1 e 2 - Instituto de Física / UFRJ

Propaganda
Mecânica Quântica:
uma abordagem (quase) conceitual
Carlos Eduardo Aguiar
Programa de Pós-Graduação em Ensino de Física
Instituto de Física - UFRJ
Workshop MNPEF
UNB, maio de 2015
Sumário
1.
2.
3.
4.
5.
6.
Ensino e aprendizagem de mecânica quântica
Fenômenos quânticos
Princípios da mecânica quântica
Sistemas quânticos simples: aplicações
Como seguir em frente
Comentários finais
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
2
Ensino e aprendizagem de mecânica quântica
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
3
Ensino e aprendizagem de mecânica quântica
• Dificuldades conceituais
–
–
–
–
–
–
Superposição quântica
Probabilidade subjetiva x objetiva
Complementaridade
O problema da medida
Realismo vs. localidade
...
• Dificuldades matemáticas
–
–
–
–
–
–
Vetores
Números complexos
Espaços vetoriais complexos
Operadores, autovalores, autovetores
Dimensão infinita, operadores diferenciais, funções especiais
...
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
4
Ensino e aprendizagem de mecânica quântica
• Entre os alunos as dificuldades matemáticas ganham
proeminência pela necessidade de adquirir um domínio
operacional da teoria, essencial a aplicações.
• Como veremos, é possível expor a teoria quântica – sem
descaracterizá-la – reduzindo as ferramentas matemáticas a
vetores e um pouco de números complexos. Com isso,
torna-se viável dar mais atenção aos aspectos conceituais.
• Tal abordagem pode ser de interesse a alunos para os quais
o aspecto operacional não é o mais importante (licenciandos
em física, por exemplo).
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
5
Fenômenos Quânticos
Charles Addams, New Yorker, 1940
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
6
Um experimento com a luz
detectores
de luz
D1
espelho
D2
feixe luminoso
pouco intenso
espelho
semiespelho (50-50%)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
7
Resultado do experimento
• Os detectores nunca disparam ao mesmo tempo:
apenas um, ou D1 ou D2, é ativado a cada vez.
D1
D1
D2
D2
ou
50%
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
probabilidade
50%
8
Se a luz fosse uma onda
D1
D2
... os detectores deveriam disparar ao mesmo tempo.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
9
Se a luz é composta por partículas
D1
D1
D2
D2
ou
... ou D1 dispara, ou D2 dispara.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
10
Conclusão
• A luz é composta por partículas: os fótons.
• O detector que dispara aponta “qual caminho”
o fóton tomou.
D1
D2
caminho 2
caminho 1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
11
Sobre o ensino do conceito de fóton
• Os experimentos de anticoincidência fornecem evidência
simples e direta da natureza corpuscular da luz.
• Mais fácil de discutir (principalmente no ensino médio)
que o efeito fotoelétrico.
• Ao contrário do que se lê em muitos livros-texto, o fóton
não é necessário para explicar os efeitos fotoelétrico e
Compton.
– G. Beck, Zeitschrift für Physik 41, 443 (1927)
– E. Schroedinger, Annalen der Physik 82, 257 (1927)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
12
Outro experimento com a luz
D1
D2
segundo
semiespelho
feixe luminoso
“fóton a fóton”
interferômetro de Mach-Zehnder
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
13
Preliminares: um feixe bloqueado
25%
50%
25%
2
1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
14
O outro feixe bloqueado
25%
25%
2
50%
1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
15
Resultado fácil de entender com partículas
25%
50%
25%
2
1
= caminho do fóton
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
16
De volta ao interferômetro
D1
D2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
17
Resultado do experimento:
100%
D1
0%
D2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
18
Difícil de entender se os fótons seguem caminhos
definidos
caminho 2
caminho 1
25%
25%
25%
25%
2
1
Se o fóton segue o caminho 1 (2) não deve fazer diferença
se o caminho 2 (1) está aberto ou fechado, e portanto vale
o resultado do experimento preliminar.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
19
Proposição*
Cada fóton segue ou o caminho 1 ou o caminho 2
consequência:
PDn  PD(1n)  PD( 2n )
probabilidade do
detector Dn disparar
apenas o caminho
1 aberto
apenas o caminho
2 aberto
* The Feynman Lectures on Physics, v.3, p.1-5
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
20
Teste da Proposição
Experimentalmente:
(1)
D1
P
 25%
(1)
D2
 25%
( 2)
D2
 25%
P
PD( 21 )  25%
P
PD1  100%
PD2  0%
PDn  PD(1n)  PD( 2n )
a proposição é falsa!
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
21
Repetindo:
A afirmativa
“o fóton segue ou pelo caminho 1 ou pelo caminho 2”
é falsa.
“… um fenômeno que é impossível, absolutamente impossível,
de explicar em qualquer forma clássica, e que traz em si o
coração da mecânica quântica.”
R. P. Feynman, The Feynman Lectures on Physics, v.3, p.1-1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
22
Por onde vai o fóton?
• Experimentalmente, a opção “ou 1 ou 2” é falsa.
• Se os dois caminhos forem fechados, nenhum
fóton chega aos detectores. Logo, “nem 1 nem 2”
também não é aceitável.
• Parece restar apenas a opção “1 e 2”: o fóton
segue os dois caminhos ao mesmo tempo.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
23
Uma resposta melhor
• Não faz sentido falar sobre o caminho do fóton no interferômetro,
pois a montagem experimental não permite distinguir os
caminhos 1 e 2.
• A pergunta “qual o caminho do fóton?” só faz sentido frente a um
aparato capaz de produzir uma resposta.
Quando alguém deseja ser claro sobre o que quer dizer com
as palavras “posição de um objeto”, por exemplo do elétron
(em um sistema de referência), ele deve especificar
experimentos determinados com os quais pretende medir tal
posição; do contrário essas palavras não terão significado.
- W. Heisenberg,
The physical content of quantum kinematics and mechanics
(o artigo de1927 sobre o princípio da incerteza)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
24
Fácil de entender num modelo ondulatório
interferência
construtiva
D1
D2
interferência
destrutiva
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
25
Comprimentos variáveis
PD1
PD2
L2
L1
L1, L2 = comprimentos ajustáveis
dos “braços” do interferômetro
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
26
Resultado experimental:
PD1
PD2
1
1
0
0
L1 – L 2
L1 – L2
(linha tracejada: “ou 1 ou 2” ↔ PD(1) + PD(2))
• Padrão de interferência: é possível definir um comprimento de onda.
• Só há um fóton de cada vez no interferômetro: o fóton “interfere com
ele mesmo”.
• Se cada fóton seguisse um único caminho (ou 1 ou 2), o
comprimento do outro caminho não deveria influenciar o resultado.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
27
Interferência de nêutrons
interferômetro de nêutrons
S. A. Werner, Neutron interferometry, Physics Today 33, 24 (dezembro1980)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
28
Interferência de elétrons
A. Tonomura et al., Demonstration of single-electron build-up
of an interference pattern, Am. J. Phys. 57, 117 (1989)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
29
E se os caminhos forem distinguíveis?
interferência
desaparece !
diferença de “caminhos” (ajustável)
P. Bertet et al., A complementarity experiment with an interferometer
at the quantum-classical boundary, Nature 411, 166 (2001)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
30
E se os caminhos forem distinguíveis?
• “Massa”  0
• caminho
identificado
• não há padrão de
interferência
• “Massa”  ∞
• caminho não
identificado
• padrão de
interferência
N  “Massa”
P. Bertet et al., A complementarity experiment with an interferometer
at the quantum-classical boundary, Nature 411, 166 (2001)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
31
E se a informação sobre o caminho for apagada?
impossível determinar
o caminho
interferência
P. Bertet et al., A complementarity experiment with an interferometer
at the quantum-classical boundary, Nature 411, 166 (2001)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
32
Quando há interferência?
Resultado pode ser obtido de duas maneiras alternativas,
indistinguíveis experimentalmente
interferência
(“1 e 2”)
Resultado pode ser obtido de duas maneiras alternativas,
distinguíveis experimentalmente
(“ou 1 ou 2”)
não há interferência
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
33
Princípios da Mecânica Quântica
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
34
Princípios da Mecânica Quântica
• Vetores de estado e o princípio da superposição
• A regra de Born
• Complementaridade e o princípio da incerteza
• Redução do vetor de estado
• Evolução unitária
• Sistemas de N estados
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
35
Vetores de Estado
eo
Princípio da Superposição
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
36
Sistemas de dois estados
• esquerda / direita
• horizontal / vertical
• para cima / para baixo
• sim / não
• 0/1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
37
Sistemas de dois estados
fóton refletido
cara
coroa
fóton transmitido
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
38
Sistemas de dois estados
 a1
grandeza física observável: A  
a 2
a1
A=?
a1
a2
medidor de “A”
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
a2
ou
a1
a2
39
Sistemas clássicos
• Sistema clássico de dois estados, A = a1 e A = a2.
• Representação dos estados: pontos no “eixo A”
sistema tem
A = a2
sistema tem
A = a1
a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
a2
A
40
Sistemas quânticos: vetores de estado
• Sistema quântico de dois estados, A = a1 e A = a2.
• Representação dos estados: vetores ortogonais
(e de comprimento unitário) em um espaço de
duas dimensões
a2
sistema tem
A = a2
a1
sistema tem A = a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
41
A notação de Dirac
vetor ↔ 
identificação
a1
exemplos:
a2
0
1




esquerda
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
direita
42
O que muda?
Passar de dois pontos em uma reta para dois
vetores perpendiculares não parece ser mais do
mudar o sistema de “etiquetagem” dos estados.
?
a1
a2
a2
A
a1
O que muda é o seguinte:
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
43
O Princípio da Superposição
Qualquer combinação linear dos vetores |a1e |a2
representa um estado físico do sistema.
  c1 a1  c 2 a2
a2

a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
44
Significado de |
a2

a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
•
•
•
•
•
A = a 1 e A = a2 ?
esquerda e direita?
horizontal e vertical?
sim e não?
0 e 1?
45
O espaço de estados é grande
• Um sistema quântico de dois estados tem muito
mais que dois estados, tem infinitos estados.
• Os estados |a1 e |a2 formam uma “base” do
espaço de estados.
a2
a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
46
Princípio da Superposição: formulação geral
Se |e | são vetores de estado, qualquer combinação
linear deles representa um estado físico do sistema.
     



C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
47
Um ‘detalhe técnico’
• As constantes c1 e c2 podem ser números
complexos (o espaço de estados é um
espaço vetorial complexo).
• Deve-se ter cuidado com figuras como
esta:

c2
a2
a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
c1
48
Outro ‘detalhe técnico’
• Qual o significado de “ortogonalidade”
num espaço vetorial complexo?
• Como se define “comprimento” de um
vetor nesse espaço?
a2
?
a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
49
A Regra de Born
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
50
A Regra de Born

c2
  c1 a1  c 2 a2
a2
a1
c1
A probabilidade de uma medida da
grandeza física A resultar em A = an é
P(an ) 
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
cn
c1  c 2
2
(n = 1, 2)
2
2
51
A Regra de Born
  c1 a1  c 2 a2
a1
|
a1
a2
P(a1) 
c1
2
c1  c 2
2
2
a2
medidor de “A”
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
a1
a2
P(a 2 ) 
c2
2
c1  c 2
2
2
52
Probabilidade total
P(a1)  P(a 2 ) 
c1
2
c1  c 2
2
2

c2
2
c1  c 2
2
2
1
Só há dois resultados possíveis, ou a1 ou a2.
A probabilidade da medida resultar
ou em a1 ou em a2 é 1 (100%)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
53
Normalização do vetor de estado

c2
a2
Norma de |:
  c1  c 2
2
2
(tamanho do vetor |)
a1
c1
Com essa definição:
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
a1  a 2
1
54
Normalização do vetor de estado
 

  c1 a1  c 2 a2

  c1 a1  c 2 a2
 
P (an ) 
c n
2
c 1  c 2
2
2

cn
2
c1  c 2
2
2
 P (an )
|e | têm normas diferentes mas
representam o mesmo estado físico!
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
55
Normalização do vetor de estado
Todos os vetores ao longo de uma
dada direção representam o mesmo
estado físico.
Podemos trabalhar apenas
com vetores “normalizados”:
 1
ou seja,   c1 a1  c 2 a 2 ,
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
2
2
c1  c 2  1
56
Vetores normalizados: a Regra de Born
  c1 a1  c 2 a 2 (normalizado)
|
a1
P(an )  cn
2
a1
a2
P(a1)  c1
2
a1
a2
P(a 2 )  c 2
2
a2
medidor de “A”
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
57
Amplitude de probabilidade
cn  amplitude de probabilidade
probabilidade = |amplitude de probabilidade|2
  c1 x 1  c 2 x 2
“função de onda” (x n )  cn
P(x n )  (x n )
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
2
58
Frequência dos resultados de medidas


a1
a2
a1
a2




a1
N medidas de A
(N )
N1  a1
N2  a2
  c1 a1  c 2 a2
N1
2
 P(a1)  c1
N
a2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
podemos prever
a frequência dos
N2
2
resultados:
 P(a 2 )  c 2
N
59
Valor médio dos resultados


a1
a2
a1
a2
  c1 a1  c 2 a2




valor médio de A:
N a  N2a 2
A  1 1
N
A  c1 a1  c 2 a2
2
a1
a2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
2
60
Incerteza
a2
  c1 a1  c 2 a2

c2
c1, c2  0
a1
impossível prever o
resultado de uma medida
c1
  a1  c1  1, c 2  0
Se
ou
  a2  c1  0, c 2  1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
possível prever o resultado
(probabilidade = 100%):
valor de A “bem definido”
61
Incerteza
  c1 a1  c 2 a2
 A = incerteza de A no estado |
(  A)  A  A
2

2
 A
2
 A
2
  a1
A = 0
ou
  a2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
62
Complementaridade
eo
Princípio da Incerteza
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
63
Complementaridade
a2
a1
a2
a1
duas grandezas
físicas: A e B
A
b2
b1
b2
b1
B
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
64
Grandezas compatíveis e incompatíveis
b2
a2
A e B compatíveis
b1
a1
b2
A e B incompatíveis
a2
b1
a1
A e B complementares: incompatibilidade “máxima”
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
65
O Princípio da Incerteza
A bem definido, B incerto
( A = 0,  B  0)
a2
b2
A e B incertos
( A  0,  B  0)

B bem definido, A incerto
( B = 0,  A  0)
b1
a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
66
O Princípio da Incerteza
A e B incompatíveis 
nenhum estado | com  A = 0 e  B = 0
a2
b2

b1
a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
67
Exemplo: posição e momentum
x2
x1
X
duas posições: |x1, |x2 (“aqui”, “ali”)
dois estados de movimento: |p1, |p2 (“repouso”, “movimento”)
x2
p2
p1
impossível ter um estado com
posição e momentum bem definidos
x1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
68
Resumo da “cinemática” quântica
estado físico
grandeza física
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
vetor no espaço
de estados
sistema de eixos
(uma “base”) no
espaço de estados
69
Resumo da “cinemática” quântica
a2
projeção do vetor de
estado no eixo |an
probabilidade de uma
medida da grandeza
A resultar em A = a1
ou A = a2

a1
grandezas físicas
incompatíveis
(complementares)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
probabilidade da
medida resultar
em A = an
diferentes sistemas
de eixos no espaço
de estados
70
Como o vetor de estado muda com o tempo?
• “Redução” durante uma medida
• Evolução unitária (equação de
Schroedinger)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
71
Redução do Vetor de Estado
Redução do vetor de estado

a1
a1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
antes da
medida
a2
a2
a2
depois da
medida
73
Redução do vetor de estado
a2
resultado
A = a2

resultado
A = a1
a1
medida de A resulta em an  logo após a
medida o vetor de estado do sistema é |an
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
74
Redução do vetor de estado
• A redução garante que a medida é repetível: se obtemos
A = an e imediatamente refazemos a medida, encontramos
A = an novamente com 100% de probabilidade.
• O estado | an  é o único em que a nova medida resultará
em A = an com 100% de probabilidade.
• |  |an: a medida causa uma alteração imprevisível
e incontrolável do estado quântico; versão moderna do
“salto quântico”.
• A redução aplica-se a medidas “ideais” (medidas projetivas
ou de von Neuman, ). Na prática, muitas vezes não faz sentido
falar em redução a | an . Por exemplo, um fóton geralmente é
absorvido durante sua detecção; não há mais fóton após a
primeira medida.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
75
Evolução Unitária
A equação de Schroedinger
• Evolução temporal do vetor de estado:
|(0)  |(t)
• Dinâmica quântica: determinada pela
energia do sistema (o conceito de força
é pouco relevante).
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
77
A (solução da) equação de Schroedinger
E2
Sistema de dois estados
Dois níveis de energia: E1, E2
E1
(t  0)  c1 E1  c 2 E2
(t)  c1e iE1 t /  E1  c 2e iE2 t /  E2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
78
A (solução da) equação de Schroedinger
• ћ = constante de Planck ( 2)  110-34 Js
• Números complexos são inevitáveis. Mesmo que as
componentes do vetor de estado sejam reais em t = 0,
para t  0 elas serão complexas:
cn (t)  cne iEn t / 
• A evolução |(0)  |(t) ditada pela equação de
Schroedinger é contínua (sem ‘saltos quânticos’) e
determinista (sem elementos probabilísticos).
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
79
Propriedades da equação de Schroedinger
• Linearidade:
a (0)  a ( t)
b (0)  b ( t)
t=0
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
(0)   a (0)   b (0)
(t)   a (t)   b (t)
t0
80
Propriedades da equação de Schroedinger
• Conserva a norma do vetor de estado:
(t)
( t)  (0)
(0)
tamanho não muda
• Conserva o ortogonalidade entre vetores:
(t)
(0)
(t)
dois vetores perpendiculares
continuam perpendiculares
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
(0)
81
Demonstração da linearidade
a (0)  c1 E1  c 2 E2
b (0)  d1 E1  d2 E2
(0)   a (0)   b (0)
 (c1  d1) E1  (c 2  d2 ) E2
( t)  (c1  d1)e i E1 t /  E1  (c 2  d2 )e i E 2 t /  E2
 c1e i E1 t /  E1  c 2e i E 2 t /  E2   c1e i E1 t /  E1  c 2e i E 2 t /  E2

  a ( t)   b ( t)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
82
Demonstração da conservação da norma
(0)  c1 E1  c 2 E 2
( t)  c1 e i E1 t /  E1  c 2 e i E2 t /  E 2
( t )
2
 c1 e
i E1 t /  2
2
 c1  c 2
 (0)
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
 c2 e
 i E2 t /  2
2
2
83
Demonstração da conservação da ortogonalidade
(0)
(t)
(0)
(t)
(t)
(0)
|(0) e |(0) ortogonais
(0)  (0)  (0)  2
(t)  (t)  (t)  2
|(t) e |(t) ortogonais
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
84
Propriedades da equação de Schroedinger
•
•
•
•
•
Determinismo
Continuidade
Linearidade
Conservação da norma
Conservação da ortogonalidade
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
“evolução
unitária”
85
Estados estacionários
• Estado de energia bem definida En:
(0)  En
(t)  e iEn t /  En
mesma “direção” que |En
• |(t) e |(0) representam o mesmo estado físico.
• Estados de energia bem definida são “estacionários”.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
86
Conservação da energia
(t)  c1e iE1 t /  E1  c 2e iE2 t /  E2
P(En , t)  cne
i En t /  2
 cn
2
P(En, t)  P(En, t  0)
E
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
( t )
 E
(0)
87
Eq. de Schroedinger x Processos de medida
• Equação de Schroedinger:
– contínua
– determinista
– válida enquanto não se faz uma medida
• Redução do vetor de estado:
– descontínua
– probabilística
– ocorre durante a medida
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
88
Eq. de Schroedinger x Processos de medida
Dois tipos de evolução temporal?
• Equação de Schroedinger:
– interação do sistema quântico com outros
sistemas quânticos.
– A = a1 e A = a2
• Redução do vetor de estado:
– interação do sistema quântico com um aparato
clássico, o aparelho de medida (o “observador”).
– A = a1 ou A = a2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
89
O “problema da medida”
Por que o aparelho de medida não é regido pela eq. de Schroedinger?
Descrição quântica do aparelho de medida:
a1
a2
|
aparelho de medida:
a1  a1
a2  a2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
a1
a2
| 
a1
a2
| 
equação de Schroedinger:
c1 a1  c 2 a2  c1 a1  c 2 a2
o ponteiro aponta em duas
direções ao mesmo tempo !
90
O “problema da medida”
• Porque as superposições quânticas não são encontradas
no mundo macroscópico?
– Jamais se observou um ponteiro macroscópico apontando em
duas direções ao mesmo tempo.
– Um gato não pode estar simultaneamente vivo e morto.
• Como conciliar o espaço quântico de infinitos estados
com a observação de apenas alguns poucos estados
macroscópicos?
Uma descrição do processo de medida
baseada na equação de Schroedinger
deve dar respostas a essas questões.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
91
Física quântica x física clássica
• Por medida, na mecânica quântica, nós entendemos qualquer
processo de interação entre objetos clássicos e quânticos…
L. Landau & E. Lifshitz, Quantum Mechanics
• … os instrumentos de medida, para funcionarem como tal,
não podem ser propriamente incluídos no domínio de
aplicação da mecânica quântica.
N. Bohr, carta a Schroedinger, 26 de outubro de 1935
• …o ‘aparato’ não deveria ser separado do resto do mundo em
uma caixa preta, como se não fosse feito de átomos e não
fosse governado pela mecânica quântica.
J. Bell, Against measurement
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
92
Física quântica x física clássica
física
clássica
física
quântica
…a mecânica quântica ocupa um lugar muito incomum entre as teorias
físicas: ela contém a mecânica clássica como um caso limite, mas ao
mesmo tempo requer esse caso limite para sua própria formulação...
- L. Landau & E. Lifshitz, Quantum Mechanics
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
93
Os gatos de Schroedinger
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
94
Sistemas de N Estados
Você está em
todo lugar
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
95
Sistemas de 3 estados
Três valores possíveis
para a grandeza A:
a2
a1
a 1 a2 a 3
a3
  c1 a1  c 2 a2  c3 a3
P(an )  | c n |2 , n  1, 2, 3
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
96
Sistemas de N estados
a2
N valores possíveis
para a grandeza A:
a1
a3
... a
a1
a2
...
aN
N
(impossível desenhar
N eixos perpendiculares)
N
   c n an
n 1
P(an )  | c n |2 , n  1, 2,  N
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
97
Sistemas de infinitos estados
• N pode ser infinito:

   c n an
n1
• N pode ser infinito, e a ter valores contínuos:
   da c(a) a
densidade de probabilidade:
p(a)  | c(a) |2
probabilidade: P(a, a) 
a 
2
da
|
c
(
a
)
|

a
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
98
Sistemas de infinitos estados
Exemplo: a = x = posição de uma partícula
   dx (x ) x
função de onda: (x)
densidade de probabilidade:
p( x )  | ( x ) |2
x2
probabilidade: P( x1, x 2 ) 
2
dx
|

(
x
)
|

x1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
99
Sistemas de infinitos estados
• A grandeza a pode ter valores discretos e contínuos:
   c n an   da c(a) a
n
Exemplo: a = E = energia de uma partícula
   cn En   dE c(E) E
n
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
100
Aplicações a sistemas simples
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
101
Interferômetro de Mach-Zehnder
• Interferência de uma partícula
• Descrição quântica do interferômetro
• Interferência e indistinguibilidade
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
102
O interferômetro de Mach-Zehnder
100%
interferência
construtiva
“ondas”
D1
0%
interferência
destrutiva
D2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
103
O interferômetro de Mach-Zehnder
D1 25%
50%
D2 25%
D1 e D2 nunca disparam em coincidência
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
“partículas”
104
Descrição quântica do interferômetro
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
1
(caminho 1)
2
(caminho 2)
105
Espaço de estados
2
  c1 1  c 2 2
1
 P1  c1 2
probabilidades: 
2
P2  c 2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
106
Semiespelho
2
1
1
1
1
1 
1 
2
2
2
evolução
unitária
2
1
1
1
2 
1 
2
2
2
2
probabilidade de reflexão = probabilidade de transmissão = 1/2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
107
Semiespelho
2
1
1
1 
2
2
2
1
sinal negativo: evolução
unitária conserva a
ortogonalidade
1
1
1 
2
2
2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
108
Interferômetro
D1
D2
2
1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
1
109
Interferômetro
Estado inicial: 1
1
1
1 
2
Primeiro semiespelho: 1 
2
2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
110
Interferômetro
Segundo semiespelho:
1
1
1  1
1
1
 1  1

1 
2 
1

2

1

2




2
2
2 2
2 
2 2
2 
ou seja, o estado final é
 1 1
 1 1
  1    2  1
 2 2
 2 2
interferência
construtiva
interferência
destrutiva
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
P1 = 100%
P2 = 0%
111
O que interfere?
 1 1
 1 1

1



  2
 2 2
 2 2
(1-1-1)
(1-1-2)
(1-2-1)
(1-2-2)
1
2
2
1
1
1
2
1
amplitudes de probabilidade associadas
a caminhos alternativos indistinguíveis
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
112
Caminho bloqueado
D1
D2
2
1
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
113
Caminho bloqueado
Estado inicial: 1
1
1
1 
2
Primeiro semiespelho: 1 
2
2
Bloqueio:
1
1
1
1
1 
2 
1 

2
2
2
2
fóton bloqueado
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
114
Caminho bloqueado
Segundo semiespelho:
1
1
1  1
1
 1
1 
 
1 
2 


2
2
2 2
2 
2
ou seja, o estado final é
1
1
1
1  2 

2
2
2
P1 = 25%
P2 = 25%
P = 50%
não há caminhos alternativos, logo não há interferência
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
115
Por que não há interferência?
1
1
1
1  2 

2
2
2
(1-1-1)
(1-2-)
(1-1-2)
1
2
1
1
1
1
2

1
não há caminhos alternativos para cada um dos
estados finais  não há interferência
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
116
Caminhos alternativos distinguíveis
D1 50%
D2 50%
mola
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
117
Caminhos alternativos distinguíveis
1R , 2 R , 1M , 2 M
Estado inicial:
• 1, 2: caminho do fóton
• R: espelho em repouso
• M: espelho em movimento
1R
Primeiro semiespelho:
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
1R 
1
1
1R 
2M
2
2
118
Caminhos alternativos distinguíveis
Segundo semiespelho:
1
1
1  1
1
1R 
2M 
1R 
2R

2
2
2 2
2
1
 1  1

1M 
2M 


2 2
2


ou seja, o estado final é
1
1
1
1
1R  1M  2 R  2 M
2
2
2
2
P1 = P(1, R) + P(1, M) = 50%
P2 = P(2, R) + P(2, M) = 50%
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
soma de probabilidades,
não de amplitudes
119
Apagando a informação sobre o caminho
D1 100%
mola
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
D2 0%
120
Apagando a informação sobre o caminho
Segundo semiespelho:
1
1
1  1
1
1R 
2M 
1R 
2M

2
2
2 2
2
1
 1  1

1R 
2M 


2 2
2


ou seja, o estado final é
 1 1
 1 1
   1 R     2M  1 R
 2 2
 2 2
dois caminhos para o mesmo estado final
 interferência
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
121
O palito de fósforo quântico
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
122
O palito de fósforo quântico
• fósforo “bom”
fóton
• fósforo “ruim”
fóton
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
123
O palito de fósforo quântico
palitos bons e ruins misturados
Problema: como encher uma caixa de
fósforos apenas com palitos bons?
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
124
Teste clássico
palito bom
queimado
palito ruim
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
125
Teste quântico
D1
D2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
126
Palito ruim
D1 100%
transparente
D2 0%
palito ruim  D1 dispara sempre
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
127
Palito bom
D1 25%
50%
D2 25%
palito bom  D2 dispara 25% das vezes,
e o fósforo permanece intacto
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
128
Teste quântico
• D2  fósforo bom intacto
• D1  fósforo bom intacto ou fósforo ruim
• Fósforo acende  fósforo bom queimado
Dos fósforos bons:
• 25% estão identificados e intactos
• 50% foram queimados
• 25% em dúvida
Retestando os casos duvidosos é possível
identificar 1/3 dos fósforos bons.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
129
Mais aplicações a sistemas simples
•
•
•
•
•
•
•
•
O problema de Deutsch
Molécula de H2+
Molécula de benzeno
Oscilação de neutrinos
Polarização do fóton
Spin ½
Informação quântica
Paradoxo de Hardy; teorema de Bell
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
130
Como chegar aos operadores,
autovalores e autovetores
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
131
Conexão com os operadores
• Produto escalar: |
• Projetores: | |
• Operador associado à grandeza A:
A  a1 a1 a1  a 2 a 2 a 2
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
132
Conexão com os operadores
• Autovalores e autovetores de A:
  a1 ,   a1
A 
ou
  a2 ,   a2
É mais fácil encontrar (postular) o operador A
do que os vetores |an e valores an.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
133
Comentários finais
• É possível apresentar alguns dos princípios básicos da
mecânica quântica utilizando apenas matemática
acessível a professores (e alunos?) do ensino médio.
• Essa abordagem permite descrever apropriadamente a
mecânica quântica de sistemas simples.
• Aspectos conceituais da mecânica quântica podem ser
discutidos sem as dificuldades criadas por um formalismo
matemático pouco familiar.
• “Experimento didático” em desenvolvimento. Críticas e
sugestões são bem-vindas.
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
134
Funciona?
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
135
Curtiu?
C.E. Aguiar / Mecânica Quântica / MNPEF-UNB 2015
136
Download