Departamento de Matemática e Engenharias MATEMÁTICA GERAL Licenciatura em Biologia 2o Semestre 2004/2005 Resoluções da folha de exercícios no 3 Continuidade. Diferenciabilidade. Limites 1. Expressão da derivada de ordem n de funções: 1.1 f (x) = (2x)eπ ⇒ f ′ (x) = 2eπ (2x)eπ−1 ⇒ f ′′ (x) = 22 eπ (eπ − 1) (2x)eπ−2 ⇒ ⇒ f ′′′ (x) = 23 eπ (eπ − 1) (eπ − 2) (2x)eπ−3 = 2eπ eπ (eπ − 1) (eπ − 2) xeπ−3 Concluimos, assim, que f (n) (x) = 23 eπ (eπ − 1) . . . (eπ − n + 2) (eπ − n + 1) (2x)eπ−n 1.2 h(x) = (1 + x)k ⇒ h′ (x) = k (1 + x)k−1 ⇒ h′′ (x) = k (k − 1) (1 + x)k−2 ⇒ ⇒ h′′′ (x) = k (k − 1) (k − 2) (1 + x)k−3 Logo h(n) (x) = k (k − 1) . . . (k − n + 1) (1 + x)k−n 2 2 2 2 1.3 g(x) = e−e x+b ⇒ g′ (x) = −e2 e−e x+b ⇒ g ′′ (x) = −e2 e−e x+b ⇒ 3 2 ⇒ g′′′ (x) = −e2 e−e x+b n 2 Portanto g(n) (x) = −e2 e−e x+b 1.4 j(x) = log x ⇒ j ′ (x) = 1 x ⇒ j ′′ (x) = − x12 ⇒ j ′′′ (x) = Concluímos que j (n) (x) = (−1)n−1 1.5 i(x) = (n−1)! xn , 2 x3 ⇒ j (4) (x) = − 2·3 x4 para n ∈ N. π π π·2 π·2·3 ⇒ i′ (x) = − ⇒ i′′ (x) = ⇒ i′′′ (x) = 2 3 x−π (x − π) (x − π) (x − π)4 Assim, i(n) (x) = (−1)n 1.6 m(x) = π · n! (x − π)n+1 2 3 e−1 e (e − 1) ′′ (x) = e (e − 1) 2 ⇒ m′′′ (x) = − e (e − 1) 2 · 3 ⇒ m ⇒ m′ (x) = − ex (ex)2 (ex)3 (ex)4 Neste caso m(n) (x) = − en (e − 1) n! (ex)n+1 1 2. Calculo de limites: 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2x 2 lim = −2 = lim 2 x→0 x − x R.C. x→0 2x − 1 √ √2 √ √ √ 2x + 1 − 3 2 2x+1 4√ x−2 2 2 4√2 √ = lim = lim = lim √ = 3 2 9 x→4 2 2x+1 x→4 x − 2 − 2 R.C. x→4 2√1x−2 sin (x + π) = −1 lim −1 = 1 cos 2x x→ π2 √ x2 x x2 = lim = √ = lim √ lim x→+∞ x→+∞ 2 + x x x→+∞ 2 2 √ x x x√ + 1 + 1 x x x +∞ 0 = +∞ x x 1 − 23 3x 1 − 23 x x = lim = = lim x lim x→+∞ 3 + 2 x→+∞ 3 3 + 2 x→+∞ 2−2 2−2 3 3 (2x + 1)2 2x + 1 4x2 + 4x + 1 √ √ lim = = lim = lim x→+∞ x→+∞ x→+∞ x2 + 1 x2 + 1 x2 + 1 4x2 + 4x + 1 4x2 4 = = =2 = lim lim lim 2 2 x→+∞ x→+∞ x→+∞ x +1 x 1 sin x lim = lim cos x = 1 x→0 R.C. x→0 1 x 3 cos 3x sin 3x = lim = 23 lim 2 x→0 1 − (1 − x) R.C. x→0 2 (1 − x) 4 cos x −4 sin x =2 limπ = limπ π − 2x R.C. x→ 2 −2 x→ 2 2.10 lim x→0 3x − 2x 3x+1 + 2x−2 sin x 1 − cos x = lim R.C. x→0 3. cos x =∞ sin x kex+2 x5 − 4x3 g(x) = x+2 0 x sin x + 3 cos x 3.1 Temos lim g(x) = lim x→0− x→0− x ≤ −2 −2 < x < 0 x=0 x>0 x5 − 4x3 =0 x+2 lim g(x) = lim (x sin x + 3 cos x) = 3 x→0+ x→0+ Como lim g(x) = lim g(x) concluímos que g não é contínua em x = 0. x→0− x→0+ 2 1 3 3.2 Queremos que Temos lim g(x) = lim g(x) = g (−2) x→−2+ x→−2− lim g(x) = lim kex+2 = k = g (−2) x→−2− x→−2− lim g(x) = lim x→−2+ x→−2+ x5 − 4x3 5x4 − 12x2 = lim = 32 x + 2 R.C. x→−2+ 1 Para que g seja contínua em x = −2 é necessário que se tenha k = 32. 3.3 Temos: g ′ (0− ) = lim g(x)−g(0) x−0 x5 − 4x3 4 2 x x − 4x x4 − 4x2 2 = lim = lim x + = lim =0 x x (x + 2) x→0− x→0− x→0− x + 2 g ′ (0+ ) = lim g(x)−g(0) x−0 = lim x→0− x→0+ x→0+ x sin x+3 cos x = lim sin x+x cos1 x−3 sin x x R.C. x→0+ =0 Como g ′ (0− ) = g ′ (0+ ) = 0 concluímos que g′ (0) = 0. 3.4 lim g(x) = lim kex+2 = 0. x→−∞ x→−∞ 4. Utilizando a folha de apoio 1, resolva 1 exercício de cada grupo. 1. Indeterminações do tipo: 00 5 5x4 x −1 =5 = lim 1.1 lim x→1 x − 1 R.C. x→1 1 x − tg x −2 sec2 x tg x 1 − sec2 x 1.2 lim = lim = = lim x→0 x − sin x R.C. R.C. x→0 1 − cos x R.C. x→0 sin x −2(2 sec2 x tg2 x+sec4 x) cos x R.C. x→0 = lim = −2 1 = −2 −2 x2 x+2 x+2 log x x = lim = lim 1.3 lim x→+∞ x→+∞ x − 2 R.C. x→+∞ x22 log x − 2 x x −x(x−2) x→+∞ x(x+2) = lim 1.4 −2 x x2 x+2 2 x x2 x−2 = = (x−2) = lim − (x+2) = −1 x→+∞ − π2 x cos π2 x − π2 cos π2 x 1 − sin π2 x = lim lim = lim x→1 x→1 R.C. x→1 2 log x (logx)2 2logx x π π π π − cos 2 x − x 2 sin 2 x −πx cos π2 x − x π2 = lim 2 = lim 2 x→1 x→1 4 x π2 −2 x(x+2) 2 x→+∞ x(x−2) = lim 8 3 = sin π2 x = −π (− π2 ) 4 = 2. Indeterminações do tipo: ∞ ∞ x e ex ex ex = lim = +∞ = lim = lim 2.1 lim x→+∞ x3 R.C. x→+∞ 3x2 R.C. x→+∞ 6x R.C. x→+∞ 6 1 1 1 1 − x12 e x ex ex ex = lim = lim 2.2 lim = lim 2 = −1 x2 x cotg x R.C. x→0+ x→0+ x→0+ x→0+ 2 sin2 x sin x sin x +∞ 1 = +∞ x x + cos x 1 cos x cos x 2.3 lim = lim + + = lim = x→+∞ x→+∞ 3 x→+∞ 3x 3x 3x 3x = 1 1 1 1 + lim cos x = + 0 = 3 x→+∞ 3x 3 3 1 log x x = lim 2.4 lim = lim x→+∞ x→+∞ 2x2 + log (x + 1) R.C. x→+∞ 4x + 1 x+1 = = lim x→+∞ 4x3 1 x 4x2 +4x+1 x+1 = x+1 x 1 = lim = lim =0 2 3 x→+∞ x→+∞ + 4x + x 4x 4x2 3. Indeterminações do tipo: 0.∞ e ∞ − ∞ 3 3.1 lim x3 e−x = lim xex = lim 3.2 lim x→0 3x2 = lim 6xx = lim 6x x R.C. x→+∞ e R.C. x→+∞ e R.C. x→+∞ e x→+∞ x→+∞ 1 3 − 2 sin x x =0 2x − 3 cos x x2 − 3 sin x = lim =∞ 2 x→0 x sin x R.C. x→0 2x sin x + x2 cos x = lim 4. Indeterminações do tipo: 00 , ∞0 e 1∞ log x lim sin x 1 4.1 lim xsin x = lim elog x = lim esin x log x = lim e sin x = ex→0+ x→0+ lim = e x→0+ 1 x − cos x sin2 x sin 2x lim − cos x+x sin x = ex→0+ R.C. 1 lim (x + 1) log x = lim elog(x+1) x→+∞ = e lim x→+∞ 4.3 lim |cos x| 1 x+1 1 x 1 x−π 4.4 lim (cos 3x) lim 1 x2 = lim e = R.C. = e0 = 1 log(x+1) log x x→+∞ lim = ex→+∞ log(x+1) log x = R.C. x = ex→+∞ x+1 = e = lim e log|cos x| x−π x→π x→π =e 1 log x x→+∞ R.C. x→0 x→0+ 2 x lim − xsin cos x = ex→0+ R.C. 4.2 x→0+ x→0+ log x 1 sin x = lim e log(cos 3x) x2 x→0 −9 cos 3x lim x→0 2(cos 3x−3x sin 3x) =e lim x→π =e lim log|cos x| x−π x→0 9 = e− 2 4 =e log(cos 3x) x2 lim x→π =e sin x cos x 1 lim x→0 = e0 = 1 −3 sin 3x cos 3x 2x lim −3 sin 3x = ex→0 2x cos 3x = 5. Calcule cada um dos seguintes limites: e2x − 1 2e2x 1 = lim =− x→0 1 − ex − 3x R.C. x→0 −ex − 3 2 5.1 lim 1 1 log x − 1 = lim x = x→e x − e R.C. x→e 1 e 5.2 lim sin x − x cos x − 1 = lim =0 2 x→0 tg (2x) − x R.C. x→0 2 sec2 (2x) − 2x 1 log x 1 x−1 x = + + = lim 5.4 lim x→1 x3 − 1 tg (x − 1) R.C. x→1 3x2 sec2 (x − 1) 5.3 lim 5 1 3 +1= 4 3