Divisores de um número natural Quais são os divisores do número 6? Aprenda como podemos descobrir, usando o material dourado: P.Imagens/Pith 6 dá para dividir por 1 e obter um número exato. É possível compor um retângulo com 6 cubinhos em 1 fila. Portanto, podemos observar que 6 ÷ 1 = 6 É possível compor um retângulo com 6 cubinhos em 2 fileiras. Cada fileira tem 3 cubinhos. 6÷2=3 P.Imagens/Pith 6 é divisível por 2? É possível compor um retângulo com 6 cubinhos em 3 fileiras. Cada fileira tem 2 cubinhos. Logo: 6÷3=2 P.Imagens/Pith 6 é divisível por 3? 6 é divisível por 4? P.Imagens/Pith Não é possível compor um retângulo com 6 cubinhos em 4 fileiras. Portanto, 6 não é divisível por 4 porque não dá um resultado exato. 6 é divisível por 5? P.Imagens/Pith Também não é possível compor um retângulo com 6 cubinhos em 5 fileiras. Logo, 6 não é divisível por 5. 6 é divisível por 6? P.Imagens/Pith É possível compor um retângulo com 6 cubinhos em 6 fileiras. Cada fileira tem 1 cubinho. Assim: 6 ÷ 1 = 6 Os divisores de 6 são: 1, 2, 3 e 6. O 1 é um divisor do número 10? P.Imagens/Pith P.Imagens/Pith Vamos descobrir os divisores do número 10 usando os cubinhos do material dourado? O 2 é um divisor do número 10? P.Imagens/Pith P.Imagens/Pith O 3 é um divisor do número 10? O 4 é um divisor do número 10? P.Imagens/Pith P.Imagens/Pith O 5 é um divisor do número 10? O 6 é um divisor do número 10? P.Imagens/Pith P.Imagens/Pith O 7 é um divisor do número 10? O 8 é um divisor do número 10? P.Imagens/Pith P.Imagens/Pith O 9 é um divisor do número 10? O 10 é um divisor do número 10? Observe: Foi possível compor retângulos: Os divisores do 10 são: 1, 2, 5 e 10. P.Imagens/Pith P.Imagens/Pith Não foi possível compor retângulos: Não são divisores do 10: 3, 4, 6, 7, 8 e 9. Agora é a sua vez: com o material dourado, descubra quais são os divisores de 8: P.Imagens/Pith Divisores do 8? P.Imagens/Pith Você deve ter encontrado os seguintes retângulos: Os divisores do número 8 são: 1, 2, 4 e 8. Descubra os divisores dos números a seguir usando o material dourado: a) 12 b) 15 c) 20 d) 25 e) 18 P.Imagens/Pith Faça o mesmo com os números 5, 7 e 11. O que você pode observar? Os números 5, 7 e 11 são primos. Por isso, os únicos retângulos que você conseguiu compor foram com 1 linha ou com o próprio número de linhas.