Metabolismo Microbiano Produção de Energia e Biossíntese Pelczar, Caps. 11 e 12, páginas 290 - 330 1. Conceitos básicos 2. Classes microbianas 3. Quimiotrofia 4. Fototrofia 5. Quimiolitotróficos 6. Integração metabólica 1. Introdução Metabolismo: toda a atividade química realizada por um organismo e seu maquinário. • São de 2 tipos: • aquelas que liberam E = exergônicas - catabólicas • aquelas que utilizam E = endergônicas - anabólicas • E = capacidade de realizar trabalho E química luminosa 2. Produção de Energia (E) Requerimentos de energia: Crescimento celular, reprodução, manutenção e movimento Componentes celulares como proteínas (enzimas), DNA, RNA, carboidratos, lipídeos, etc. Síntese Compostos e estruturas Degradação E requerida Sistema de armazenamento e transferência de E Produtos da degradação servem como unidades para a produção de compostos celulares E liberada Quebra de substratos ou nutrientes Tipos de energia Energia química – energia contida em ligações químicas das moléculas Energia radiante (energia da luz) – deve ser convertida em energia química Classificação dos microrganismos de acordo com a fonte de energia e carbono Quimiotróficos (utilizam substâncias químicas como fonte de energia) Quimiolitotróficos C= CO2 Quimiorganotróficos C=orgânico Classificação dos microrganismos de acordo com a fonte de energia e carbono Classificação dos microrganismos de acordo com a fonte de energia e carbono Tipo fisiológico Foto Quimio Organotrófico/heterotrófico Autotrófico/litotrófico Fonte de Energia Fonte de Carbono Luz Química Moléculas orgânicas Moléculas inorgânicas Fotoautotrófico = plantas, cianobactérias, algas verdes Fotoorganotrófico/hetero = bactérias púrpuras, exceto as abaixo Fotolitotróficas = bactérias púrpuras metabolizantes do S Quimioautotrófico = Archaea metanogênicas Quimiorganotrófico/hetero = maioria bactérias e fungos Quimiolitotrófico = bactérias nitrificadoras Enzimas • Catalisadores das reações • Aumentam as velocidades de reação de 108 a 1020 vezes • Tem sítios ativos de ligação do substrato • Podem conter outras moléculas acopladas • Grupos prostéticos – grupo heme dos citocromos é um exemplo • Coenzimas – derivadas de vitaminas (NAD+/NADH) • Terminação ase ao seu substrato • Celulase: degradam celulose • Glicose-oxidase: catalisa a oxidação da glicose • Ribonuclease: decompõe acido ribonucleico • Lisozima: cliva o peptideoglicano Catalise e enzimas Reação exergônica COMPLEXO ENZIMA-SUBSTRATO Compostos ricos em energia: armazenamento e transferência de energia (imediata) ATP = adenosina trifosfato ADP = adenosina difosfato Fosfoenolpiruvato Glicose-6-fosfato Coenzimas: Acetil CoA, NAD, NADH, NADPH Armazenamento de energia Ligacoes tioéster (Madigan et al., 2010) O ATP é o composto de alta energia mais importante nos seres vivos. Apesar disso, sua concentração nas células é relativamente baixa. Para o armazenamento de energia por períodos longos, os microrganismos produzem polímeros insolúveis. Ex.: polímeros de glicose (amido e glicogênio), polímeros lipídicos, PHAs (biopoliéster). Ralstonia eutropha Compostos ricos em energia: armazenamento e transferência de energia (a longo prazo) Procariotos: Glicogenio Poli-β-hidroxibutirato Poli-idroxialcanoatos S (elementar) Eucariotos Poliglicose na forma de amido Lipídeos na forma de gorduras 4. Geração de ATP por microrganismos Ausência de aceptores exógenos de elétrons Menos E Fermentação Síntese de ATP acoplada a reações de óxido-redução Respiração O2 ou outro composto como aceptor exógeno de elétrons Oxidação = perda de e- (liberam energia) Redução = ganho de e- (requerem energia) Mais E As reações de oxi-redução (redox) - Um composto se torna oxidado quando: 1. Perde elétrons 2. Se liga a um átomo mais eletronegativo 3. Isto geralmente ocorre quando se liga ao oxigênio - Um composto se torna reduzido quando: 1. Ganha elétrons 2. Se liga a um átomo menos eletronegativo 3. E geralmente isto ocorre quando se liga ao hidrogênio Formas reduzidas de C (carboidratos, metano, lipídios, álcoois) são importantes estoques de energia em suas ligações. Formas oxidadas de C (cetonas, aldeídos, ácidos carboxílicos e CO2) dispõem de pequeno potencial energético em suas ligações. Mecanismos para conservação de energia (Síntese de ATP) Os quimiotróficos apresentam dois mecanismos conhecidos: 1. Respiração: atuam aceptores externos de elétrons (fosforilação oxidativa) Podendo ser: a) Aeróbia: o aceptor externo é o oxigênio b) Anaeróbia: aceptores diferentes do oxigênio (nitrato, sulfato, carbonato, ...) 2. Fermentação: ocorre na ausência de aceptores externos de elétrons (fosforilação a nível de substrato) 1a) Respiração aeróbia É o procedimento mais comum às células e compreende 3 etapas: 1) Piruvato (glicólise quando o substrato é a glicose) 2) Ciclo do ácido cítrico (ciclo de Krebs) 3) Cadeia respiratória 1ª etapa: Piruvato (via glicolítica) É considerada a via metabólica mais primitiva, presente em todas as formas de vida atuais. Ocorre no citoplasma das células. Características: 1. Oxidação parcial da glicose a piruvato 2. Pequena quantidade de ATP é gerada (produção líquida de 2 ATP) 3. Pequena quantidade de NAD é reduzida a NADH 2ª etapa: Ciclo de Krebs Ocorre no citoplasma (procariotos) e nas mitocôndrias (eucariotos). Reações preparatórias: formação de composto chave do processo Produção direta de 1 GTP guanosina trifosfato (equivalente ao ATP) Além do papel-chave nas reações catabólicas, é importante nas reações biossintéticas. Os intermediários são desviados para vias biossintéticas quando necessário: Exemplos: Oxalacetato: precursor de aminoácidos Succinil-CoA: formação de citocromos e da clorofila, entre outros Acetil-CoA: biossíntese de ácidos graxos 3ª etapa: Cadeia respiratória (sistema de transporte de elétrons) Ocorre ao nível da membrana das mitocôndrias (eucariotos) e na membrana citoplasmática (procariotos) Os prótons e elétrons recolhidos na glicólise pelo NAD e no Ciclo de Krebs pelo NAD e FAD são transportados ao longo de uma cadeia de citocromos em níveis sucessivamente mais baixos de energia de modo que seja melhor aproveitada na formação de ATP. Fosforilação oxidativa Geração da força protomotiva As 3 etapas da via respiratória Síntese da respiração aeróbia • • • • Reações de oxidação e redução em presença de um aceptor de elétrons externo, o O2 A molécula inteira do substrato é oxidada até CO2 Alto potencial de energia Grande quantidade de ATP pode ser gerada: teoricamente até 38 ATPs Produção de ATP: Na cadeia respiratória: 4 NADH formados na glicólise geram 12 ATP 6 NADH formados no ciclo de Krebs geram 18 ATP 2 FADH formados no ciclo de Krebs geram 4 ATP Formação direta na Glicólise 2 ATP Formação direta no Ciclo de Krebs 2 GTP Total de até .................................................... 38 ATP 1b) Respiração anaeróbia É uma variação alternativa da respiração aeróbia: o aceptor de elétrons não é o oxigênio. • Uma implicação é o rendimento energético inferior: nenhum aceptor alternativo apresenta potencial tão oxidante quanto O2. • O uso de aceptores alternativos permitem os microrganismos respirarem em ambientes sem oxigênio, sendo de extrema importância ecológica. • Oxidação de substratos orgânicos ou inorgânicos: C6H12O6 + 12 NO3- 6CO2 + 6H2O + 12NO22 lactato + SO4= + 4H+ 2 acetato + 2CO2 + S= + H2O • Quantidade de energia produzida é menor 2. Fermentação (também é uma forma de respiração anaeróbia. Ocorre no citossol) Reação de oxidação-redução internamente balanceada. Ausência de aceptores externos. A concentração de NAD+ nas células é baixo, precisando ser reoxidado para não cessar a via glicolítica. A redução do piruvato a etanol ou outros produtos restabelece o NAD e permite a continuidade da glicólise . Produção líquida de apenas 2 ATP. Características da Fermentação: Ácido pirúvico é reduzido a ácidos orgânicos e álcoois NADH é oxidado a forma NAD: essencial para operação continuada da via glicolítica O2 não é necessário Não há obtenção adicional de ATP. Gases (CO2 e/ou H2) podem ser produzidos Produtos da fermentação Espécie microbiana Principal produto da fermentação Acetivibrio cellulolyticus Ácido acético Actinomyces bovis Ácidos acético, fórmico, láctico, etc. Clostridium acetobutylicum Acetona, butanol, etanol, ácido fórmico, etc. Enterobacter aerogenes Etanol, ácido fórmico, CO2, etc. Escherichia coli Etanol, ácidos láctico, acético, fórmico, succínico, etc. Lactobacillus brevis Etanol, glicerol, CO2, ácidos láctico, acético, etc. Streptococcus lactis Ácido láctico Succinimonas amylolytica Ácidos acético e succínico Fototropia A utilização da energia da luz - Fotossíntese a) Fotossíntese oxigênica Presente nas cianobactérias e nos cloroplastos dos Cloroplasto de eucariotos eucariontes (algas por ex.) Doador de elétrons é H2O: sua oxidação gera o O2 Dois fotossistemas: PSI e PSII Maior função é produzir ATP e NADPH para a fixação de carbono. Cianobactérias Fotossistemas em lamelas Fotossíntese oxigênica Cianobactérias Fotofosforilação A energia da luz é utilizada para a síntese de ATP O NADPH é utilizado para reduzir o CO2 no processo de fixação do carbono b) Fotossíntese anoxigênica Doadores de elétrons variam: H2S or So nas bactérias verdes e púrpuras sulfurosas H2 ou compostos orgânicos em bactérias verdes e púrpuras não sulfurosas Apenas um fotossistema Bactérias verdes tem foto-sistema semelhante ao PSI Bactérias púrpuras tem foto-sistema semelhante ao PSII Principal função é produzir ATP via fotofosforilação Biossíntese Energia para síntese de compostos celulares: ácidos nucléicos (DNA, RNA), substâncias nitrogenadas (aa, enzimas, proteínas), carboidratos (peptidoglicano), lipídeos, etc. ATP para processos como divisão celular, mobilidade, transporte ativo de nutrientes, etc. Utilização de energia Biossíntese de Compostos Nitrogenados N2 N inorgânico (NH3+) Aminoácidos Arranjo de aminoácidos Proteínas/enzimas Purinas e pirimidinas Nucleotídeos Ácidos nucléicos (DNA, RNA) Fornecimento de precursores de aminoácidos (Madigan et al., 2004) Biossíntese de nucleotídeos e ácidos nucléicos Nucleotídeo = base nitrogenada-pentose-fosfato ribose = ribonucleotídeos (RNA) desoxirribose = desoxirribonucleotídeos (DNA) Ativação dos nucleotídeos (ATP) Síntese de ácidos nucléicos a partir de nucleotídeos ativados Biossíntese de nucleotídeos e ácidos nucléicos (Madigan et al., 2004) Biossíntese de carboidratos CO2 Triose Pentoses e hexoses Nucleotídeos RNA e DNA Polissacarídeos (peptidoglicano, celulose, amido, etc.) Biossíntese de ácidos graxos Glicose Glicólise Ácido pirúvico Acetil CoA e Malonil CoA Ácidos graxos de cadeia longa Fosfolipídios Glicerol fosfato Outras utilizações de energia Transporte Motilidade Reparos Produção de estruturas de resistência (endosporos)