Dissipative dynamics of spins in quantum dots A. O. Caldeira Universidade Estadual de Campinas Campinas, BRAZIL Collaborators Harry Westfahl Jr. – LNLS – BRAZIL Frederico Borges de Brito – UNICAMP – BRAZIL Gilberto Medeiros-Ribeiro – LNLS – BRAZIL Maya Cerro – UNICAMP/LNLS – BRAZIL Uma breve preparação O que é dissipação quântica? Movimento dissipativo + Mecânica quântica Movimento dissipativo Movimento dissipativo Movimento em um meio viscoso Dissipação + Flutuações O movimento Browniano A Mecânica Quântica através de alguns exemplos O tunelamento de uma partícula quântica A Mecânica Quântica através de alguns exemplos O tunelamento coerente de uma partícula quântica Mecânica Quântica X Dissipação • A mecânica quântica se aplica a sistemas nas escalas atômicas e sub-atômicas: sistemas isolados ou sujeitos a interações externas controladas. • A dissipação ocorre em sistemas macroscópicos sujeitos à influência (incontrolável) do ambiente onde estão inseridos. Onde os dois efeitos podem ser simultaneamente observados? ? Quântico (microscópico) d 10 9 m 10 9 m d 10 6 m Clássico (macroscópico) d 10 m 6 Sistemas meso e nanoscópicos 10 9 m d 10 6 m H Superconducting Quantum Interference Devices (SQUIDs): O paradigma Sistemas magnéticos Partículas magnéticas Tunelamento coerente de partículas magnéticas (103 104 spins por partícula) Sistemas de dois níveis Vários sistemas aqui apresentados envolvem sobreposições de duas configurações a b Dispositivos e qubits Dissipação destrói a coerência necessária para o funcionamento do processador quântico: descoerência Um possível candidato a qubit Spin eletrônico em pontos quânticos NANO ??? Introduction • Main goal – Study of the possibility of implementation of solid state qubits: spins in self assembled quantum dots • Candidates and drawbacks – – – – – – Photons » non-interacting entities Optical Cavity » weak atom-field coupling ion traps » short phonon lifetime NMR » low signal Superconducting devices » decoherence Spins in quantum dots » ? Quantum bits (DiVincenzo '01) • Well defined two level system – Single electron spin • Quantum dots: Coulomb blockade + Pauli exclusion • Addressing – Well defined energy splittings • g-factor (Landé) engineering • Reset – Energy splitting » kT • Electronic Zeeman frequency • Gates – Resonant EM Field • Microcavity • Long decoherence times – Isolated from dissipative channels • Strong electronic confinement Quantum bits (DiVincenzo '01) • Well defined two level system – Single electron spin • Quantum dots: Coulomb blockade + Pauli exclusion Self Assembled Quantum Dots STM scans of self-assembled island formation through epitaxial growth of Ge on a Si substrate. Left scans: 50nm x 50nm. Right scan: 35nm x 35nm (Courtesy of G. Medeiros-Ribeiro) Electronic confinement Dots Model Electronic confinement • Coulomb Blockade 1e 2e 3e 4e 5e 6e s-shell p-shell by G. Medeiros-Ribeiro Quantum bits (DiVincenzo '01) • Addressing – Well defined energy splittings • g-factor (Landé) engineering • Reset – Energy splitting » kT • Electronic Zeeman frequency Addressing and resetting • g-factor engineering samples A, D gB sample C geff = g A ψ ψ dVA + g B ψ ψ dVB +... gC gA gA gA gA SRL- strain reducing layer G. Medeiros-Ribeiro, E. Ribeiro, H. W. Jr., Appl. Phys. A, 2003; cond-mat/0311644 Quantum bits (DiVincenzo '01) • Gates – Resonant EM Field • Microcavity • Long decoherence times – Isolate from dissipative channels • Strong electronic confinement Dissipative spin dynamics • Magnetic moment (red vector) in a magnetic field (brown vector) : the conservative dynamics – Precession of the moment around the external field direction S dS = gμB B0 S dt Dissipative spin dynamics • Relaxation dynamics – Landau-Lifshits damping (yellow arrow) drives the system towards a collinear state λ S dS = gμ B B0 S dt λB0 S S λ Dissipative spin dynamics • Noise – Fluctuating terms (green arrow) to our equations of motion λ S dS = gμ B B S dt λB S S + bi S Microscopic dissipative spin dynamics • Quantum noise and dissipation – Damping and Noise from microscopic interaction with lattice phonons Static Field: Δ gμB B0 , Oscillating Field (microcavity): εt gμB B1cosΩt , Noise+Fluctuations: Phonons Microscopic dissipative spin dynamics • Quantum dissipation formulation: • Noise and dissipation x y z Microscopic dissipative spin dynamics • Bloch-Redfield equations – Linear differential equations of motion (quantum average of components) Γ ii t , Γ ij t , Ai t Determined by noise time correlation function J x z y dσ x / dt = ε t σ y Γ xx t σ x Γ xz t σ z Ax t dσ y / dt = ε t σ x Δ σ z Γ yy t σ y Γ yz t σ z Ay t dσ z / dt = Δ σ y Fluctuating magnetic field (noise) Orbital degrees of freedom: 2D Harmonic Oscillator states Electrons: e-Ph interaction: Piezoelectric Acoustic Phonons: Spin-Orbit Interaction: Deformation Potential Optical Dresselhaus Fluctuating magnetic fields Rashba BR Magnetoelastic Dissipation Mechanism • No bath • No spin-orbit interaction Dissipation Mechanism • No bath • Spin-Orbit interaction Dissipation Mechanism • Orbital contact with the phonon bath • Non-interacting spin and orbit Dissipation Mechanism • Orbital contact with the phonon bath • Spin-orbit interaction – Indirect spin entanglement with the bath Electronic Confinement • Lateral – ω0 1meV - LQD (Hanson et al ’03) – ω0 5meV - VQD (Fujisawa et al ’02) – ω0 50meV - SAQD (Medeiros-Ribeiro et al ’99) ω ω0 • Vertical (frozen): Spin-Orbit Hamiltonian: parameters: H SO Δ 1 † σ x + ω0 a z a z + βσ z Pz 2 2 1 + ω0 a†y a y + + βσ y Py 2 Δ gμB Bx , β γc m ω , ω0 Acoustic Phonon Bath Approximate form of the Hamiltonian p2 1 * 2 2 H e ph H SO * m 0 q 2m 2 p Ca 1 2 maa qa 2 2 m 2 m a a a a 2 a ● “orbital” bath spectral function ● ω J s ω = m ω δ θ ωD ω ωD – δ5 = 2 106 2 D s piezoelectric s = 3 deformation potential s=5 GaAs δ3 = 355 s q 2 ● InAs δ3 = 149 δ5 = 5 106 Effective Bath of Oscillators Laplace transform of the equations of motion for the spin: Kˆ ( z ) ˆ ( z ) F ( z ) allows us to define an effective spectral function J eff ω = lim Im Kˆ ( i ) 0 Equivalent Hamiltonian: Spin Orbit Phonon bath s+ 2 ω m β δs ωD J eff ω = 2s 2 2 ω Z ω + δs ωD As seen by the spins... where 2 ω0 ω Z ω = ωD ωD 2 2 ω 1+ δs φs ωD x s 2 s φs x = B x, s,0+ 1 B x, s,0 π – B is the generalized incomplete beta function Bath resonance H. W. Jr. et al. Phys. Rev B. 70 (2004) Behaviour of the effective bath spectral function Piezoelectric coupling: 5 ω m β δ3 ωD J eff ω = 6 2 2 ω Z ω + δ3 ωD 2 Bath resonance Dissipative Mechanism • weak coupling (δs 1) δs Ωs ~ ω0 1 π s 2 • strong coupling (δs 1) Ωs ~ ω0 (s 2 )π 2δs Effective spectral function 1∕ s • Low frequency limit ( ω Ωs and ωD J eff ω m β δs ω0 – 2 4 ω0 1 ω ωD ωD δs ω ωD s+ 2 Always super-ohmic See also (Khaetskii & Nazarov '01) • High frequency limit ( Ωs ω ωD ) π s 2 ω J eff ω m β 4δs ωD – Can be ohmic! 2 2 2 s 2 ) Microscopic dissipative spin dynamics • General expression for the microscopic spin dynamics: x The Bloch-Redfield equation dσ x / dt z y ε t σ y Γ xx t σ x Γ xz t σ z Ax t dσ y / dt = ε t σ x Δ σ z Γ yy t σ y Γ yz t σ z Ay t dσ z / dt = Δ σ y Microscopic dissipative spin dynamics • General expression for the coefficients U ij is the free spin time evolution operator Microscopic dissipative spin dynamics • Long time asymptotic behavior – (No driving) Damped precession around the static field direction (t ) 0 Ay (t ) xz (t ) 0 1 1 Δ xx (t 2 / s ) = J Δ coth T1 2 2 Ax (t 2 / ) dσ x / dt 1 J () 2 Γ xx σ x Ax dσ y / dt = Δ σ z Γ yy σ y Γ yz σ z dσ z / dt = Δ σ y 1 xx (t 2 / ) = T1 1 Δ J Δ coth 2 2 s Microscopic dissipative spin dynamics Microscopic dissipative spin dynamics Driven spin dynamics • Transverse external field (t ) 0 cos t zˆ • Useful parameters for the model detuning effective field amplitude dephasing Driven spin dynamics ΩΔ Ω 0.5Δ Peaks: 0 | S | Driven spin dynamics Peak: S Driven spin dynamics • Two distinct time regimes • Long time dynamics R • Short time dynamics Resonant dynamics s Long time dynamics s Resonant dynamics • Very long decoherence (relaxation) times – Good for keeping quantum information – Bad for reseting T1 Resonant dynamics • Very long decoherence (relaxation) times – Good for keeping quantum information – Bad for reseting Resonant dynamics s Short time dynamics Resonant dynamics • Very long decoherence (relaxation) times – Good for keeping quantum information – Bad for reseting Resonant dynamics • Very long decoherence (relaxation) times – Good for keeping quantum information – Bad for reseting Resonance dominated Resonant dynamics ΩΔ Resonant dynamics ΩΔ Bulk values Off-resonance dynamics Ω 0.8Δ Bulk values Bath assisted cooling A. E. Allahverdyan et al., Phys. Rev. Lett. 93 (2004) • Reset pulses – Use the large dissipation mechanism (cooling) – Reset times O(ns) – A high degree of polarization can be achieved in short times with a sequence of (ns) short pulses Summary • Indirect dissipation mechanism: Spin Orbit Phonon • Non-perturbative approach reveals a new resonance and new regimes of dissipation • Perturbative regime only valid for large confinement energies (SAQD) • Solution of the Bloch-Redfield equations reveals two dynamical regimes • Short time dynamics dominated by the bath resonance Thanks: HP-Brazil, FAPESP, CNPq