Departamento de Matemática e Engenharias MATEMÁTICA I Licenciaturas em Bioquímica e Química 1o Semestre 2005/2006 Resoluções da folha de exercícios no 2 - Primitivas e Integrais Nas resoluções seguintes, c e k representam constantes reais arbitrárias. 1. Uma primitiva de f (x) é uma função F (x) tal que F ′ (x) = f (x). O integral de f (x) é o conjunto de todas as primitivas de f (x) e representa-se por f (x) dx. Assim, f (x) dx = F (x) + c, onde F (x) é uma primitiva de f (x) e c ∈ R. 2. Integrais imediatos: (a) 5e3x dx = 35 3e3x dx = 35 e3x + c (b) (c) (d) √ 1 3 x dx = x 3 dx = = (e) (f) (g) (h) (i) (j) 4 1 4 x3 ex dx = cos(2x) dx (1+sin(2x))2 +c= ex 4 1 4+9x2 dx x dx 1+4x4 = = = 2e2x +ex 1+e2x dx √ 3x dx 4x2 +3 +c= 3 4 √ 3 x4 + c cos (2x) (1 + sin (2x))−2 dx = 1 2 1 + c = − 2(1+sin(2x)) +c 1 x 4 = 1 4 3(1+ln x) 3 4 2 cos (2x) (1 + sin (2x))−2 = 1 2 1+( 32 x) +c dx = 1 4 2 1 4x +c 2 dx = 4 arctg 2x 2 1+(2x ) 2e2x 1+e2x dx + 4 1 (1 + ln x) 3 dx = 1 dx 4(1+ 94 x2 ) 1 = 4 3 +c 2 ex dx = e x dx = e x2 + c √ 3 1+ln x dx x 4 x3 4 4 4x3 ex dx = = −1 1 (1+sin(2x)) 2 −1 1 x 3 +1 1 +1 3 ex dx 1+(ex )2 − 1 = 3 x 4x2 + 3 2 dx = 1 3 8 × 2 3 1+( 3 2 2 3 x 2 ) dx = 16 arctg = ln 1 + e2x + arctg (ex ) + c 3 2x + c √ − 1 8x 4x2 + 3 2 dx = 34 4x2 + 3 + c (k) (l) x ae ex dx = 1 ln a sin x cos x dx = x ln a ae ex dx = sin2 x 2 x ae ln a +c +c 2 sin x cos x dx = − − sin x cos x dx = − cos2 x + +l, l ∈ R Ou sin x cos x dx = 21 2 sin x cos x dx = 12 sin (2x) dx = − 14 −2 sin (2x) dx = +k = cos(2x) 4 x (m) cotg x dx = cos sin x dx = ln |sin x| + c Ou (n) (o) (p) sin2 x dx = 20 (1+x2 )arctgx 1−cos(2x) dx 2 dx = 20 = 1 1+x2 1 1 2 dx − 2 arctgx dx cos (2x) dx = x 2 − sin(2x) 4 +c = 20 ln |arctgx| + c 1+(arcsin 3x)2 3x)2 1 √ √ dx = √1−9x dx + (arcsin dx = 2 1−9x2 1−9x2 3x)3 2 3 = 31 √ 3 2 dx + 13 √1−9x dx = 13 arcsin 3x + (arcsin 2 (arcsin 3x) 9 1−(3x) 3x3 +14x2 +7x−3 x+4 +c 1 3x2 + 2x − 1 + x+4 dx = x3 + x2 − x + ln |x + 4| + c √ √2 1 1 3 2 dx = dx = 43 · 23 (r) x2 +x+1 dx = 3 1 1 2 dx = 43 1 2 4 1 2 x+ + x+ 1+ ) ( ) ( √ √ x+ 1+ 4 2 3 2 3 3 = √23 arctg √23 x + √13 + c (q) (s) (t) dx = sin x cos (cos x) dx = − − sin x cos (cos x) dx = − sin (cos x) + c earctgx +x ln(1+x2 )+1 1+x2 = earctgx + ln2 (1+x2 ) 4 dx = earctgx 1+x2 dx + + arctgx + c 1 2 2x ln(1+x2 ) 1+x2 dx + 1 1+x2 dx = 3. Integração por partes: x x x4x dx = ln4 4 x − ln14 4x dx = ln4 4 x − ln14 + c (b) ex x2 − 4 dx = ex x2 − 4 − 2 xex dx = ex x2 − 4 − 2 xex − ex dx = = ex x2 − 2x − 2 + c (c) x sec2 x dx = x tan x − tan x dx = x tan x + ln |cos x| + c (a) (d) (e) − x cosh (3x) dx = x sinh(3x) 3 ln x dx = 1 3 1 · ln x dx = x ln x − sinh (3x) dx = x sinh(3x) − 19 cosh (3x) + c 3 x x1 dx = x (ln x − 1) + c 2 (f) = (g) (h) sin4 x cos3 x dx = sin5 x 5 cos2 x − 2 35 sin4 x cos x cos2 x dx = sin7 x 7 +c cos2 x − 2 5 sin6 x cos x dx = 2x e2x cos (3x) dx = e2 cos (3x) + 23 e2x sin (3x) dx= 2x 2x = e2 cos (3x) + 32 e2 sin (3x) − 23 e2x cos (3x) dx = 2x = e2 cos (3x) + 34 e2x sin (3x) − 49 e2x cos (3x) dx 2x 2x Então, 1 + 49 e cos (3x) dx = e2 cos (3x) + 34 e2x sin (3x) ⇔ 2x ⇔ 13 e2x cos (3x) dx = e2 cos (3x) + 43 e2x sin (3x) ⇔ 4 2x ⇔ e2x cos (3x) dx = e13 (2 cos (3x) + 3 sin (3x)) + c 3 √ 2 x+ x 2 − 5x dx = − 15 (2−5x) 3 2 3 2 2 − 15 4 375 2 15 5 3 (2 − 5x) 2 dx = (2 − 5x) x − (2 − 5x) 2 + c √ √ x 2 1 arcsin x dx = − 12 1−x 1 − x2 √1−x (i) √ arcsin x + 1 2 dx = 2 2 1−x √ = − 1 − x2 arcsin x + x + c x 1 2 +c (j) arctg x dx = 1 · arctg x dx = xarctg x − 1+x 2 dx = xarctg x − 2 ln 1 + x = 4. sin5 x 5 ax eax sin (bx) dx = ea sin (bx) − ab eax cos (bx) dx = ax ax = ea sin (bx) − ab ea cos (bx) + ab eax sin (bx) dx = 2 ax ax = ea sin (bx) − bea2 cos (bx) − ab 2 eax sin (bx) dx 2 ax ax Assim, eax sin (bx) dx + ab 2 eax sin (bx) dx = ea sin (bx) − bea2 cos (bx) ⇔ ax ax 2 2 eax sin (bx) dx = ea sin (bx) − bea2 cos (bx) ⇔ ⇔ a a+b 2 ax beax eax ⇔ eax sin (bx) dx = aae 2 +b2 sin (bx) − a2 +b2 cos (bx) + c = a2 +b2 (a sin (bx) − b cos (bx)) + c 5. Método de substituição: (a) t Sustituição: t = ln x ⇔ x = et ⇒ dx dt = e t √1 √ 1 dt = arcsin t + c = arcsin (ln x) + c √ 1 2 dx = t 2 e dt = 2 x (b) 1 dx 1−ln2 (x) √ x e 1−ln (x) √1+√x dx obtemos: √1+√x dx = √ x 1−t Vamos utilizar a substituição t = √ x √ 1+t t 2t √ 3 = 34 (1 + x) 2 + c 1−t √ x ⇔ x = t2 ⇒ dx dt = 2t. Com esta substituição, 3 1 2 dt = 2 (1 + t) 2 dt = 2 (1+t) +c= 3 2 3 4 3 3 (1 + t) 2 + c = (c) tan4 (x) dx Substituição: t = tan x ⇔ x = arctg t ⇒ t4 1 dt = tan4 (x) dx = t4 1+t 2 dt = 1+t2 dx dt = 1 1+t2 4 t 1 2 (efectuando a divisão dos polinómios, obtemos 1+t 2 = t − 1 + 1+t2 ) 2 1 t3 1 t dt − 1dt + 1+t = t2 − 1 + 1+t 2 dt = 2 dt = 3 − t + arctg t + c = (d) = tan3 (x) 3 √ 1 4−x2 − tan x + x + c dx Substituição: x = 2 sin t ⇒ √ 1 4−x2 dx = 2 cos t 4−(2 sin t)2 √ = 1 dt = t + c = arcsin e2x +2e3x (e) 1−ex dx x 2 dx dt = 2 cos t dt = √ 2 cos t 2 4−(2 sin t) dt = +c √ 2 cos t 2 dt = 4−4 sin t 1 Utilizamos a substituição: ex = t ⇔ x = ln t ⇒ dx dt = t (ex )2 +2(ex )3 2 +2t3 1 t2 (1+2t) 1 e2x +2e3x dx = t 1−t 1−ex dx = 1−ex t dt = 1−t t dt = √2 cos t 2 dt = 2 2t2 +t 1−t dt 1−sin t = 2 +t 3 (efectuando a divisão dos polinómios, obtemos 2t1−t = −2t − 3 + 1−t ) 3 1 −1 = −2t − 3 + 1−t dt = − 2t dt − 3 dt + 3 1−t dt = −t2 − 3t − 3 1−t dt = = −t2 − 3t − 3 ln |1 − t| + c = −e2x − 3ex − 3 ln |1 − ex | + c 1 dx (f) √1−x2 arcsin(x) Substituição: arcsin (x) = t ⇔ x = sin t ⇒ dx dt = cos t 1 cos(t) 1 √ √ 12 dt = dx = cos (t) dt = 2 t dt = ln |t| + c = cos(t) t 1−x arcsin(x) 1−sin (t) t = ln |arcsin (x)| + c (g) (h) (1 + sin (x))9 cos (x) dx √ 1 Substituição: sin (x) = t ⇔ x = arcsin t ⇒ dx dt = 1−t2 √ 1 dt = (1 + sin (x))9 cos (x) dx = (1 + sin (x))9 1 − sin2 (x)dx = (1 + t)9 1 − t2 √1−t 2 10 10 = (1 + t)9 dt = (1+t) + c = (1+sin(x)) +c 10 10 1 1+sin x dx Substituição: t = tan x2 ⇔ x = 2 arctan t ⇒ dx dt = 2 1+t2 Com esta substituição sin x = 2 sin x2 cos x2 = 2 tan x2 cos2 1 1+sin x dx = = − tan 2x +1 + c 2 1 1+ 2t 2 1+t 2 dt 1+t2 = 2 dt 1+t2 +2t 4 x 2 = 2 tan x2 sec12 x = 2 2 = 2 (t + 1)−2 dt = − t+1 +c = 2t 1+t2 (i) √ x2 1 + x dx √ Substituição: 1 + x = t ⇔ 1 + x = t2 ⇔ x = t2 − 1 ⇒ dx dt = 2t 2√ 4 2 2 x 1 + xdx = t − 1 t 2t dt = 2 t − 2t2 + 1 t2 dt = 2 t6 − 2t4 + t2 dt = √ √ √ 7 7 5 3 ( 1+x) ( 1+x) ( 1+x) t5 t3 t −2 + =2 7 −25 + 3 +c=2 +c= 7 5 3 5 2 7 2 3 2 − 4 (1+x) + 2 (1+x) +c = 2 (1+x) 7 5 3 (j) arcsin x dx Substituição: t = arcsin x ⇔ x = sin t ⇒ dx dt = cos t arcsin x dx = t cos t dt = t sin t − sin t dt = t sin t + cos t + c = √ = t sin t + 1 − sin2 t + c = x arcsin x + 1 − x2 + c √ 3 tan2 (x) (k) f (x) = cos2 (x) Começamos por recordar que cos21(x) = sec2 (x) = 1 + tan2 (x) e assim podemos escrever:√ 3 tan2 (x) f (x) = cos2 (x) = 1 cos2 (x) 2 3 tan2 (x) = 1 + tan2 (x) (tan (x)) 3 1 Podemos, assim, utilizar a substituição: t = tan (x) ⇔ x = arctan t ⇒ dx dt = 1+t2 3 2 1 √ 2 tan2 (x) 1 + tan2 (x) (tan (x)) 3 dx = 1 + t2 t 3 1+t dx = f (x) dx = 2 dt = cos2 (x) = 5 2 t 3 dt = √ t3 5 3 5 + c = 35 t 3 + c = 3 5 5 (tan (x)) 3 + c = 3 5 3 tan5 (x) + c 2 (l) f (x) = xx+3 √ √ Substituição: t = x2 + 3 ⇔ x2 + 3 = t2 ⇔ x = t2 − 3 ⇒ 2 √x2 +3 dx = √t2t−3 √t2t−3 dt = t2t−3 dt = f (x) dx = x dx dt = √ t t2 −3 2 (efectuando a divisão dos polinómios, obtemos t2t−3 = 1 + t23−3 ) 1 = 1 + t23−3 dt = 1dt + t23−3 dt = t − 3 3−t (*) 2 dt 1 Calculemos agora, separadamente, a primitiva, 3−t2 dt. 1 1 dt = dt. Podemos, assim, utilizar a substituição: √ 2 3−t2 ( 3) −t2 √ 3 cos u, obtendo-se: √ √ √ 1 1 1 3 cos u du = 33 cos12 u cos u du = 33 cos1 u du = √ 2u 2 dt = 3 1−sin 3−( 3 sin u) √ √ √ 3 u−tan u sec2 u−sec u tan u du = = 33 sec u du = 33 sec u sec sec u−tan u du = 3 sec u−tan u √ √ √ u tan u−sec2 u u = = − 33 sec sec du = − 33 ln |sec u − tan u| = − 33 ln 1−sin u−tan u cos u t= √ 3 sin u ⇒ dt du = 5 = √ − 33 t √ 1−sin u √ 1− 3 3 √ = − ln ln 3 2 1−sin2 u 1− √t3 Voltamos agora a (*) e colocamos lá este resultado. Fica: t t √ 1− √3 1− √3 √ 1 3 (*) = t − 3 3−t2 dt = t − 3 × − 3 ln 2 + c = t + 3 ln 2 + c 1− √t3 1− √t3 √ Resta substituir t por x2 + 3 e obtemos: √ 2 +3 x t 1− √3 √ √ √ √ 1− f (x) dx = t + 3 ln 2 + c = x2 + 3 + 3 ln √ 3 2 + c = t 2 1− √3 1− x√3+3 1− x2 +3 √ √ 3 = x2 + 3 + 3 ln x2 +3 + c 1− 3 6. f (x) = c =? f ′ (x) dx = lim f (x) = e ⇔ lim x→∞ x→∞ 1 x2 sin x1 ecos( x ) dx = ecos( x ) + c 1 1 1 ecos( x ) + c = e ⇔ e + c = e ⇔ c = 0 Então f (x) = ecos( x ) . 1 7. f ′ (x) = c =? −2 f ′′ (x) dx = − 2x x2 + 1 dx = f ′ (0) = 1 ⇔ 1 1+0 Então f ′ (x) = f (x) = k =? +c +c=1⇔c=0 1 1+x2 f ′ (x) dx = lim f (x) = x→+∞ 1 1+x2 1 dx 1+x2 = arctg x + k 3π 3π ⇔ lim (arctg x + k) = ⇔ x→+∞ 4 4 Então f (x) = arctg x + π . 4 6 π 2 +k = 3π π ⇔k= 4 4 8. (a) (b) 2 x3 −2x √ +3 dx x = x3 √ dx − 2 x x2 √ dx + 3 x √1 dx x 7 5 1 = 72 x 2 − 45 x 2 + 6x 2 4 sin x + 5 cos3 x dx = sin4 x cos3 x dx + 5 cos3 x dx = = sin4 x cos x 1 − sin2 x dx + cos x 1 − sin2 x dx = = sin4 x cos x dx − sin6 x cos x dx + 5 cos x dx − 5 sin2 x cos x dx = = 1 5 sin5 x − 71 sin7 x + 5 sin x − 53 sin3 x 9. Integrais definidos: (a) π π sin2 (3x) cos3 (3x) dx = 0 sin2 (3x) cos (3x) 1 − sin2 (3x) dx = π 1 5 π π π sin (3x) 0 = = 0 sin2 (3x) cos (3x) dx− 0 sin4 (3x) cos (3x) dx = 19 sin3 (3x) 0 − 15 0 = (b) 1 9 2π π 2 (0 − 0) − 1 15 |sin x| dx = (0 − 0) = 0 π π 2 sin x dx + 2π π − sin x dx = − [cos x]ππ + [cos x]2π π = 2 = − (−1 − 0) + 1 − (−1) = 1 + 2 = 3 2 x (c) Sendo f (x) = 3x + 1 1 se −∞ < x ≤ 1 se 1 < x < 2 , se 2 ≤ x < +∞ x 3 1 2 2 3 1 2 2 3 1 x x + 3 + [ln |x|]32 = dx = + x f (x) dx = x dx + 3x + 1 dx + 3 2 0 0 1 2 x = 1 3 0 + 6 + 2 − 32 + 1 + (ln 3 − ln 2) = 1 3 + 11 2 + ln 32 = 1 35 6 + ln 32 x2 x+1 se −∞ < x ≤ 1 , se 1 < x ≤ 2 ex se 2 < x < +∞ 1+ex 3 1 x2 2 3 ex 0 f (x) dx = 0 x+1 dx + 1 x ln x dx + 2 1+ex dx = 2 2 1 2 1 = 0 x − 1 + x+1 dx + x2 ln x − 12 1 x dx + [ln (1 + ex )]32 = (d) Sendo f (x) = x ln x 1 = x2 2 − x + ln |x + 1| 1 0 = − 21 + ln 2 + 2 ln 2 − 3 1 2 + 2 ln 2 − 1 2 2 x2 2 1 + ln 1 + e3 − ln 1 + e2 = 2 − 21 + ln 1 + e3 − ln 1 + e2 = 3 = − 54 + ln 8+8e = − 45 + 3 ln 2 + ln 1+e 1+e2 1+e2 7 10. Primitivação de funções racionais: (a) 2x+1 −x+3 dx =− 2x+1 x−3 dx = (∗) Efectuando a divisão dos polinómios, obtemos 7 2x+1 x−3 = 2 + x−3 . Assim, (b) (c) (∗) = − 2 + 7 x−3 dx = −2x − 7 ln |x − 3| + c 1 1 1 dx = 3 (x−2) (x+1) (x−2) − (x+1) dx = 1 x−2 3 = 31 (ln |x − 2| − ln |x + 1|) + c = 13 ln x+1 + c = ln x−2 x+1 + c 1 (x−2)(x+1) dx = 3x+1 x(x−1)(x+2) dx 1 3 = 1 3 − 4 3 1 − x2 + − (x−1) 5 6 (x+2) dx = 4 = − 21 ln |x| + 43 ln |x − 1| − 56 ln |x + 2| + c = ln (d) x3 +x+1 dx x4 −2x3 +x2 1 x = 3 ln |x| − (e) (f) 9 49 x3 −1 3 x−1 9 49 (x−2) 5 1 7 x−2 − (x−2)2 3 x + 1 x2 − − 9 49 (x+5) dx 2 x−1 3 x−1 + +c 3 dx (x−1)2 = 3 |x| + ln (x−1) 2 +c = 9 49 5 ln |x + 5| + c = − 7x−14 + ln x−2 +c x+5 1 dx (x−1)(x2 +x+1) 1 1 x−1 dx − 3 + c = − x1 − 5 7 + 9 49 = 5 1 |x| 2 |x+2| 6 x+2 dx x2 +x+1 = = 1 3 1 x2 dx x4 −1 = 1 3 x−1 − dx = 31 2x+4 11 1 x+ 23 3 2 x +x+1 1 x−1 − x+2 dx x2 +x+1 dx = x2 +x+1 1 2x+1 = 13 ln |x − 1| − 6 dx + 3 x2 +x+1 dx = (ver 1. (r)) x2 +x+1 = 31 ln |x − 1| − 16 ln x2 + x + 1 − 12 √23 arctg √23 x + √13 + c √ = 31 ln |x − 1| − 16 ln x2 + x + 1 − 33 arctg √23 x + √13 + c = (g) 1 3 dx = = ln |x − 2| − 1 x3 +x+1 dx x2 (x2 −2x+1) − 2 ln |x − 1| − 2x+1 dx (x−2)2 (x+5) = = |x−1| 3 1 4 x−1 = − x2 dx (x2 −1)(x2 +1) 1 4 x+1 + 1 2 x2 +1 dx = = 1 4 ln |x − 1| − 32 x2 dx (x−1)(x+1)(x2 +1) = ln |x − 1| − 14 ln |x + 1| + 21 arctg x = 1 x−1 4 1 = ln x+1 + 2 arctg x + c 8 = 11. Área de regiões planas: (a) y = ex , y = e−x , x = 2 Cálculo área: 2 da 2 x A = 0 e − e−x dx = [ex + e−x ]0 = e2 + e−2 − (1 + 1) = e2 + e−2 − 2 (b) y = sin x, y = cos x, x = 0, x = π Cálculo π π da área: π A = 04 cos x − sin x dx + π sin x − cos x dx = [sin x + cos x]04 + [− cos x − sin x]ππ = 4 4 π π π π = sin 4 + cos 4 − (sin 0 + cos 0) + (− cos π − sin π) − − cos 4 − sin 4 = √ √ √ √ √ = 22 + 22 − (0 + 1) + (1 − 0) − − 22 − 22 = 2 2 (c) y 2 = 4 + x, x + 2y = 4 9 Cálculo 2 2 dos pontosde 2intersecção: y=2 y = −4 y + 2y − 8 = 0 y = 4 + 4 − 2y y =4+x ∨ ⇔ ⇔ ⇔ x=0 x = 12 x = 4 − 2y x + 2y = 4 Cálculo √ 0 da 12 √ área: √ A = −4 4 + x − − 4 + x dx + 0 − x2 + 2 − − 4 + x dx = 12 12 √ 0 √ 4 + x dx = = 2 −4 4 + x dx + 0 − x2 + 2 dx + 0 2 12 3 0 3 12 2 (4+x) 2 x 2 = 2 (4+x) + − = 32 + 2x + 3 3 4 3 − 36 + 24 + 3 (64 − 8) = = 32 3 OU A= 2 −4 − 12 + 112 3 0 = 108 3 2 0 = 36 2 2 2 dy = 8y − y2 − 4 − 2y − y − 4 dy = 8 − 2y − y −4 −4 2 = 16 − 4 − (d) y = x2 , y = 8 3 − −32 − 16 + x2 2 , 64 3 y = 2x = 12 − 8 3 + 48 − 64 3 = 60 − 72 3 2 y3 3 −4 = = 60 − 24 = 36 Cálculo dos pontos de intersecção: y=4 y=0 y = x2 ∨ ⇔ ⇔ ⇔ 2 x=2 x=0 x (x − 2) = 0 x = 2x y = 2x ⇔ Cálculo da área: 4 2 2 A = 0 x2 − x2 dx + 2 2x − x2 2 = 2 y = x2 ⇔ y = 2x 2 x3 6 0 + 16 − x2 2 64 6 = 2x − 4 − 86 = x x 2 dx = 8 6 ⇔ −2 =0 2 x2 0 2 + 12 − 10 56 6 y=0 ∨ x=0 dx + x2 − 4 x3 6 2 = 12 − 8 = 4 = y = 16 x=4