Trabalho de Eletrônica Digital Famílias de Circuitos Lógicos Centro Federal de Educação Tecnológica UNED Cubatão Eletrônica Digital I. Famílias de Circuitos Lógicos Introdução Família de Circuitos Lógicos. Entende-se por famílias de circuitos lógicos estruturas internas que nos permitem a confecção desse bloco em circuitos integrados. Cada família lógica utiliza determinados componentes em seus blocos e de acordo com este, a família possuirá determinadas características relacionadas ao seu funcionamento. Dentre as famílias de circuitos lógicos destacam-se: TTL (transistor-transistor-logic). CMOS (complementary mos). RDTL () HTL (high-thershold-logic). ECL (emither-coupled-logic) Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 2 Eletrônica Digital I I. I. Famílias de Circuitos Lógicos Índice Introdução ____________________________________ 2 II. Índice ________________________________________ 3 Parâmetros mais Utilizados dos Circuitos Lógicos ____________ 4 Interface entre as Famílias Lógicas _______________________ 4 Sensibilidade de Níveis Lógicos de Tensão __________________ 5 III. Família HTML _________________________________ 5 Características principais da família HTL ___________________ 5 IV. Família ECL __________________________________ 6 Características da família ECL ____________________________ 7 V. Família TTL ____________________________________ 7 54/74LXXX __________________________________________ 8 Série 74_____________________________________________ 8 Série 54_____________________________________________ 8 Características Gerais e Parâmetros da Família TTL ___________ 8 Tipos de Blocos da Família TTL __________________________ 10 Saída Open-Colletor ____________________________________________ 10 Saída Tri-State (Três Estados) ____________________________________ 11 Entrada Schimitt-Trigger _________________________________________ 12 Versões de Circuitos TTL _______________________________ 13 Circuitos Integrados TTL_______________________________ 15 Alguns tipos de circuitos integrados TTL __________________ 16 VI. Família CMOS________________________________ 20 Características Gerais e Parâmetros da Família CMOS ________ 22 Circuitos Integrados CMOS _____________________________ 24 VII. Conclusão ________________ Error! Bookmark not defined. VIII. Bibliografia _______________ Error! Bookmark not defined. Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 3 Eletrônica Digital Famílias de Circuitos Lógicos Parâmetros mais Utilizados dos Circuitos Lógicos VIH - Tensão de entrada alta. É um valor de tensão no terminal de entrada que representa um nível alto para o sistema. VIL - Tensão de entrada baixa. É um valor de tensão no terminal de entrada que representa um nível baixo para o sistema. VOH - Mínima tensão de saída alta. É a mínima tensão num terminal de saída que ainda permite fornecer a corrente de saída alta especificada com a tensão de alimentação no seu valor mínimo. VOL - Máxima tensão de saída baixa. É a máxima tensão em um terminal de saída que ainda permite a "absorção" da corrente de saída baixa especificada. IOS - Corrente de curto circuito na saída. É a corrente que flui por um terminal de saída quando uma saída alta é conectada ao terra. Interface entre as Famílias Lógicas As interfaces entre os circuitos integrados muitas vezes não podem ser feitas de maneira direta, ou seja, a saída de um circuito integrado conectada à entrada de um circuito integrado de outra família por causa das diferenças entre as características elétricas do circuito alimentador, ou o circuito que está fornecendo o sinal de saída, e o circuito que está recebendo o sinal. Para essa finalidade, usa-se um circuito de interface. O circuito de interface tem a função de compatibilizar as características do circuitos alimentador com as características do circuito alimentado. Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 4 Eletrônica Digital Famílias de Circuitos Lógicos Sensibilidade de Níveis Lógicos de Tensão Um circuito lógico interpreta como nível 1, uma tensão próxima a da máxima e, como nível zero, uma tensão próxima ao terra. As famílias lógicas têm uma faixa de trabalho diferente para as tensões de cada nível. Assim se tivermos, por exemplo, uma família que interpreta como nível baixo tensões entre 0 e 0.8 V, e como nível alto entre 2 V e 5 V. Se ela for conectada a saída de outra família que tenha nível lógico alto com tensões entre 1.4 V e 5 V, essa diferença entre 2 V e 1.4 V pode causar erro de interpretação n entrada da primeira, pois1.4 V está dentro da faixa indeterminada desta família. III. Família HTML A família HTML (high-tueshold logic) foi criada para atender necessidade de circuitos com uma alta imunidade ao ruído. Esses circuitos ,geralmente ,são empregados nas em equipamentos industriais que trabalham em locais de grande ruído(comutação de chaves, motores de indução, etc).Possuem circuitos muito semelhantes à família DTL como veremos a seguir. O circuito básico do seu bloco lógico principal, a porta NAND, é visto na figura 01 abaixo: Figura 01 Como veremos o circuito tem um funcionamento análogo ao da família DTL com a única diferença de possuir D3 como sendo um diodo zener, isso fará com que aumente o potencial necessário para que T1 inicie a condução. Características principais da família HTL Como na família DTL, possui um bloco lógico principal a porta NAND. Possui um Fan-out Típico igual a 10. A família HTL é de todas as famílias de circuitos lógicos a que dissipa a maior potência.A potência dissipada por circuitos desta família é de ordem de 60 mW. Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 5 Eletrônica Digital IV. Famílias de Circuitos Lógicos Devido à utilização de um diodo zener(D 3), necessitar-se-á de um maior potencial nas entradas para que haja condução, isso fará com que aumente a imunidade ao ruído.Essa é a família de circuitos lógicos que possui maior imunidade ao ruído. De todas as famílias que utilizam transistores como chaves, a família HTL é a que possui maior tempo de atraso. Família ECL A família ECL (emiter-coupled-logic) utiliza nos circuitos o acoplamento pelo emissor dos transistores. Esse fato faz com que os transistores não trabalhem na região de saturação e traz como conseqüência um menor tempo de resposta. De todas as famílias lógicas, está é a que permite maior velocidade de comutação. Esta família apresenta dois blocos lógicos principais, a porta NOR e a porta OU que serão obtidas a partir de um mesmo circuito, em duas saídas. O circuito básico dos blocos principais é visto na figura 02 abaixo: Figura 02 Esse circuito tem seu funcionamento baseado em um amplificador diferencial. Sabendo-se disso , podemos dizer que quando ambas as entradas estiverem em nível baixo(nível 0) os transistores T1 e T2 estarão no limiar da região de corte, portanto I será pequeno e por isso o potencial de S 2 será alto.Sendo I um valor baixo, diremos que I2 será um valor alto de modo a manter a corrente IE e com isto o transistor T3 estará no limiar de saturação impondo assim o potencial de S baixo. Quando pelo menos uma das entradas estiver com com potencial alto(nível 1) o seu respectivo transistor estará no limiar de saturação,com isso, I será elevada, logo o potencial de S2 será baixo;sendo I elevado, I2 deverá ser pequena de modo a manter a correspondente IE, com isto o transistor T 3 estará no limiar do corte, impondo assim o potencial de S1 alto. Transpondo-se estas situações para a tabela da verdade, teremos: Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 6 Eletrônica Digital Famílias de Circuitos Lógicos H-nível alto de tensão. L-Nível baixo de tensão A L L H H B L H L H S1 L H H H S2 H L L L Podemos notar na tabela que a saída S2 será o complemento da saída S1, e mais, S1 segue a tabela de uma porta OU e portanto, S 2 segue uma tabela de uma porta NOR. Como sabemos, a partir de um bloco NOR podemos formar qualquer outro tipo de bloco lógico. Características da família ECL V. Blocos lógicos principais são a porta OU e a porta NOR. Uma das vantagens do ECL é que possui um Fan-out igual a 25. A potência dissipada pelos blocos dessa família é da ordem de 50 mW. Isso se dá pelo fato de nós não trabalharmos na região de corte ou saturação e sim, na região ativa. Apresenta uma boa imunidade ao ruído. Como já foi dito, a grande vantagem da família ECL é de possuir um tempo de atraso muito baixo, da ordem de 3ns. Família TTL Esta família é derivada da antiga família DTL, sendo o resultado de inovações tecnológicas. Como a utilização nos seus circuitos internos de transistores e bipolares de vários emissores também conhecidos como multiemissores. Esta é uma família muito utilizada por causa de seu fácil manuseio e a disponibilidade de uma série de circuitos integrados comerciais e padronizados. Os circuitos da família TTL podem ser encontrados em duas séries denominados: 74 (para uso comercial) e 54 para uso militar). Primeiramente, os circuitos integrados eram fabricados para o uso militar onde tamanho, consumo e potência eram preponderantes. Mas no ano de 1964, surgiu a versão comercial a custo bem inferior. Respeitando algumas especificações, os dispositivos 54 são compatíveis com a série 74. Há também subdivisões da linha nesses dispositivos de acordo com sua velocidade de comutação. Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 7 Eletrônica Digital Famílias de Circuitos Lógicos 54/74LXXX Baixa potência. Dão o melhor produto velocidade versus potência, entre todos os dispositivos lógicos. As resistências internas dos transistores do CI são aumentadas, resultando numa menor dissipação de potência (1 mW por porta, com retardo de 33nS por porta). 54/74HXXX – Alta velocidade. Os tempos de subida e descida de pulsos são menores. Os transistores internos do CI são feitos em configuração darlington. O retardo é de 6 ns por porta. A desvantagem é que este tipo de circuito consome mais corrente que o tipo comum. 54/74SXXX – Componentes com tecnologia schottky*. Ela combina alta velocidade com baixo consumo. Série 74 Identifica os dispositivos da família TTL de uso comercial. Especificações: Temperatura Tensão de Alimentação 0 a 70 ºC 4,75 a 5,25V (5V + - 10%) Mas é importante lembrar que: Os circuitos integrados da família AS e ALS de alguns fabricantes, a tensão de alimentação pode estar compreendida entre 4,5V e 5,5V (5V +10%). - Série 54 Identifica os dispositivos da família TTL de uso militar. Apesar da série 54 tenha as mesmas portas lógicas da série 74, suas especificações técnicas são mais rígidas. Especificações: Temperatura Tensão de Alimentação -55 a 125 ºC 4,5 a 5,5V (5V + - 10%) Características Gerais e Parâmetros da Família TTL Veja abaixo os principais parâmetros encontrados nos manuais em nomenclaturas originais: 1. Alimentação (Vcc): Na família TTL temos para todos os blocos de uma alimentação de 5V. Para a série 54 temos Vcc mínimo = 4,5V e Vcc máximo 5,5V que são os valores dentro da tolerância permitida por esta série. No caso da série 74, o Vcc mínimo = Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 8 Eletrônica Digital Famílias de Circuitos Lógicos 4,75V e Vcc máximo = 5,25V, sendo os valores máximos e mínimos da tolerância da série 74. 2. Veja na tabela a baixo, os níveis de entrada e saída para a versão padrão TTL Standard: Parâmetros VIL VOL VIH VOH IOL IIL IOH IIH TTL Standard Valores 0,8 0,4 2,0 2,4 16 1,6 400 40 Unidade V V V V mA mA A A 3. Fan-out: o Fan-out em sua versão padrão é igual a 10, ou seja, podemos ligar à saída deste bloco no máximo outros 10 blocos similares. Este valor é generalizado para toda a família TTL. 4. Tempo de atraso de propagação: O tempo varia de acordo com a versão que for utilizada, sendo o valor médio aproximado de ordem de 10ns na versão mais comum. Parâmetros TPLH tPHL 5. TTL Standard V. Típico 11 7 Unidade ns ns Imunidade ao ruído: A margem correta de imunidade ao ruído específica para a família TTL é obtida supondo a ligação da saída de um bloco para a entrada de outro, sendo definida pela margem de segurança colocada pelo fabricante entre os parâmetros de entrada e saída. É calculada pela diferença de parâmetros relativos a esses níveis de tensão (margem de imunidade ao ruído DC). Então, temos: No nível 1: VRH = VOH(mínimo) – VIH(mínimo) = 2,4 – 2,0 = 0,4V No nível 0: VRL = VIL(máximo) – VOL(máximo) = 0,8 – 0,4 = 0,4V VR = 0,4V Portanto, a margem de imunidade ao ruído para a família TTL é igual a 0,4V, sendo considerada baixa em relação a família CMOS. 6. Potência Dissipada: A família TTL tem um consumo médio de potência de 10mW por porta na sua versão mais comum. Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 9 Eletrônica Digital Famílias de Circuitos Lógicos Tipos de Blocos da Família TTL Esta é uma das características da família TTL, que através de suas séries possui blocos que estão disponíveis no mercado de componentes, com uma vasta variação. Vamos destacar alguns deles como os blocos open-colletor, tristate e schimitt-trigger. Saída Open-Colletor Na família TTL há alguns blocos lógicos montados em open-colletor (coletor aberto). Os circuitos destes tem semelhança aos convencionais, mas com uma única diferença de não Ter em seu interior o resistor de coletor ligado ao +Vcc. Ele deve ser ligado externamente quando este bloco for utilizado. Abaixo, a figura 03, mostra um circuito interno de uma porta NE (TTL) open-colletor: +Vcc R1 R2 Rexterno T1 S T2 R3 Figura 03 Esta configuração possibilita o controle externo da corrente do coletor de saída e, proporcionando o aumento do fan-out, além de poder habilitar saídas diferentes interligadas entre si (num mesmo resistor coletor), podendo assumir níveis lógicos opostos sem provocar danos. A grande desvantagem deste tipo de saída é sua baixa velocidade de chaveamento (mudança de nível lógico). A figura 04 na próxima página, mostra a ligação por uma função E, contendo ao lado a tabela da verdade e a simbologia utilizadas para se obter uma função E através de blocos open-colletor. Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 10 Eletrônica Digital Famílias de Circuitos Lógicos +Vcc Tabela da Verdade Rexterno S1 0 0 1 1 E por fio Bloco 1 S S2 0 1 0 1 S 0 0 0 1 Bloco 2 Figura 04 Podemos notar que, o nível 0 é obtido pela saturação de cada transistor ou por ambos, conforme a função lógica de cada bloco, sendo respectiva corrente de coletor fornecida pelo mesmo resistor colocado na extremidade. O nível 1 é obtido pelo corte de ambos. Podemos citar como outro tipo de aplicação, o uso muito comum de saídas de open-colletor para ativar displays de 7 segmentos a led, possibilitando o controle de luminosidade pelo resistor de coletor calculado e colocado na externamente. Saída Tri-State (Três Estados) Podemos dizer também three-state ou 3-state, que estes modos também estão corretos. A configuração que pode fazer com que ela apresente uma alta impendância (terceiro estado) em relação a linha na qual ela está conectada, ou seja, para ativar o tri-state, o bloco específico possui um terminal que, conforme o nível lógico assumido, faz a saída permanecer ou não em alta impendância. Para entendermos melhor, observe na figura 05 abaixo, o circuito simplificado de uma porta NE (TTL) de duas entradas com saída tri-state. +Vcc R1 A B G X2 X1 T3 T2 T1 D2 R4 R2 D3 D1 T4 S R3 Figura 05 Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 11 Eletrônica Digital Famílias de Circuitos Lógicos No circuito da figura 05, da página anterior, se aplicarmos nível 1 ao terminal de entrada de controle de saída (G) ou o deixarmos em aberto, o circuito funcionará normalmente como uma porta NE, pois D2 e D3, estarão cortados. Se, no entanto, aplicarmos nível 0, devido à respectiva condução de corrente pelos mesmos diodos, os pontos X1 e X2 cairão para baixos potenciais, levando T2, T3 e T4 para a situação de corte. O terminal de saída, neste caso, será desligado do circuito ocasionando o estado de alta impendância. Na família TTL, as saídas tri-state são encontradas fazendo parte de vários dispositivos, porém, isoladamente como portas, estão disponíveis apenas como buffers comuns e inversores. Os dispositivos com saídas de tri-state tem várias aplicações, sendo principalmente em sistemas com microprocessadores, onde vários circuitos integrados usam o mesmo conjunto de fios de forma compartilhada, assim, formando a via de dados do sistema. Entrada Schimitt-Trigger Estes dispositivos também são encontrados na família TTL. Este tipo de bloco possibilita tornar rápidas as variações lentas dos níveis de tensão de determinados sinais a serem aplicados à sua entrada, causando na saída o aparecimento de uma onda quadrada bem definida. Ou seja, este tipo de bloco, além de realizar sua função lógica, quadra o sinal aplicado a entrada, desde que sejam respeitados os parâmetros mínimos e máximos de tensão especificados para cada bloco. O bloco irá considerar iguais a 0, os valores dde entrada abaixo do especificado por VT - (Negative-Going Thershould Voltage) ou limiar negativo de tensão, e irá considerar iguais a 1, os valores acima de VT - (Positive-Going Thershould Voltage) ou limiarr positivo de tensão. Podemos dizer em outras palavras que, este bloco recebe o sinal da forma como ele é gerado(pulso distorcido, com ruídos, etc.) e isto pode causar vários problemas durante o chaveamento dos dispositivos, tais como: Dispositivos sensíveis à borda de subida podem não operar; Dispositivos polarizados na região ativa por longo tempo podem tornar-se instáveis; Atrasos de propagação tornam-se de difícil previsão. Abaixo, na figura 06, podemos observar um inversor TTL schimitttrigger (a) e a ação sobre um sinal de variação lenta aplicado à sua entrada (b) VT+ E S VTS (a) (b) Figura 06 Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 12 Eletrônica Digital Famílias de Circuitos Lógicos O símbolo (histerese) presente no interior do inversor (ver figura 06 (a)) é utilizado em manuais de fabricantes para identificar as portas que executam a função de schimitt-trigger, sendo atribuído devido a aparência da característica de transferência do bloco. Veja esta curva e os valores práticos dos parâmetros VT- e VT+ , a figura 07 mostra a característica de transferência típica do circuito integrado TTL 7414 (6 inversores schimitt-trigger). V0 (V) 4,0 VT- VT+ 3,0 2,0 0,4 1,0 0 0,4 0,8 1,2 1,6 2,0 V1 (V) Entrada Figura 07 Por este gráfico podemos notar que, para a saída assumir nível 0 (VOL = 0,2V) é necessário que a variação de entrada atinja aproximadamente V T+ = 1,7V, e para assumir nível 1 (VOH = 3,4V), é necessário que a variação de entrada caia abaixo de VT- = 0,9V aproximadamente. Versões de Circuitos TTL Existem outros tipos de blocos TTL além dos blocos mais comuns (Standard), com outras versões de circuitos com finalidade de atender a solicitações de ordem prática nos parâmetros relativos à velocidade e consumo de potência. Veja a tabela na próxima página, que mostra um quadro comparativo com as versões, identificações, vantagens e desvantagens desses blocos: Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 13 Eletrônica Digital Famílias de Circuitos Lógicos Tempo de atraso de propagação típico por porta Freqüência Consumo de de clock potência por máxima Observações porta para flip-flop Versão Identificação da série Standard 54/74 10ns 10mW 35MHz Comum Low Power 54L/74L 33ns 1mW 3MHz Baixíssimo consumo Hi Speed 54H/74H 6ns 22mW 50MHz Alta velocidade Schottky 54S/74S 3ns 19mW 125MHz Altíssima velocidade 54AS/74AS 1,5ns 8,5mW 200MHz 54LS/74LS 10ns 2mW 45MHz Advanced Schottky Low Power Schottky Advanced Low Power Schottky 54ALS/ 74ALS 4ns 1mW 70MHz Altíssima velocidade e baixo consumo Baixíssimo consumo Altíssima velocidade e baixíssimo consumo Estes valores são válidos para circuitos integrados de portas NE e servem apenas para comparações entre as versões, sendo estimados a partir de faixas disponíveis nos manuais comerciais de diversos fabricantes. Os dados do quadro, nos possibilita a comparação em termos de velocidade e consumo de potência, tomando como ponto de referência a versão comum, em seguida da versão de baixo consumo (L), e de alta velocidade (H). Essas versões são diferentes entre si devido a alterações introduzidas nos circuitos e nos valores de seus componentes internos. A partir deste passo, as versões do quadro como podemos ver, os circuitos apresentam variações sobre a tecnologia Schottky. Nesta versão, é utilizado em seus circuitos o diodo Schottky, que é um elemeto semicondutor construído em metal com um lado da junção internapara aumentar a velocidade de comutação, que está devidamente colocado entre base e coletor de um transistor, formando um conjunto denominado Transistor Schottky. Quando este conjunto é utilizado para chaveamento, não atinge a saturação por completo, devido à ligação, apresentando um tempo de comutação extremamente baixo e consequentemente uma altíssima velocidade de trabalho. A figura 08 na próxima página, nos mostra a ligação de um diodo Schottky em um transistor bipolar para formar o referido conjunto (a) e a simbologia que é utilizada por este (b). Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 14 Eletrônica Digital Famílias de Circuitos Lógicos (a) (b) Figura 08 As alterações feitas nos circuitos e nos valores dos componentes, produziam em relação à versão Schottky (S), uma variação de menor consumo (LS), e nas versões Schottky Avançadas (AS e ALS), com uma grande melhora no desempenho total, principalmente no produto velocidade-consumo, constituindo-se nos menores entre todas as versões existentes. Circuitos Integrados TTL Esta família possui uma vasta variação de circuitos integrados padronizados com configurações de pinagens disponíveis nos manuais dos fabricantes. São circuitos integrados que possuem 14 pinos ou mais, conforme a complexidade do circuito agregado, com encapsulamentos denominados DIP (Dual-In-Line Package), cuja identificação da disposição dos terminais se faz através da vista superior, em sentido antí-horário a partir de uma marca de referência no encapsulamento do circuito integrado. Veja abaixo as marcas de referência dos circuitos integrados: Marca de Referência Marca de Referência No caso do circuito integrado acima, podemos verificar que a sua alimentação é feita através do pino 14: +Vcc e do pino 7: terra ou GND (ground). Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 15 Eletrônica Digital Famílias de Circuitos Lógicos Alguns tipos de circuitos integrados TTL 7400 - 04 portas NAND de 02 entradas 7401 - 04 portas NAND de 02 entradas com saídas em coletor aberto 7402 - 04 portas NOR de 02 entradas 7403 - 04 portas NAND de 02 entradas com saídas em coletor aberto 7404 - 06 portas INVERSORAS 7404 - 06 portas INVERSORAS 7405 - 06 portas INVERSORAS com saídas em coletor aberto 7406 - 06 portas INVERSORAS Buffers/Drivers com saídas em coletor aberto 7407 - 06 portas BUFFERS/DRIVERS com saídas em coletor aberto Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 16 Eletrônica Digital Famílias de Circuitos Lógicos 7408 - 04 portas AND de 02 entradas 7409 - 04 portas AND de 02 entradas com saídas em coletor aberto 7410 - 03 portas NAND de 03 entradas 7411 - 03 portas AND de 03 entradas 7412 - 03 portas NAND de 03 entradas com saídas em coletor aberto 7413 - 02 portas NAND de 04 entradas Schmitt-Triggers 7414 - 06 portas INVERSORAS Schmitt-Triggers 7421 - 02 portas AND de 04 entradas 7420 - 02 portas NAND de 04 entradas 7425 - 02 portas NOR de 04 entradas com Strobe Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 17 Eletrônica Digital Famílias de Circuitos Lógicos 7427 - 03 portas NOR de 03 entradas 7430 - 01 porta NAND de 08 entradas 7432 - 04 portas OR de 02 entradas 7433 - 04 portas NOR de 02 entradas com saídas em coletor aberto 7437 - 04 portas NAND de 02 entradas Buffer 7438 - 04 portas NAND de 02 entradas com saídas em coletor aberto 7440 - 02 portas NAND de 04 entradas com saídas em coletor aberto 7451 - 02 portas AND/NOR de 04 entradas 7473 - 02 FLIP FLOPS JK com entradas de Clear 7474 - 02 FLIP FLOPS D com entradas de Preset e Clear Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 18 Eletrônica Digital 7475 - 04 LACTCHES BIESTÁVEIS 7486 - 04 portas XOR de 02 entradas Famílias de Circuitos Lógicos 7483 - SOMADOR PLENO DE 04 BITS 7488 - MEMÓRIA de apenas leitura de 256 BITs com saídas em coletor aberto 7489 - MEMÓRIA de escrita e leitura 7490 - CONTADOR de década 7491 - SHIFT REGISTER de 08 BITs 7495 - SHIFT REGISTER de 04 BITs 74125 - 04 BUFFER TRI STATE 74126 - 04 BUFFER TRI STATE Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 19 Eletrônica Digital 74138 - 01 DECODER 3 TO 8 VI. Famílias de Circuitos Lógicos 74139 - 02 DECODER 2 TO 4 Família CMOS A outra família de externa importância a ser abordada é a CMOS (Complementary MOS). Trata-se de ima família que tem seus circuitos construídos por transistores MOS-FET complementares do tipo canal N e canal P.Suas configurações básicas permitem obter-se uma série de vantagens, tais como: alto Fan-Out, alta margem de imunidade ao ruídoe baixíssimo consumo, sendo esta uma de suas mais importante características. Vamos, a seguir, analisar o funcionamento dos blocos lógicos principais desta família que são as portas NOU e NE. A figura 09 logo abaixo, nos mostra o circuito básico de uma porta NOU CMOS. Figura 09 Quando ambas as entradas estiverem em 0 (potencial do terra), os MOS-FET canal P, M1 e M2 estarão conduzindo e os Mos-FET canal N, M3 e M4 estarão cortados. Isso fará com que a tensão de saída assuma valor igual a +Vdd (nível 1). Quando pelo menos uma das entradas estiver em +Vdd (nível 1), teremos o respectivo MOS-FET canal N, M3 ou M4 conduzindo, fazendo com que na saída tenhamos uma tensão igual a 0. Transpondo estas situações para uma tabela verdade, concluímos que o circuito comporta-se como uma porta NOU: Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 20 Eletrônica Digital Famílias de Circuitos Lógicos A 0 0 1 1 B 0 1 0 1 S 1 0 0 0 Vamos analisar agora, o funcionamento da porta NE CMOS. O circuito básico é visto na figura 10: Figura 10 Quando pelo menos uma das entradas estiver em 0, o respectivo MOS-FET canal N, M3 ou M4 estará cortado e o respectivo MOS-FET canal P, M1 ou M2 estará conduzido, logo, teremos na saída uma tensão igual a VDD (nível 1). Quando ambas as entradas estiverem em +VDD (nível 1), tanto M3 como M4 estarão conduzindo, ficando M1 e M2 cortados, logo, teremos na saída uma tensão igual a 0. Transpondo estas situações para uma tabela verdade concluímos que o circuto comporta-se como uma porta NE: A 0 0 1 1 B 0 1 0 1 S 1 1 1 0 Convém ressaltar que a partir destes circuitos básicos o fabricante pode estruturar, internamente no circuito integrado, qualquer outro bloco mantendo as mesmas características de entrada e saída. Um outro ponto importante a ser ressaltado é que ao contrário da família TTL, não é aconselhável deixar terminais de entrada em vazio nas portas CMOS, pois nesta situação, estes se tornam susceptíveis à captação de cargas estáticas e ruídos indesejáveis, causando pela polarização errônea dos dispositivos, um aumento da dissipação de potência e consequentemente sobreaquecimento. Os terminais não utilizados devem ser conectados, conforme o caso da função lógica envolvida, ao terra ou Vdd do circuito. Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 21 Eletrônica Digital Famílias de Circuitos Lógicos Características Gerais e Parâmetros da Família CMOS A família CMOS possui circuitos integrados disponíveis nas séries comerciais 4000A, 4000B e 54/74C, sendo esta ultima semelhante à TTL na pinagem dos circuitos integrados e função dos blocos disponíveis. Além destas, a família CMOS também possui versões de alta velocidade e melhor desempenho: 74HC/74HCT (High-speed CMOS), sendo a HCT especialmente desenvolvida para atuar com parâmetros de tensões compatíveis co TTL-LS e as apropriadas para operar com baixa tensão de alimentação: 74LV/74VC (Low Voltage CMOS). Os circuitos integrados CMOS são dimensionados para operar na faixa de temperatura de -40 a +85 C nas séries comuns, e nas variações de uso profissional (militar) na faixa de -55 a +125 C. Veja logo abaixo, os principais parâmetros encontrados nos manuais em nomenclaturas originais: 1. Alimentação (Vdd): Quanto á tensão de alimentação, esta família permite para as séries 4000 e 74C operam na faixa de 3V a 15V, para a versão HC de 2V a 6V e para a HCT de 4,5V a 5,5V. Para as séries de baixa voltagem, a faixa de 1V a 3,6V para a LV e 1,2V a 3,6V para a LVC, sendo estas especialmente projetados para operar com 3,3V, tensão de vários sistemas atuais. Podemos notar que esta família e suas versões apresentam a vantagem de possuir uma larga faixa de tensão de alimentação, não necessitando de regulagem precisa na fonte como no caso da TTL. 2. Níveis de tensões e correntes de entrada e saída: Os blocos da família CMOS apresentam estes níveis, especificados nos manuais, com variações em função da versão e tipo de bloco utilizado. De maneira geral, apresentam nas entradas, valores de Vil (máx.) iguais a 30% do Vdd e Vih (min.) iguais a 70% do Vdd, com exceção da versão HCT que possui estes níveis iguais a TTLLS. Nas saídas dos blocos, devido principalmente á baixa absorção de corrente na ligação com o bloco seguinte (alta resistência de entrada), apresentam valores muito próximos a 0 (Vol max.) e Vdd (Voh min.). A tabela 9.14 apresenta os valores de tensões e correntes para a série 4000B, operando com Vdd igual a 5V. Parâmetros Vil Vol Vih Voh Iol Iil Ioh Iih CMOS 4000B Valores 1,5 0,05 3,5 4,95 0,4 1 0,4 1 Unidade V V V V MA A MA A 3. Fan-Out: Nesta família, de modo generalizado, Fan-Out é igual a 50, porém varia conforme as versões empregadas. Este valor considerável é devido principalmente á pouca deriva da corrente de saída, em função da alta resistência de entrada dos Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 22 Eletrônica Digital Famílias de Circuitos Lógicos dispositivos CMOS conextados, sendo a limitação causada pela ação das capacitâncias de entrada dos blocos subseqüentes somados. Devido à compatibilidade de algumas versões com TTL, é comum nos manuais, encontrar este parâmetro definido para um carregamento da saída com TTL-LS, sendo este um menor valor (Fan-Out = 10 para HC/HCT). 4. Tempo de atraso de propagação: Nas séries mais comuns, o tempo de atraso de propagação médio é da ordem de 90ns, constituindo-se em uma grande desvantagem. O problema foi superado com o aparecimento das versões apropriadas para uso em alta velocidade (HC/HCT), com parâmetros compatíveis com os das versões TTL para a mesma finalidade. Para exemplificar, a tabela 9.15 apresenta os parâmetros de velocidades para a série básica e as versões citadas, com tensão de alimentação igual a 5V. Versão 4000B HC/HCT Tempo de atraso de propagação típico por porta 90 ns 8 ns Freqüência de clock máxima para flip-flop 12 MHz 55 MHz 5. Imunidade ao Ruído: A margem de imunidade ao ruído para a família CMOS é igual a 45% de Vdd, sendo muito alta se comparada com a família TTL. Devido a isso, estes blocos são adequados para ser utilizados em circuitos que operam em sistemas ou ambientes de alto nível de ruído. 6. Potência Dissipada: O consumo de potência da família CMOS (com Vdd=5V) é da ordem de 1nW por porta na série 4000 e 2,5nW por porta na versão 74HC, sendo estes valores muito baixos, caracterizando-se em mais uma grande vantagem desta família. 7. Manuseio: A família CMOS, ao contrario da TTL, possui problemas com o manuseio dos circuitos integrados que devido à ação da eletricidade de estática, provoca a degradação das junções internas dos chips, comprometendo sua vida útil. A danificação total do bloco pode só acontecer após um certo tempo de uso, causando sérios transtornos ao fabricante do sistemas no qual o componente está engajado. Para contornar o problema, possibilitando um manuseio mais seguro, existe no mercado uma série de dispositivos antiestáticos (pulseiras de aterramento, pisos, borrachas de bancada, estações de solda, etc.), sendo inclusive os circuitos integrados comercializados em embalagens com isolação apropriada. As versões mais recentes desta família possuem internamente nas entradas e saídas dos blocos, diodos de proteção para evitar a ação da eletricidade estática, porém, aconselha-se seguir da mesma forma as normas de manuseio apropriadas. Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 23 Eletrônica Digital Famílias de Circuitos Lógicos Circuitos Integrados CMOS Da mesma forma que na TTL, a família CMOS colocou no mercado uma série de circuitos integrados padronizados com configurações de pinagens disponíveis nos manuais dos fabricantes.Para exemplificar, a figura 9.22 apresenta a pinagem do circuito integrado 4001B (4 NOU com 2 entradas) e do 74HC04/74HCT04 (6 inversores), sendo estes últimos de mesma pinagem que o 7404 da família TTL. 4001 04 portas NOR de 02 entradas 7404 06 portas INVERSORAS Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 24 Eletrônica Digital Famílias de Circuitos Lógicos VII. Bibliografia. Livros 01 e 02: Elementos da Eletrônica Digital Edições: 13º e 30º Edição Revisada Autores: Francisco Gabriel Capuano e Ivan Valeije Idoeta Editora: Érica Livros 03: Manual de Circuitos Integrados TTL Edição: Não consta Autores: Eduardo Cesar Alves Cruz e Luiz Carlos da Cunha e Silva Editora: Érica Livros 04: Circuitos Digitais Edição: Não consta Autores: Eduardo Cesar Alves Cruz Antonio Carlos de Lourenço Sabrina Rodero Ferreira Salomão Choueri Júnior Editora: Érica www.triac.cjb.net www.eletronica1.cjb.net www.members.xoom.com/curtocircuit Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 25 Eletrônica Digital Famílias de Circuitos Lógicos Ricardo Gouveia nº 26; Wagner S. Pires nº 34; Wenderson Luis nº 35; I – 111 26