e saı́das. Esta caracterı́stica torna possı́vel a utilização de um único preditor
para a previsão para o conjunto de barramentos #40 e #33
automaticamente.
A Figura 2, mostra um diagrama de uma rede neural
multicamadas utilizada para a previsão dos barramentos #40
e #33. Nesta ilustração, o ajuste dos parâmetros do modelo
é executado por meio da apresentação dos dados dos barramentos #40 e #33. Ou seja, quando são apresentadas as
informações do barramento #40, a terceira entrada relativa ao
#33 é anulada. Por outro lado, quando são apresentados os
elementos do barramento #33, os itens relativos ao #40 são
anulados.
Fig. 2.
Esquema: Topologia Neural - (Caso Agregado).
III. C OMENT ÁRIOS F INAIS
A metodologia agregada proposta foi aplicada em um
conjunto de dados formado por 73 barramentos, localizados
na região nordeste do Brasil. Neste conjunto, as medições de
carga, em base horária, foram coletadas no perı́odo de 06 de
junho a 03 de outubro de 2001, totalizando 125 dias com 3000
horas de medição em cada um dos barramentos. No sistema
em análise, os barramentos possuem tensões variando entre 38
a 230KV.
Com base nos resultados apresentados em [3], pode-se
concluir que a metodologia de previsão agregada foi eficaz na
resolução do problema de previsão de carga por barramento
com desempenho compatı́vel ou superior às abordagens convencionais de previsão de carga. Como visto anteriormente,
existe a necessidade de rapidez na disponibilidade dos resultados de previsão de carga e, o modelo agregado proposto se
mostrou na média aproximadamente 14 vezes mais rápido que
os modelos convencionais, baseados em previsão individual,
na previsão da carga por barramento.
ACKNOWLEDGMENT
Esta pesquisa contou com o apoio da Fundação de Amparo
à Pesquisa do Estado de São Paulo (FAPESP) através dos
processos números: 99/12737-9, 02/06733-5, 03/10019-9 e
04/07879-9.
R EFERENCES
[1] E. Handschin and C. Dörnmann, “Bus load modelling and forecasting,”
IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 627–633, May
1988.
[2] A. Keyhani and S. Miri, “On-line weather sensitive and industrial
group bus load forecasting for microprocessor-based application,” IEEE
Transactions on Power Systems, vol. PAS-102, no. 12, 1983.
[3] R. M. Salgado, “Sistema computacional para previsão de carga por
barramento,” Ph.D. dissertation, Unicamp, 2000.
[4] R. Salgado, T. Ohishi, and R. Ballini, “Clustering bus load curves,”
Proceedings of Power Systems Conference Expositon PSCE- IEEE,
November 2004.
– 65 –
Preliminary results of a real time estimation tool for
the voltage stability margin using PMU data.
Luiz C. P. da Silva(P) Madson Cortes de Almeida(P) Rodrigo Garcia-Valle(PE) Alexandre H. Anzai(D)
Abstract—In this article it is shown some preliminary results
about the development of a tool for real time monitoring of
the voltage stability margin of electrical transmission systems.
With the advent of the Phasor Measurement Units (PMU),
it becomes easer to obtain the system’s state in real time
for both the magnitude and the phase of the bus’s voltages.
In this preliminary stage a parametric estimation method of
discrete dynamic systems called ARX (Auto-Regressive eXogenous
inputs) was used for determination of parameters that allows the
estimation of the voltage stability margin value in real time using
the measures from the PMUs and a database obtained in an
offline stage. The method is briefly presented along with some
results from this initial stage.
I. I NTRODUCTION
The concern in operating the electric transmission system
with a high voltage stability margin, is gaining more importance in the last decades due to the several voltage collapse
blackouts registered [1]. Since the increasing growth in the
power demand, along with the fact that the transmission
systems don’t grow at the same rate of the demand, have
lead the system to be operated in an optimized way, but very
close to the maximum transmission capacity, it is of paramount
importance the obtainment of a tool that allows the system’s
operator to assure a stability criterion.
The voltage stability problem can be seen by the point of
view of non linear dynamics systems that study the proximity
of the system’s operation point to the Hopf bifurcation point
or the saddle-node point in the state space [1], [2] and also
by the maximum admissible load for the system in order to
maintain reasonable voltage magnitudes in the buses in steady
state.
In the literature there are many methods that first require
a long computational time, being inadequate for real time
applications and secondly require oversimplifications of the
system’s model [3], [4].
Usually the analysis are made in off-line time, allowing the
identification of load’s critical levels, critical contingencies,
critical areas and the maximum load capacity of the system
for (N-1) scenarios [5].
Considering the foregoing, this article will present the
preliminary results about the method to be developed whose
Luiz C. P. da Silva is from School of Electrical and Computer Engineering,
State University of Campinas Email:[email protected]
Madson Cortes de Almeida is from School of Electrical and Computer Engineering, State University of Campinas Email:[email protected]
Rodrigo Garcia-Valle is from Department of Electrical Engineering, Technical University of Denmark,Email: [email protected]
Alexandre H. Anzai is from School of Electrical and Computer Engineering,
State University of CampinasEmail:[email protected]
objective is to be computationally fast in order to be adequate
to real time applications without requiring oversimplifications.
With the recent advances in the synchronized phasorial
measures and telecommunications [6], it becomes feasible
utilizing these measures for voltage stability studies, since
when these measures are well made, provide a more reliable
perspective of the system and in real time when compared with
the SCADA (Supervisory Control And Data Acquisition).
II. AUTO R EGRESSIVE WITH EXOGENOUS INPUTS
MODEL (ARX)
One of the most used models for system identification is the
Auto Regressive with eXogenous inputs, this model is used
for the determination of the parameters of a linear dynamic
discrete-time system which can be modeled as a difference
equation. The general form of the model can be seen in (1).
A(q)y(k) = B(q)u(k) + ν(k)
(1)
For the voltage stability margin estimation problem, the
ARX model is used considering that the input signal is
composed by the values of the voltage magnitudes and angles
of the buses monitored by a PMU unit. In the implementation
of the method it was considered that noise signal ν(k) in
(1) is a white noise. Utilizing the MATLAB function arx
is possible to calculate the polynomials A(q) e B(q) and
therefore the coefficients for the margin estimation, with the
polynomials A(q) and B(q), the input signal u(k) is circularly
convoluted with the polynomial B(q) and the signal output
y(k) is circularly convoluted with the polynomial A(q) [7].
In the case of voltage stability margin estimation, the input
vector is composed of several values at the sample time k,
which correspond to the measures of the magnitude and angle
of the bus voltages where there are a PMU unit installed. Thus
a number of coefficients has to be determined for each input
signal depending on the order of the polynomials. For tests
and simulation, the New england 39 bus system was used.
III. S IMULATION R ESULTS
The simulation was made considering a minute to minute
daily load curve, and a database composed by the voltage
stability margins calculated for each point of the curve, in
order to improve the accuracy of the method the daily load
curve was divided in three portions according to the system’s
load level and for each part a ARX model was calculated to
estimate the margin in each load level.
The Figure 1 presents the results of the margin estimation
considering an light load level for the system and is possible
– 66 –
to see in the graphics the estimated margin and the calculated
margin curves and the absolute errors for each point of the
curve. Comparing the estimated curve of the margin for each
load level, the light load level presented the biggest values.
50
Margin %
30
20
10
0
Absolute error %
Margin %
Calculated Margin
Estimated Margin light load level
80
60
40
0
50
100
150
200
250
Load curve points
300
350
400
450
50
100
150
200
250
Load curve points
300
350
400
450
0.8
120
100
Calculated Margin
Estimated Margin heavy load level
40
50
100
150
200
250
300
Load curve points
350
400
450
0.6
0.4
0.2
0
0
500
Absolute error %
2.5
Fig. 3. Calculated and estimated Margin, and the absolute error associated
for heavy load level.
2
1.5
1
0.5
0
0
50
100
150
200
250
300
Load curve points
350
400
450
120
500
Calculated Margin
Estimated Margin with load level division
Margin %
100
Fig. 1. Calculated and estimated Margin, and the absolute error associated
for light load level.
80
60
40
20
0
0
5
10
15
20
25
15
20
25
Hours
The results for the estimation of the margin considering
the medium load level can be seen in the graphic of the
Figuremmedia, as well as the absolute errors, and similar to
the results for light load level presented absolute errors smaller
when compared to the model without the load level division.
Margin %
Absolute error %
2
1.5
1
0.5
0
0
5
10
Hours
Fig. 4. Calculated and estimated Margin, and the absolute error associated
considering load level division.
60
Calculated Margin
Estimated Margin medium load level
50
2.5
40
30
20
0
100
200
300
Load curve points
400
500
600
100
200
300
Load curve points
400
500
600
Absolute error %
2.5
2
1.5
1
0.5
0
0
Fig. 2. Calculated and estimated Margin, and the absolute error associated
for medium load level.
The graphic of the Figure 3 present the results of the
estimates of the margin considering the heavy load level and it
can be noticed that the absolute errors for this load level was
much smaller than the estimate using the model without load
level division, for the same period of the day. The estimates for
this load level were the ones with the best results, which can be
explained by the fact that in heavy load the bus voltages have
a more pronounced variation upon the occurrence of some
contingency compared to the other load levels.
[3] S. Corsi and G. N. Taranto, “A real time voltage instability identification
algorithm based on local measurements,” IEEE Transactions on Power
Systems, vol. 23 Issue 3, pp. 1271–1279, Agosto 2008. [Online].
Available: http://dx.doi.org/10.1109/TPWRS.2008.922586
[4] M. Liu, B. Zhang, L. Yao, M. Han, H. Sun, and W. Wu, “Pmu based
voltage stability analysis for transmission corridors,” Third International
Conference on Electric Utility Deregulation and Restructuring and Power
Technologies, 2008 DPRT 2008, pp. 1815–1820, Abril 2008.
[5] A. M. Abed, “Wscc voltage stability criteria, undervoltage load shedding
strategy, and reactive power reserve monitoring methodology,” IEEE
Power Engineering Society Summer Meeting, vol. 1, pp. 191–197, 1999.
[Online]. Available: http://dx.doi.org/10.1109/PESS.1999.784345
[6] K. Martin, D.Hamai, M.G.Adamiak, S.Anderson, M.Begovic,
G.Benmouyal, G.Brunello, J.Burger, J.Y.Cai, B.Dickerson, V.Gharpure,
B.Kennedy, D.Karlsson, A.G.Phadke, J.Salj, V.Skendzic, J.Sperr, Y.Song,
C.Huntley, B.Kasztenny, and E.Price, “Exploring the ieee standard
c37.118–2005 synchrophasors for power systems,” IEEE Transactions
on Power Delivery, vol. VOL. 23 NO. 4, pp. 1805–1811, Outubro 2008.
[7] A. V. Oppenheim and R. W. Schafer, Discrete-time signal Processing (3rd
Edition). Prentice-Hall Inc., Agosto 2009.
R EFERENCES
[1] A. Z. de Souza, B. L. Lopes, R. Guedes, N. Bretas, A. Martins, and
L. Mello, “Saddle-node index as bounding value for hopf bifurcations
detection,” IEE Proceedings - Generation, Transmission and Distribution,
vol. 152, pp. 737–742, Setembro 2005.
[2] H. Ghasemi, C. A. Cañizares, and J. Reeve, “Prediction of instability
points using system identification,” Bulk Power System Dynamics and
Control VI, pp. 105–110, Agosto 2004.
– 67 –
1
Alocação Ótima de Bancos de Capacitores em
Redes de Distribuição Primária e Secundária
Incluindo Restrições de Ressonância
S. S. Segura (D), L. C. P. da Silva (P) e R. Romero (P)
Resumo-- Neste trabalho se apresenta uma metodologia para a
otimização de bancos de capacitores em redes de distribuição
primária e secundária juntas incluindo dentro da formulação
restrições de ressonância pela entrada de novos capacitores. Para
tal fim, índices de ressonância foram utilizados os quais estão
baseados nas recomendações das normas IEEE. Estas normas
recomendam limites de distorção harmônica no ponto comum de
acoplamento assim como também limites operativos para os
bancos de capacitores. Adicionalmente, esta proposta considera o
tempo de vida útil dos capacitores dentro da função objetivo do
problema. Para a solução deste problema é utilizado um
algoritmo genético especializado. Os testes executados mostram a
importância de incluir a análise de ressonância das freqüências
harmônicas mais comuns existentes no sistema dentro das
restrições do problema.
Palavras-chave: Capacitores, planejamento de redes de
distribuição, fluxo de carga, análise de ressonância,
metaheurísticas.
I. INTRODUÇÃO
A
tualmente, o aumento das cargas não lineares está
elevando o conteúdo harmônico presentes nos sistemas de
energia [1]. O dispositivo mais comum é o conversor estático
de potência, amplamente utilizados nas fábricas de aço, papel
e na indústria têxtil. Outros dispositivos são os controladores
de velocidade para motores utilizados na indústria dos
alimentos e minérios, principalmente. Adicionalmente, as
residências de hoje em dia incorporam mais cargas não
lineares, especialmente computadores, totalizando assim uma
grande participação de demanda não linear. Esta situação
justifica e incentiva a incluir modelos não lineares dentro da
formulação do problema de alocação ótima de bancos de
capacitores (PAOBC).
Entretanto, deve-se considerar que as empresas
distribuidoras dificilmente contam com dados suficientes das
cargas não lineares, sendo que algumas empresas ainda têm
problemas em representar e modelar suas cargas na freqüência
fundamental. Isto se pode verificar quando se comparam os
resultados de simulações computacionais com valores de
medições de campo. Assim, o objetivo desta pesquisa é
desenvolver uma metodologia simples, prática e que forneça
uma solução alternativa ao PAOBC em um ambiente com
cargas não lineares.
II. DESENVOLVIMENTO DA METODOLOGIA
A idéia fundamental para a formulação proposta está
baseada no conceito de ressonância harmônica. Este fenômeno
ocorre devido à interação de energia entre a parte indutiva e
capacitiva de um sistema de potência. Focalizando-se nos
sistemas de distribuição a parte indutiva é composta pelas
indutâncias das linhas, transformadores e cargas. Já a parte
capacitiva está formada pela capacitância das linhas (especialmente subterrâneas) e bancos de capacitores.
Os harmônicos tornam-se perigosos apenas quando estes
são amplificados ao coincidir ou se aproximar das freqüências
de ressonâncias do sistema.
Em ambientes de alta poluição de harmônicos normalmente
são reportadas aquecimentos, perda do efeito dielétrico nos
capacitores e até a operação dos elos fusíveis de proteção,
além de problemas com outras cargas sensíveis com a tensão
como são os eletrônicos. Portanto, um indicador da
sensibilidade do sistema a amplificar os harmônicos existentes
é o capacitor o mesmo que também é o responsável de causar
o problema. Adicionalmente, nossa proposta considera a
alocação de capacitores na rede primária (MT) e secundária
(BT) simultaneamente, ao contrário de pesquisas tradicionais
que apenas consideram a rede primária.
A. Formulação
A nova formulação do problema de alocação de capacitores
é como segue:
Os autores agradecem a Fundação de Amparo à Pesquisa do Estado de
São Paulo – FAPESP (Proc. 2006/06075-9) pelo apoio financeiro.
S. Segura é aluno de doutorado da UNICAMP/FEEC/DSEE (e-mail:
ssegura @dsee.fee.unicamp.br).
L. C. P. da Silva é professor da UNICAMP/FEEC/DSEE (e-mail: lui
@dsee.fee.unicamp.br).
R. Romero é professor da UNESP/FEIS/DEE (e-mail: ruben
@dee.feis.unesp.br)
– 68 –
min v = −VPL
s.a
G i ( x i , u i ) = 0;
H i ( x i ) ≤ 0;
(1)
i
≤ fp max ;
fp min ≤ fp SE
IR ≤ LI
0 ≤ u ki ≤ u 1k ≤ u max ;
k ∈ C1
0 ≤ u ki = u k1 ≤ u max ;
k ∈ C2
2
Em que:
Gi:
Hi:
uk1:
uki:
O transformador de 500 kVA foi substituído por um de
112.5 kVA, 24.9 – 0.48 kV com valores em R e X de 1,56 e
3,08%, respectivamente. A carga na barra 890 é de 15 kW e
10 kVAr por fase. Finalmente, o regulador de tensão
localizado entre as barras 852 e 832 foi removido com o
objetivo de observar melhor o efeito dos capacitores a alocar
sobre o perfil de tensão. O projeto considerou que os
capacitores de MT e BT têm um tempo de vida útil de 20 e 5
anos, respectivamente.
Equações de fluxo de carga para o nível de carga i;
Restrições de operação das tensões da rede elétrica;
Potência nominal dos capacitores alocados na barra k;
Ponto de operação dos bancos alocados na barra k
para o nível de carga i;
Fator de potência na subestação do nível de carga i;
Limite máximo do fator de potência.
Índice de ressonância;
Limite máximo do índice de ressonância.
fpiSE:
fpmax:
IR:
LI:
A formulação proposta aqui é dada pelo valor presente
líquido (VPL) do projeto de compensação capacitiva, isto é:
Caso
VPL = -(Custo dos capacitores de MT e BT) + (faturamento
de energia + Custo da redução de perdas de energia). (2)
II
TABELA II
VALORES DOS ÍNDICES DE RESSONÂNCIA, LI = 21,37.
Carga Pico
Carga Média
Carga Baixa
CASO Barra
5th
7th
5th
7th
5th
7th
844
17.6
3.7
19.5
5.8
14.6
2.6
II
888
6.1
11.0
5.1
7.5
5.4
11.6
890
6.8
16.1
6.8
15.0
6.4
17.5
B. Solução ao Problema
A técnica de solução proposta para o problema foi o
algoritmo genético de Chu-Beasley (AGCB) proposto por Chu
et al. 1997, [2]. Este algoritmo foi implementado
eficientemente em [3] para resolver o PAOBC em um
ambiente de geração distribuída.
Índice de Ressonância:
O índice de ressonância (IR) proposto está baseado nas
recomendações das normas IEEE 519 e IEEE1036 (1992) [45], que recomenda limites das distorções harmônicas de tensão
e corrente para as concessionárias e consumidores, e limites de
operação em estado permanente para os capacitores,
respectivamente. O limite de distorção harmônica individual
de tensão é de 3% para redes até 69 kV. Assim, o IR é
representado pela equação (3), [1]:
IR =
Z1
≤ LI
Zh
(3)
O limite LI no caso de considerar as harmônicas 5 e 7 é de
21,37. Zh (h = 1,...) representa a impedância dada pelo sistema
e um novo capacitor em série para a ordem harmônica h.
C. Resultados
Neste teste se utilizou a rede IEEE-34, [6] modificada
principalmente na representação do trecho de baixa tensão.
TABELA I
MELHOR SOLUÇÃO ENCONTRADA PELO AGCB.
Potência (kVAr)
Barra
Posição
Pico
Médio
Baixo
844
600
600
600
MV
888
30
5
30
LV
890
15
15
15
LV
III. CONCLUSÕES
As solução clássica de otimização de capacitores cria
naturalmente ressonâncias de quinta e sétima harmônica.
Segundo se mostra na Fig. 1 a solução apresentada na Tabela I
desloca as freqüências de ressonância para acima das
harmônicas de estudo, próximas da oitava harmônica.
Adicionalmente, neste estudo o valor do índice de ressonância
mostrado na Tabela II ajuda a estabelecer se uma ressonância
pode ser considerada como severa. Observe-se que estes
valores estão abaixo do limite máximo que considera a uma
ressonância como severa e prejudicial para a operação dos
capacitores. Portanto, a solução encontrada aqui garante o
tempo de vida útil dos capacitores.
Em projetos de longo prazo a rede de distribuição
secundária também deve ser objeto de compensação por parte
das distribuidoras de energia.
Assim, a metodologia apresentada aqui é muito eficiente,
simples e principalmente de fácil aplicação e interpretação
graças ao índice de ressonância.
3
10
888, carga baixa
IV. REFERÊNCIAS
Impedância local própria (pu.)
844, carga pico
156pu
135pu
[1]
12.9pu
2
10
[2]
[3]
1
10
888, carga pico
888, carga baixa
[4]
844, carga baixa
844, carga pico
[5]
0
10
1
3
5
7
9
11
13
Ordem harmônica
15
[6]
Fig. 1. Varredura em freqüência da melhor solução encontrada.
– 69 –
Huang, Z., Xu, W. and Dinavahi, V.R., "A Practical harmonic
resonance guideline for shunt capacitor applications", IEEE Trans. on
Power Delivery, Vol. 18, No. 4, pp. 1382 – 1387, 2003.
Chu, P., Beasley, J.E., "A genetic algorithm for the generalized
assignment problem," Computers and Operations Research, Vol. 24,
n.1, pp.17-23, 1997.
Segura, S. S., Alemida, M., Freitas, W., Da Silva, L.C.P., "Impactos na
Alocação Ótima de Capacitores em Redes de Distribuição de Energia
Elétrica Devido a Presença de Geração Distribuída", CBA 2008, v. 1. p.
1-6.
IEEE Std. 519-1992. "IEEE recommended practices and requirements
for harmonic control in electrical power systems", 1993.
IEEE Std. 1036-1992. "IEEE guide for application of shunt power
capacitors", 1993.
http://ewh.ieee.org/soc/pes/dsacom/testfeeders.html. Acesado em 05 de
Julho de 2007.
1
Micro Turbinas Eólicas de Baixo Custo
L. Molon (G), J. F. Fortes (G), D. A. A. Moori (G)
Abstract-- O objetivo deste presente trabalho consiste no
aproveitamento da energia cinética do vento a partir de
um gerador eólico de baixo custo, com pás de Policloreto
de Vinilo (PVC) e gerador com motor de corrente
contínua, fazendo a conversão em energia mecânica em
energia elétrica. As turbinas têm como aplicação o
atendimento de cargas isoladas de baixa potência que não
justifique a conexão com a rede de distribuição ou que
necessite ter um sistema dedicado de fornecimento de
energia. A finalidade da pesquisa é desenvolver um
projeto simples e de baixo custo.Para o gerador elétrico
escolheu-se usar um pequeno motore de corrente contínua
com caixa de redução já acoplada a ele. Tubos de PVC
foram utilizados como material para confecção dos
rotores das turbinas. Todos os componentes podem ser
facilmente adquiridos no mercado e tanto os componentes
quanto a construção ficam com um custo inferior a
US100,00 por gerador. O valor médio atual de um
gerador eólico comercial para a mesma aplicação é de
US400,00. Foram feitas análises numéricas e
experimentais para convalidar o modelo. Dentre elas
dimensionamos os rotores para uma potência de geração
de 100 W. Obtido os melhores projetos, realizamos a
construção de protótipos. Esses foram testados em túnel
de vento e em campo, para convalidar os dados obtidos
numericamente. Com ensaios e simulações efetuados,
pode-se escolher o conjunto mais adequado à região a ser
instalado, sem mudanças significativas no custo. Variando
o número de pás e conjunto motor redutor de acordo com
as características eólicas locais.
Palavras-chaves:Energia eólica, baixo custo, sustentabilidade.
Segundo Wang et al (2008) mencionaram que assim como
grandes turbinas eólicas operando em áreas abertas on- e offshore, mais pequenas turbinas eólicas estão sendo instaladas, e
operadas por pequenas empresas, ou mesmo por moradores de
residências.
Flech e Huot (2009) estudaram a energia eólica como sendo
uma alternativa popular para o fornecimento de energia
elétrica residencial produzida por uma fonte de energia
renovável e limpa.
O estudo de micro turbinas eólicas surgiu devido à
necessidade de suprir pequenas cargas isoladas da rede de
distribuição de energia elétrica. Sistemas de alarme,
iluminação e monitoramento em geral podem ser abastecidos
por geradores de potência de 100W. Sistemas eólicos de baixa
potência já existem no mercado, porém devido custo elevado
desta tecnologia, são poucas as aplicações economicamente
viáveis. Uma forma de ampliar a utilização de micro turbinas
eólicas é reduzir o custo deste produto. Micro turbinas eólicas
de baixo custo são de fácil construção de forma que o próprio
consumidor pode montar. Este artigo consiste em dimensionar
um gerador eólico de baixo custo para uma geração de 100W
de potência e avaliar se este aerogerador pode ser
economicamente e técnicamente viável..
II. DESCRIÇÃO DO GERADOR EÓLICO
Com a intenção de manter uma construção simples e de
baixo custo, optamos em utilizar como gerador um motor de
corrente contínua (cc) com caixa de redução acoplada. Para
construção das pás do rotor foi utilizado um tubo de PVC.
O aerogerador que foi construído é do tipo eixo
horizontal. A Figura (1) mostra o desenho da turbina eólica
com indicação de cada um de seus componentes.
I. INTRODUCTION
N
OS últimos anos, com a necessidade de proteger o meio
ambiente tem visto a utilização de tecnologias limpas
para sistemas de energia. O sistema de energia eólica é
uma forma de gerar energia renovável.
Diversos autores destacam que a geração eólica teve
enfoque mundial depois da crise do petróleo, que ocorreu entre
os anos de 1970 e 1980. À partir dessa década, fontes
alternativas de energia renovável tornaram-se soluções
competitivas com relação ao petróleo.
Leandro Molon é aluno de Graduação da FEM/UNICAMP (E-mail:
[email protected]).
J. F. Fortes e D. A. A. Moori são alunos de Graduação da Faculdade de
Engenharia POLI/USP.
Até o momento o trabalho foi realizado com financiamento próprio e por
iniciativa dos autores.
Fig. 1. Detelhes da turbina eólica de eixo vertical de baixo custo.
– 70 –
A seguir temos a descrição de cada componente.
2
As pás do rotor foram construídas à partir de tubos de
PVC de 150mm de diâmetro e 0,8m de comprimento, utilizado
para tubulação de esgoto em residências.
As 4 pás são fixadas em uma cruz de aço que vai
parafusada em uma das duas pontas do eixo de transmissão
de potencia do catavento ( 8 mm de diâmetro). O eixo de
transmissão de potência é apoiado sobre dois mancais ( cubo
de bicicleta ). Na outra extremidade do eixo de transmissão de
potência temos um acoplamento entre a ponta do eixo de
potência e o eixo da caixa de transmissão do motor. O
acoplamento é parafusado na ponta do eixo de potência e
fixado por meio de chaveta no eixo de transmissão do motor.
A caixa de transmissão e o motor já foram adquiridos como
um conjunto montado.
Os mancais (cubo de bicicleta) e o motor são fixados ao
corpo do catavento, de forma que quando as pás giram, a
carcaça dos mancais e a carcaça do motor ficam rígidos ao
corpo.
Para o direcionamento das pás do catavento com o fluxo
da ar, foi parafusado um leme na extremidade do corpo oposta
às pás . Para permitir rotação ao longo da direção vertical do
catavento foi montado um rolamento que fixa o corpo do
catavento ao mastro de sustentação do catavento. O mastro de
sustentação fica fixo ao chão e o seu diâmetro varia com a
altura que vai ser posicionado o catavento.
O conversor eletro-mecânico utilizado é um pequeno
motorredutor de corrente contínua de baixa potência. A
excitação nesses motores é feita por ímãs permanentes assim
ele não precisa de uma fonte de corrente externa para gerar
energia.
A redução integrada ao motor no modo gerador é vista ao
contrário então ela atua como um multiplicador de velocidades
que faz a rotação do rotor elétrico ser maior que a rotação das
pás, o que é importante para aumentar a eficiência da geração.
A rotação típica da turbina se encontra entre 100 e 300 rpm.
Para um bom rendimento de conversão a rotação deve ser
superior a 1000rpm.
Os cataventos que ficaram expostos foram equipados com
um sistema de luz e som. O sistema de luz continha um jogo
de leds de alto brilho e um circuito eletrônico que os acendia
conforme a tensão gerada. Como a tensão varia linearmente e
diretamente proporcional a rotação das pás quanto maior a
velocidade do vento maior o número de leds acesos. O
sistema de som era basicamente uma sirene piezo elétrica que
tinha seu som modulado de acordo com a rotação da turbina.
A. Escola Politécnica – USP(EPUSP)
Quatro geradores eólicos foram instalados na USP como parte
de uma mostra artística. A Figura (2) mostra uma das turbinas
instaladas em frente ao prédio de Engenharia civil.
Fig. 2 . Gerador eólico na EPUSP.
B. Universidade Estadual Paulista “Júlio de Mesquita Filho”
campus de Rio Claro
Um aerogerador ficou exposto na UNESP em Rio Claro
durante um simpósio realizado no mês de outubro de 2009 .
Ele foi posicionado a 4 metros do chão utilizando um caibro
de madeira com seção quadrada com 40 mm de lado. Ao longo
dos três dias o aerogerador funcionou gerando sons e luz. A
turbina foi instalada no dia 22 de outrubro de 2009.
C. Museu da energia localizado em Corumbataí
A pedido da Fundação Energia e Saneamento do Estado
de São Paulo, um modelo didático foi instalado no Museu da
Energia em Corumbataí. A turbina eólica faz parte do “Roteiro
de Fontes Alernativas”, onde enfatiza-se questões
da
influência na geração de energia elétrica, por exemplo, sobre o
efeito do aquecimento global.
III. INSTALAÇÕES EM CAMPO
As turbinas foram expostas em dois simpósios, um evento
de arte e um modelo didático foi incluído no acervo da
Fundação Energia e Saneamento do Estado de São Paulo.
Todos funcionaram perfeitamente gerando sons e luz. Além
dessas outras com diferentes configurações foram instalados
em diversos lugares para a coleta de dados e estão em
funcionamento há mais de 6 meses. Os detalhes de algumas
instalações estão a seguir:
IV. REFERENCES
[1] Wang ,F., Bai, L., Fletcher, J. , Whiteford, J., Cullen, D. The methodology
for aerodynamic study on a small domestic wind turbine with scoop. J. Wind
Eng. Ind. Aerodyn. 96 (2008) 1–24.
[2] FLECH B, HUOT M. Comparative life-cycle assessment of a small wind
turbine for residential off-grid use, Renewable Energy 34 (2009) 2688–2696
– 71 –
Palestras convidadas
– 72 –
Palestra: Medição Sincronizada de Fasores e suas Aplicações; Dr. Rui Menezes de Moraes,
ONS/UFF
O Dr. Rui Menezes de Moraes possui mais de 30 anos de experiência em proteção de sistemas de
potência. É engenheiro especialista do Operador Nacional do Sistema Elétrico – ONS, onde atualmente é
responsável pela implantação do Sistema de Medição Sincronizada de Fasores para o Sistema Interligado
Nacional – SIN.
Antes de ingressar no ONS, foi pesquisador do Centro de Pesquisas de Energia Elétrica – CEPEL, onde
desenvolveu relés de proteção e sistemas de ensaios para relés e sistemas de proteção. Foi engenheiro
da LIGHT Serviços de Eletricidade SA, onde trabalhou com montagem, manutenção e ensaios em relés
e sistemas de medição e proteção.
Formado em Engenharia Elétrica pela Universidade Federal Fluminense – UFF, é Doutor em Computação Aplicada a Sistemas de Potência pela UFF e Mestre em Sistemas de Potência pela Universidade
Federal do Rio de Janeiro – UFRJ.
É professor adjunto do Curso de Engenharia Elétrica da UFF, onde ministra Proteção de Sistemas
de Potência e Introdução a Circuitos Elétricos. É professor do Curso de Especialização em Proteção de
Sistemas de Potência realizado anualmente pela UFRJ.
É autor e coautor de trabalhos técnicos nas áreas de medição sincronizada de fasores e sistemas de
proteção e palestrante convidado em diversas conferências internacionais sobre medição sincronizada de
fasores.
É membro individual e secretário do Comitê de Estudos B5 – Proteção e Automação do CIGRÉ e
Senior Member do Institute of Electrical and Electronic Engineers – IEEE.
Desde 2008 coordena o Grupo de Trabalho sobre aplicação de sincrofasores, do Very Large Power
Grid Operators – VLPGO, uma associação internacional que reúne os maiores operadores de sistemas
elétricos do mundo.
– 73 –
Palestra: Tendências Tecnológicas do Setor de Energia; Prof. Dr. Gilberto De Martino Jannuzzi,
FEM/UNICAMP
O Prof. Dr. Gilberto De Martino Jannuzzi é Professor Associado do Departamento de Energia da
Faculdade de Engenharia Mecânica da UNICAMP. Foi coordenador do Programa de Pós-graduação em
Planejamento Energético nos perı́odos 2005-2009 e 1993-97. Atualmente, é o coordenador do Núcleo
Interdisciplinar de Planejamento Energético (NIPE) da UNICAMP.
É também o diretor executivo da International Energy Initiative, uma parceria Sul-Sul-Norte, concebida, localizada e liderada pelo Sul. É uma pequena organização não-governamental internacional,
independente, de interesse público, liderada por especialistas internacionalmente reconhecidos na área de
energia, com escritórios e equipes regionais, e programas na América Latina, África e Ásia.
O Prof. Jannuzzi obteve o tı́tulo de Ph.D. pela Cambridge University, U.K. (Energy Research Group,
Cavendish Laboratory), e foi Visiting Scholar at Lawrence Berkeley National Lab., USA, UNEP Centre
on Energy and Environment, Denmark, Centre International de Recherche sur l’Environnement et le
Développement , France, e outros. Foi o coordenador técnico do Fundo Nacional de P&D em Energia
do Centro de Administração Estratégica e Estudos do Ministério de Ciência e Tecnologia do Brasil.
Anteriormente, foi o diretor executivo do Escritório de Transferência de Tecnologia da UNICAMP. Desde
2000, atua como revisor dos relatórios do IPCC, sendo atualmente o autor principal do relatório especial
do IPCC em energia renovável.
Seus interesses relacionam-se com planejamento energético, com êmfase em eficiência energética e
conservação, energia renovável, energia e polı́ticas ambientais, e questões relacionadas a transferência
de tecnologia.
– 74 –
Palestra: Sistemas de Geração de Energia Eólica: Uma comparação com foco na integração a
redes elétricas; Prof. Dr. Selênio Rocha Silva, UFMG
O Prof. Dr. Selênio Rocha Silva graduou-se em Engenharia Elétrica pela Universidade Federal de
Minas Gerais em 1980, tendo concluı́do seu Mestrado em Engenharia Elétrica pela própria UFMG em
1984.
Iniciou seu curso de Doutorado em Engenharia Elétrica na Universidade Federal de Campina Grande
(ainda UFPb à época), em 1984 na área de Conversão e Controle, concluindo em 1988, com o tema de
“Sistema Eólico de Geração de Energia Elétrica”.
Atualmente é Professor Titular do Departamento de Engenharia Elétrica da UFMG, onde ingressou
em julho de 1982. Tem desenvolvido vários projetos de pesquisa cientı́fica e tecnológica com órgãos de
fomento oficiais, com indústrias do setor elétrico brasileiro e em cooperação internacional com instituições
européias, ultimamente da Alemanha.
Tem como foco de concentração de suas pesquisas as Máquinas Elétricas, Qualidade de Energia,
Usinas Eólicas e os Dispositivos de Potência.
Atua em graduação e pós-graduação, nos temas de acionamentos elétricos, dinâmica de máquinas,
qualidade da energia e conversão e geração de energia, tendo como principais temas de interesse: controle vetorial de motores e geradores elétricos, dinâmica de máquinas elétricas, qualidade da energia
(fenômenos de baixa freqüência: VTCD´s, flutuações de tensão e harmônicos) e as fontes alternativas
de energia (turbinas eólicas e painéis fotovoltaicos conectados na rede ou em aplicações isoladas).
Orientou mais de 35 trabalhos de mestrado e doutorado e publicou mais de 180 trabalhos completos
em eventos nacionais e internacionais e periódicos cientı́ficos, sendo filiado às SBA, SOBRAEP e SBQEE.
– 75 –
Download