Análise Combinatória
Fatorial de um número:
n!=n.(n-1).(n-2)...3.2.1
Definições especiais: 0!=1
1!=1
100!+101!
.
99!
100!+101! 100.99!+101.100.99!
=
= 100 + 101.100 = 100 + 10100 = 10200
99!
99!
1) Calcule o valor da expressão
( x + 1)!
= 56.
( x − 1)!
( x + 1)!
( x + 1)( x)( x − 1)!
= 56 ⇒
= 56 ⇒ ( x + 1)( x) = 56 ⇒ x 2 + x = 56 ⇒
( x − 1)!
( x − 1)!
2) Resolva a equação
x = 7
− 1 ± 225
− 1 ± 15
⇒ x=
⇒
2
2
x = -8
Resposta : x = 7, pois não existe fatorial de um número negativo.
⇒ x 2 + x − 56 = 0 ⇒ x =
3) Quatro times de futebol (Grêmio, Santos, São Paulo e Flamengo) disputam o torneio dos
campeões do mundo. Quantas são as possibilidades para os três primeiros lugares?
R : Existem 4 possibilidades para o 1º lugar, sobrando 3 possibilidades para o 2º lugar e 2
possibilidades para o 3º lugar → 4.3.2 = 24 possibilidades.
Arranjo simples:
An , p =
4) Calcule
n!
( n − p )!
A6, 2 + A4,3 − A5, 2
A9, 2 + A8,1
A6, 2 + A4,3 − A5, 2
A9, 2 + A8,1
.
6!
4!
5!
+
−
(6 − 2)! ( 4 − 3)! (5 − 2)! 30 + 24 − 20 34 17
=
=
=
=
9!
8!
72 + 8
80 40
+
(9 − 2)! (8 − 1)!
5) Quantos números de 3 algarismos distintos podemos formar com o algarismos do
sistema decimal (0,1,2,3,4,5,6,7,8,9) sem os repetir, de modo que :
a) COMECEM COM 1.
R : O número pode possuir três algarismos, sendo que para o primeiro existe apenas 1
possibilidade (1) e para os outros dois ainda existem 9 números disponíveis :
9!
9! 9.8.7!
1. A9, 2 =
= =
= 9.8 = 72 números.
(9 − 2)! 7!
7!
b) COMECEM COM 2 E TERMINEM COM 5.
R : Para o primeiro algarismo existe apenas 1 possibilidade (2), e para o terceiro também
existe apenas 1 possibilidade (5). Para o segundo ainda existem 8 possibilidades :
8!
8! 8.7!
1.1. A8,1 =
= =
= 8 números.
(8 − 1)! 7! 7!
c) SEJAM DIVISÍVEIS POR 5.
R : Para um número ser divisível 5, ele deve terminar com 0 ou com 5. Primeiramente
vamos calcular o número de divisíveis por 5 que terminam com 0 :
→ Para o terceiro algarismo existe apenas 1 possibilidade (0), e para os dois primeiros ainda
existem 9 números disponíveis. Portanto o número de divisíveis por 5 que terminam com 0 é :
9!
9! 9.8.7!
1. A9, 2 =
= =
= 9.8 = 72 números.
(9 − 2)! 7!
7!
→ Agora calculamos quantos divisíveis por 5 terminam com 5 : para o terceiro algarismo
existe apenas uma possibilidade (5). Para o primeiro algarismo existem ainda 8 possibilidades,
pois o número não pode começar com 0 (senão seria um número de 2 algarismos). E para o
segundo algarismo também existem 8 possibilidades (o segundo algarismo pode ser 0).
8!
8!
8! 8! 8.7! 8.7!
1. A8,1 . A8,1 =
.
= . =
.
= 8.8 = 64 números.
(8 − 1)! (8 − 1)! 7! 7! 7! 7!
Resposta : O número de divisíveis por 5 é 72 + 64 = 136 números.
6) Quantos são os números compreendidos entre 2000 e 3000 formados por algarismos
distintos escolhidos entre 1,2,3,4,5,6,7,8 e 9?
R : O número deve ter quatro algarismos (pois está entre 2000 e 3000). Para o primeiro
algarismo existe apenas uma possibilidade (2), e para os outros três ainda existem 8 números
disponíveis, então :
8!
8! 8.7.6.5!
1. A8,3 =
= =
= 8.7.6 = 336 números.
(8 − 3)! 5!
5!
Permutação Simples: É um caso particular de arranjo simples. É o tipo de
agrupamento ordenado onde entram todos os elementos.
Pn = n!
7) Quantos números de 5 algarismos distintos podem ser formados por 1,2,3,5 e 8?
P5 = 5! = 5.4.3.2.1 = 120 números.
8) Quantos anagramas da palavra EDITORA :
a) COMEÇAM POR A.
Para a primeira letra existe apenas uma possibilidade (A), e para as outras 6 letras
existem 6 possibilidades. Então o total é :
1.P6 = 1.6!= 6.5.4.3.2.1 = 720 anagramas.
b) COMEÇAM POR A e terminam com E.
Para a primeira letra existe 1 possibilidade (A), e para última também só existe 1 (E),
e para as outras 5 letras existem 5 possibilidades. Então o total é :
1.1.P5 = 1.1.5!= 5.4.3.2.1 = 120 anagramas.
8) Calcule de quantas maneiras podem ser dipostas 4 damas e 4 cavalheiros, numa fila, de
forma que não fiquem juntos dois cavalheiros e duas damas.
R :Existem duas maneiras de fazer isso :
C - D - C - D - C - D - C - D ou D - C - D - C - D - C - D - C
Colocando um cavalheiro na primeira posição temos como número total de maneiras :
P4 .P4 = 4!.4!= 24.24 = 576 maneiras.
Colocando uma dama na primeira posição temos também :
P4 .P4 = 4!.4!= 24.24 = 576 maneiras.
Portanto o total é 576 + 576 = 1152 maneiras.
Combinação Simples: é o tipo de agrupamento em que um grupo difere do
outro apenas pela natureza dos elementos componentes.
Cn, p =
n!
p!(n − p )!
9) Resolver a equação C m,3 − C m , 2 = 0.
m!
m!
−
=0
3!( m − 3)! 2!(m − 2)!
m.(m − 1).(m − 2).(m − 3)! m.(m − 1).(m − 2)!
−
=0
3!( m − 3)!
2!(m − 2)!
m.(m − 1).(m − 2) m.(m − 1)
−
=0
3!
2!
m 3 − 2m 2 − m 2 + 2m m 2 − m
−
=0
6
2
m 3 − 3m 2 + 2m − 3m 2 + 3m
= 0 ⇒ m 3 − 6m 2 + 5m = 0
6
m ' = 5
6 ± 16
m 2 − 6m + 5 = 0 ⇒ m =
⇒ 
2
m ' ' = 1
Resposta : m = 5.
obs : m = 1 não é a resposta porque não pode haver C1,3 .
10) Com 10 espécies de frutas, quantos tipos de salada, contendo 6 espécies diferentes
podem ser feitas?
10!
10.9.8.7.6! 5040 5040
C10,6 =
=
=
=
= 210 tipos de saladas.
6!.(10 − 6)!
6!.4!
4!
24
11) Numa reunião com 7 rapazes e 6 moças, quantas comissões podemos formar com 3
rapazes e 4 moças?
RAPAZES - C 7 ,3
MOÇAS - C 6, 4
O resultado é o produto C 7 ,3 .C 6, 4 .
7!
6!
7.6.5.4! 6.5.4! 210 30
.
=
.
=
. = 35.15 = 525 comissões.
3!(7 − 3)! 4!(6 − 4)!
3!.4! 4!.2!
3! 2
Binômio de Newton
Introdução
Pelos produtos notáveis, sabemos que (a+b)² = a² + 2ab + b².
Se quisermos calcular (a + b)³, podemos escrever:
(a + b)3 = a3 + 3a2b + 3ab2 + b3
Se quisermos calcular
, podemos adotar o mesmo procedimento:
(a + b)4 = (a + b)3 (a+b) = (a3 + 3a2b + 3ab2 + b3) (a+b)
= a4 + 4a3b + 6a2b2 + 4ab3 + b4
De modo análogo, podemos calcular as quintas e sextas potências e, de
modo geral, obter o desenvolvimento da potência
a partir da
anterior,
ou
seja,
de
.
Porém quando o valor de n é grande, este processo gradativo de cálculo
é
muito
trabalhoso.
Existe um método para desenvolver a enésima potência de um binômio,
conhecido como binômio de Newton (Isaac Newton, matemático e físico
inglês, 1642 - 1727). Para esse método é necessário saber o que são
coeficientes binomiais, algumas de suas propriedades e o triângulo de
Pascal.
Coeficientes Binomiais
Sendo n e p dois números naturais
binomial de classe p, do número n, o número
, chamamos de coeficiente
, que indicamos por
(lê-se: n sobre p). Podemos escrever:
O coeficiente binomial também é chamado de número binomial. Por
analogia com as frações, dizemos que n é o seu numerador e p, o
denominador. Podemos escrever:
É também imediato que, para qualquer n natural, temos:
Exemplos:
Propriedades dos coeficientes binomiais
Se n, p, k
e p + k = n
1ª)
então
Coeficientes binomiais como esses, que tem o mesmo numerador e a
soma dos denominadores igual ao numerador, são chamados
complementares.
Exemplos:
Se n, p, k
e p
p-1
0
2ª)
então
Essa igualdade é conhecida como relação de Stifel (Michael Stifel,
matemático alemão, 1487 - 1567).
Exemplos:
Triângulo de Pascal
A
disposição
ordenada dos números
binomiais, como na
tabela ao lado, recebe
o nome de Triângulo
de Pascal
Nesta tabela triangular, os números binomiais com o mesmo numerador
são escritos na mesma linha e os de mesmo denominador, na mesma
coluna.
Por exemplo, os números binomiais
números binomiais
,
,
,
, ...,
,
,
e
estão na linha 3 e os
, ... estão na coluna 1.
Substituindo cada número binomial pelo seu respectivo valor, temos:
Construção do triângulo de Pascal
Para construir o triângulo do Pascal, basta lembrar as seguintes
propriedades dos números binomiais, não sendo necessário calculá-los:
1ª) Como
= 1, todos os elementos da coluna 0 são iguais a 1.
2ª) Como
= 1, o último elemento de cada linha é igual a 1.
3ª) Cada elemento do triângulo que não seja da coluna 0 nem o último de
cada
linha
é
igual
à
soma
daquele
que está na mesma coluna e linha anterior com o elemento que se situa
à
esquerda
deste
último
(relação
de Stifel).
Observe os passos e aplicação da relação de Stifel para a construção
do triângulo:
Propriedade do triângulo de Pascal
P1 Em Qualquer linha, dois números binomiais eqüidistantes dos
extremos são iguais.
De fato, esses binomiais são complementares.
P2 Teorema das linhas: A soma dos elementos da enésima linha é
.
De modo geral temos:
P3 Teorema das colunas: A soma dos elementos de qualquer coluna, do
1º elemento até um qualquer, é igual ao elemento situado na coluna à
direita da considerada e na linha imediatamente abaixo.
1 + 2 + 3 + 4 + 5 + 6 = 21
1 + 4 + 10 + 20 = 35
P4 Teorema das diagonais: A soma dos elementos situados na mesma
diagonal desde o elemento da 1ª coluna até o de uma qualquer é igual ao
elemento imediatamente abaixo deste.
1 + 3 + 6 + 10 + 15 = 35
Fórmula do desenvolvimento do binômio de Newton
Como vimos, a potência da forma
chamada binômio de Newton. Além disso:
•
quando n = 0 temos
•
quando n = 1 temos
•
quando n = 2 temos
•
quando n = 3 temos
•
quando n = 4 temos
, em que a,
, é
Observe que os coeficientes dos desenvolvimentos foram o triângulo de
Pascal. Então, podemos escrever também:
De modo geral, quando o expoente é n, podemos escrever a fórmula do
desenvolvimento do binômio de Newton:
Note que os expoentes de a vão diminuindo de unidade em unidade,
variando de n até 0, e os expoentes de b vão aumentando de unidade em
unidade, variando de 0 até n. O desenvolvimento de (a + b)n possui n + 1
termos.
Fórmula do termo geral do binômio
Observando os termos do desenvolvimento de (a + b)n, notamos
que cada um deles é da forma
.
•
Quando p = 0 temos o 1º termo:
•
Quando p = 1 temos o 2º termo:
•
Quando p = 2 temos o 3º termo:
•
Quando p = 3 temos o 4º termo:
•
Quando
p
=
4
temos
o
5º
termo:
..............................................................................
Percebemos, então, que um termo qualquer T de ordem p + 1pode ser
expresso por:
Cilindro
Na figura abaixo, temos dois planos paralelos e distintos,
, um
círculo R contido em e uma reta r que intercepta
, mas não R:
Para cada ponto C da região R, vamos considerar o segmento
paralelo à reta r
:
Assim, temos:
,
Chamamos de cilindro, ou cilindro circular, o conjunto de todos os
segmentos
congruentes e paralelos a r.
Elementos do cilindro
Dado o cilindro a seguir, consideramos os seguintes elementos:
•
bases: os círculos de centro O e O'e raios r
•
altura: a distância h entre os planos
•
geratriz: qualquer segmento de extremidades nos pontos das
circunferências das bases ( por exemplo,
) e paralelo à reta r
Áreas
Num cilindro, consideramos as seguintes áreas:
a) área lateral (AL)
Podemos observar a área lateral de um cilindro fazendo a sua
planificação:
Assim, a área lateral do cilindro reto cuja altura é h e cujos raios dos
círculos das bases são r é um retângulo de dimensões
:
b) área da base ( AB):área do círculo de raio r
c) área total ( AT): soma da área lateral com as áreas das bases
Volume
Para obter o volume do cilindro, vamos usar novamente o princípio de
Cavalieri.
Dados dois sólidos com mesma altura e um plano , se todo plano ,
paralelo ao plano , intercepta os sólidos e determina secções de mesma
área, os sólidos têm volumes iguais:
Se 1 é um paralelepípedo retângulo, então V2 = ABh.
Assim, o volume de todo paralelepípedo retângulo e de todo cilindro é
o produto da área da base pela medida de sua altura:
Vcilindro = ABh
No caso do cilindro circular reto, a área da base é a área do círculo de
raio r
;
portanto seu volume é:
Esfera
Chamamos de esfera de centro O e raio R o conjunto de pontos do
espaço cuja distância ao centro é menor ou igual ao raio R.
Considerando a rotação completa de um semicírculo em torno de um
eixo e, a esfera é o sólido gerado por essa rotação. Assim, ela é limitada por
uma superfície esférica e formada por todos os pontos pertencentes a essa
superfície e ao seu interior.
Volume
O volume da esfera de raio R é dado por:
Partes da esfera
Superfície esférica
A superfície esférica de centro O e raio R é o conjunto de pontos do
es[aço cuja distância ao ponto O é igual ao raio R.
Se considerarmos a rotação completa de uma semicircunferência em
torno de seu diâmetro, a superfície esférica é o resultado dessa rotação.
A área da superfície esférica é dada por:
Cone circular
Dado um círculo C, contido num plano , e um ponto V ( vértice) fora
de , chamamos de cone circular o conjunto de todos os segmentos
.
Elementos do cone circular
Dado o cone a seguir, consideramos os seguintes elementos:
•
altura: distância h do vértice V ao plano
•
geratriz (g):segmento com uma extremidade no ponto V e outra num
ponto da circunferência
•
raio da base: raio R do círculo
•
eixo de rotação:reta
do cone
determinada pelo centro do círculo e pelo vértice
Cone reto
Todo cone cujo eixo de rotação é perpendicular à base é chamado cone
reto, também denominado cone de revolução. Ele pode ser gerado pela
rotação completa de um triângulo retângulo em torno de um de seus
catetos.
Da figura, e pelo Teorema de Pitágoras, temos a seguinte relação:
G2 = h2 + R2
Secção meridiana
A secção determinada, num cone de revolução, por um plano que
contém o eixo de rotação é chamada secção meridiana.
Se o triângulo AVB for eqüilátero, o cone também será eqüilátero:
Áreas
Desenvolvendo a superfície lateral de um cone circular reto, obtemos um
setor circular de raio g e comprimento
:
Assim, temos de considerar as seguintes áreas:
a) área lateral (AL): área do setor circular
b) área da base (AB):área do circulo do raio R
c) área total (AT):soma da área lateral com a área da base
Volume
Para determinar o volume do cone, vamos ver como calcular volumes
de sólidos de revolução. Observe a figura:
d = distância do
centro de gravidade
(CG)
da
sua
superfície ao eixo e
S=área da superfície
Sabemos, pelo Teorema de Pappus - Guldin, que, quando uma
superfície gira em torno de um eixo e, gera um volume tal que:
Vamos, então, determinar o volume do cone de revolução gerado pela
rotação de um triângulo retângulo em torno do cateto h:
O CG do triângulo está a uma distância
Logo:
do eixo de rotação.
CONJUNTOS NUMÉRICOS
• Conjunto dos números naturais (IN)
IN={0, 1, 2, 3, 4, 5,...}
Um subconjunto importante de IN é o conjunto IN*:
IN*={1, 2, 3, 4, 5,...}  o zero foi excluído do conjunto IN.
Podemos considerar o conjunto dos números naturais ordenados sobre
uma reta, como mostra o gráfico abaixo:
• Conjunto dos números inteiros (Z)
Z={..., -3, -2, -1, 0, 1, 2, 3,...}
O conjunto IN é subconjunto de Z.
Temos também outros subconjuntos de Z:
Z* = Z-{0}
Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,...}
Z_ = conjunto dos inteiros não positivos = {0,-1,-2,-3,-4,-5,...}
Observe que Z+=IN.
Podemos considerar os números inteiros ordenados sobre uma reta,
conforme mostra o gráfico abaixo:
• Conjunto dos números racionais (Q)
Os números racionais são todos aqueles que podem ser colocados na
forma de fração (com o numerador e denominador ∈ Z). Ou seja, o
conjunto dos números racionais é a união do conjunto dos números
inteiros com as frações positivas e negativas.
5
3 3
Então : -2, − , − 1, , 1, , por exemplo, são números racionais.
4
5 2
Exemplos:
−3 −6 −9
=
=
1
2
3
1 2 3
b) 1 = = =
1 2 3
a) − 3 =
Assim, podemos escrever:
Q = {x | x =
a
, com a ∈ Z , b ∈ Z e b ≠ 0}
b
É interessante considerar a representação decimal de um número
racional a , que se obtém dividindo a por b.
b
Exemplos referentes às decimais exatas ou finitas:
1
= 0,5
2
−
5
= −1,25
4
75
= 3,75
20
Exemplos referentes às decimais periódicas ou infinitas:
1
= 0,333...
3
6
= 0,857142857142...
7
7
= 1,1666...
6
Toda decimal exata ou periódica pode ser representada na forma de
número racional.
• Conjunto dos números irracionais
Os números irracionais são decimais infinitas não periódicas, ou seja,
os números que não podem ser escrito na forma de fração (divisão de dois
inteiros). Como exemplo de números irracionais, temos a raiz quadrada de
2 e a raiz quadrada de 3:
2 = 1,4142135...
3 = 1,7320508...
Um número irracional
=3,1415926535...
bastante
conhecido
é
o
número
π
• Conjunto dos números reais (IR)
Dados os conjuntos dos números racionais (Q) e dos irracionais,
definimos o conjunto dos números reais como:
IR=Q ∪ {irracionais} = {x|x é racional ou x é irracional}
O diagrama abaixo mostra a relação entre os conjuntos numéricos:
Portanto, os números naturais, inteiros, racionais e irracionais são
todos números reais. Como subconjuntos importantes de IR temos:
IR* = IR-{0}
IR+ = conjunto dos números reais não negativos
IR_ = conjunto dos números reais não positivos
Obs: entre dois números inteiros existem infinitos números reais. Por
exemplo:
• Entre os números 1 e 2 existem infinitos números reais:
1,01 ; 1,001 ; 1,0001 ; 1,1 ; 1,2 ; 1,5 ; 1,99 ; 1,999 ; 1,9999 ...
• Entre os números 5 e 6 existem infinitos números reais:
5,01 ; 5,02 ; 5,05 ; 5,1 ; 5,2 ; 5,5 ; 5,99 ; 5,999 ; 5,9999 ...
Determinantes
Como já vimos, matriz quadrada é a que tem o mesmo número de linhas
e de colunas (ou seja, é do tipo nxn).
A toda matriz quadrada está associado um número ao qual damos o nome
de determinante.
Dentre as várias aplicações dos determinantes na Matemática, temos:
•
resolução de alguns tipos de sistemas de equações lineares;
•
cálculo da área de um triângulo situado no plano cartesiano, quando são
conhecidas as coordenadas dos seus vértices;
Determinante de 1ª ordem
Dada uma matriz quadrada de 1ª ordem M=[a11], o seu determinante é o
número real a11:
det M =Ia11I = a11
Observação: Representamos o determinante de uma matriz entre duas
barras verticais, que não têm o significado de módulo.
Por exemplo:
•
M= [5]
det M = 5 ou I 5 I = 5
•
M = [-3]
-3
det M = -3 ou I -3 I =
Determinante de 2ª ordem
Dada a matriz
, de ordem 2, por definição o determinante
associado a M, determinante de 2ª ordem, é dado por:
Portanto, o determinante de uma matriz de ordem 2 é dado pela diferença
entre o produto dos elementos da diagonal principal e o produto dos
elementos da diagonal secundária. Veja o exemplo a seguir.
Menor complementar
Chamamos de menor complementar relativo a um elemento aij de uma
matriz M, quadrada e de ordem n>1, o determinante MCij , de ordem n - 1,
associado à matriz obtida de M quando suprimimos a linha e a coluna que
passam por aij .
Vejamos como determiná-lo pelos exemplos a seguir:
a) Dada a matriz
, de ordem 2, para determinar o menor
complementar relativo ao elemento a11(MC11), retiramos a linha 1 e a
coluna 1:
Da mesma forma, o menor complementar relativo ao elemento a12 é:
b) Sendo
•
, de ordem 3, temos:
•
Cofator
Chamamos de cofator ou complemento algébrico relativo a um elemento
aij de uma matriz quadrada de ordem n o número Aij tal que Aij = (-1)i+j .
MCij .
Veja:
a) Dada
matriz M são:
b) Sendo
, os cofatores relativos aos elementos a11 e a12 da
, vamos calcular os cofatores A22, A23 e A31:
Teorema de Laplace
O determinante de uma matriz quadrada M = [aij]mxn
pode ser
obtido pela soma dos produtos dos elementos de uma fila qualquer ( linha
ou coluna) da matriz M pelos respectivos cofatores.
Assim, fixando
, temos:
em que
é o somatório de todos os termos de índice i, variando de 1 até
m,
.
Regra de Sarrus
O cálculo do determinante de 3ª ordem pode ser feito por meio de um
dispositivo prático, denominado regra de Sarrus.
Acompanhe como aplicamos essa regra para
.
1º passo: Repetimos as duas primeiras colunas ao lado da terceira:
2º passo: Encontramos a soma do produto dos elementos da diagonal
principal com os dois produtos obtidos pela multiplicação dos elementos
das paralelas a essa diagonal (a soma deve ser precedida do sinal positivo):
3º passo: Encontramos a soma do produto dos elementos da diagonal
secundária com os dois produtos obtidos pela multiplicação dos elementos
das paralelas a essa diagonal ( a soma deve ser precedida do sinal
negativo):
Assim:
Observação: Se desenvolvermos esse determinante de 3ª ordem aplicando o
Teorema de Laplace, encontraremos o mesmo número real.
Determinante de ordem n > 3
Vimos que a regra de Sarrus é válida para o cálculo do determinante de
uma matriz de ordem 3. Quando a matriz é de ordem superior a 3, devemos
empregar o Teorema de Laplace para chegar a determinantes de ordem 3 e
depois aplicar a regra de Sarrus.
Propriedades dos determinantes
Os demais associados a matrizes quadradas de ordem n apresentam as
seguintes propriedades:
P1 ) Quando todos os elementos de uma fila ( linha ou coluna) são nulos, o
determinante dessa matriz é nulo.
Exemplo:
P2) Se duas filas de uma matriz são iguais, então seu determinante é nulo.
Exemplo:
P3) Se duas filas paralelas de uma matriz são proporcionais, então seu
determinante é nulo.
Exemplo:
P4) Se os elementos de uma fila de uma matriz são combinações lineares
dos elementos correspondentes de filas paralelas, então seu determinante é
nulo.
Exemplos:
P5 ) Teorema de Jacobi: o determinante de uma matriz não se altera
quando somamos aos elementos de uma fila uma combinação linear dos
elementos correspondentes de filas paralelas.
Exemplo:
Substituindo a 1ª coluna pela soma dessa mesma coluna com o dobro da 2ª,
temos:
P6) O determinante de uma matriz e o de sua transposta são iguais.
Exemplo:
P7) Multiplicando por um número real todos os elementos de uma fila em
uma matriz, o determinante dessa matriz fica multiplicado por esse número.
Exemplos:
P8) Quando trocamos as posições de duas filas paralelas, o determinante de
uma matriz muda de sinal.
Exemplo:
P9) Quando, em uma matriz, os elementos acima ou abaixo da diagonal
principal são todos nulos, o determinante é igual ao produto dos elementos
dessa diagonal.
Exemplos:
P10) Quando, em uma matriz, os elementos acima ou abaixo da diagonal
secundária são todos nulos, o determinante é igual ao produto dos
elementos dessa diagonal multiplicado por
.
Exemplos:
P11)
Para
A
e
B
matrizes
. Como:
Exemplo:
P12)
Exemplo:
quadradas
de
mesma
ordem
n,
Equações algébricas
(com uma variável)
Introdução
Equação é toda sentença matemática aberta que exprime uma relação de
igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer
"igual". Exemplos:
2x + 8 = 0
5x - 4 = 6x + 8
3a - b - c = 0
Não são equações:
4 + 8 = 7 + 5 (Não é uma sentença aberta)
x - 5 < 3 (Não é igualdade)
(não é sentença aberta, nem igualdade)
A equação geral do primeiro grau:
ax+b = 0
onde a e b são números conhecidos e a > 0, se resolve de maneira simples:
subtraindo b dos dois lados, obtemos:
ax = -b
dividindo agora por a (dos dois lados), temos:
Considera a equação 2x - 8 = 3x -10
A letra é a incógnita da equação. A palavra incógnita significa "
desconhecida".
Na equação acima a incógnita é x; tudo que antecede o sinal da igualdade
denomina-se 1º membro, e o que sucede, 2º membro.
Qualquer parcela, do 1º ou do 2º membro, é um termo da equação.
Equação do 1º grau na incógnita x é toda equação que pode ser
escrita na forma ax=b, sendo a e b números racionais, com a
diferente de zero.
Conjunto Verdade e Conjunto Universo de uma Equação
Considere o conjunto A = {0, 1, 2, 3, 4, 5} e a equação x + 2 = 5.
Observe que o número 3 do conjunto A é denominado conjunto
universo da equação e o conjunto {3} é o conjunto verdade dessa mesma
equação.
Observe este outro exemplo:
•
Determine os números inteiros que satisfazem a equação x² = 25
O conjunto dos números inteiro é o conjunto universo da equação.
Os números -5 e 5, que satisfazem a equação, formam o conjunto
verdade, podendo ser indicado por: V = {-5, 5}.
Daí concluímos que:
Conjunto Universo é o conjunto de todos os valores que
variável pode assumir. Indica-se por U.
Conjunto verdade é o conjunto dos valores de U, que
tornam verdadeira a equação . Indica-se por V.
Observações:
•
O conjunto verdade é subconjunto do conjunto universo.
•
Não sendo citado o conjunto universo, devemos considerar como
conjunto universo o conjunto dos números racionais.
•
O conjunto verdade é também conhecido por conjunto solução e pode
ser indicado por S.
Raízes de uma equação
Os elementos do conjunto verdade de uma equação são chamados raízes
da equação.
Para verificar se um número é raiz de uma equação, devemos obedecer à
seguinte seqüência:
•
Substituir a incógnita por esse número.
•
Determinar o valor de cada membro da equação.
•
Verificar a igualdade, sendo uma sentença verdadeira, o número
considerado é raiz da equação.
Exemplos:
Verifique quais dos elementos do conjunto universo são raízes
das equações abaixo, determinando em cada caso o conjunto verdade.
•
Resolva a equação x - 2 = 0, sendo U = {0, 1, 2, 3}.
Para x = 0 na equação x - 2 = 0 temos: 0 - 2 = 0
=> -2 = 0. (F)
Para x = 1 na equação x - 2 = 0 temos: 1 - 2 = 0
=> -1 = 0. (F)
Para x = 2 na equação x - 2 = 0 temos: 2 - 2 = 0
=> 0 = 0. (V)
Para x = 3 na equação x - 2 = 0 temos: 3 - 2 = 0
=> 1 = 0. (F)
Verificamos que 2 é raiz da equação x - 2 = 0, logo V = {2}.
•
Resolva a equação 2x - 5 = 1, sendo U = {-1, 0, 1, 2}.
Para x = -1 na equação 2x - 5 = 1 temos: 2 . (-1) 5 = 1 => -7 = 1. (F)
Para x = 0 na equação 2x - 5 = 1 temos: 2 . 0 - 5 =
1 => -5 = 1. (F)
Para x = 1 na equação 2x - 5 = 1 temos: 2 . 1 - 5 =
1 => -3 = 1. (F)
Para x = 2 na equação 2x - 5 = 1 temos: 2 . 2 - 5 =
1 => -1 = 1. (F)
A equação 2x - 5 = 1 não possui raiz em U, logo V = Ø.
Função de 1º grau - Afim
Definição
Chama-se função polinomial do 1º grau, ou função afim, a qualquer
função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b
são números reais dados e a 0.
Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o
número b é chamado termo constante.
Veja alguns exemplos de funções polinomiais do 1º grau:
f(x)
=
5x
3,
onde
f(x)
=
-2x
7,
onde
f(x) = 11x, onde a = 11 e b = 0
a
a
=
=
5
-2
e
e
b
b
=
=
-
3
7
Gráfico
O gráfico de uma função polinomial do 1º grau, y = ax + b, com a 0, é
uma reta oblíqua aos eixos Ox e Oy.
Exemplo:
Vamos construir o gráfico da função y = 3x - 1:
Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los
com o auxílio de uma régua:
a)
Para x = 0, temos y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1).
b)
Para y = 0, temos 0 = 3x - 1; portanto,
e outro ponto é
.
Marcamos os pontos (0, -1) e
dois com uma reta.
no plano cartesiano e ligamos os
x
0
y
-1
0
Já vimos que o gráfico da função afim y = ax + b é uma reta.
O coeficiente de x, a, é chamado coeficiente angular da reta e, como
veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox.
O termo constante, b, é chamado coeficiente linear da reta. Para x = 0,
temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto
em que a reta corta o eixo Oy.
Zero e Equação do 1º Grau
Chama-se zero ou raiz da função polinomial do 1º grau f(x) = ax + b, a
0, o número real x tal que f(x) = 0.
Temos:
f(x) = 0
ax + b = 0
Vejamos alguns exemplos:
1.
Obtenção
do
zero
da
f(x) = 0
da
raiz
função
f(x)
=
2x
-
5:
2x - 5 = 0
2.
Cálculo
da
função
g(x)
=
3x
g(x) = 0
3x + 6 = 0
+
6:
x = -2
3.
Cálculo da abscissa do ponto em que o gráfico de h(x) = -2x + 10
corta
o
eixo
das
abicissas:
O ponto em que o gráfico corta o eixo dos x é aquele em que h(x) =
0;
então:
h(x) = 0
-2x + 10 = 0
x=5
Crescimento e decrescimento
Consideremos a função do 1º grau y = 3x - 1. Vamos atribuir valores cada
vez maiores a x e observar o que ocorre com y:
x
y
-3
-10
-2
-7
-1
-4
0
-1
1
2
2
5
3
8
Notemos que, quando aumentos o valor de x, os correspondentes
valores de y também aumentam. Dizemos, então que a
função
y
=
3x
1
é
crescente.
Observamos novamente seu gráfico:
Regra geral:
a função do 1º grau f(x) = ax + b é crescente quando o coeficiente de x é
positivo
(a
>
0);
a função do 1º grau f(x) = ax + b é decrescente quando o coeficiente de x é
negativo (a < 0);
Justificativa:
•
•
para a > 0: se x1 < x2, então ax1 < ax2. Daí, ax1 + b < ax2 + b, de onde
vem f(x1) < f(x2).
para a < 0: se x1 < x2, então ax1 > ax2. Daí, ax1 + b > ax2 + b, de onde
vem f(x1) > f(x2).
Sinal
Estudar o sinal de uma qualquer y = f(x) é determinar os valor de x para
os quais y é positivo, os valores de x para os quais y é zero e os valores de
x
para
os
quais
y
é
negativo.
Consideremos uma função afim y = f(x) = ax + b vamos estudar seu
sinal. Já vimos que essa função se anula pra raiz
possíveis:
. Há dois casos
1º) a > 0 (a função é crescente)
y>0
ax + b > 0
x>
y>0
ax + b < 0
x<
Conclusão: y é positivo para valores de x maiores que a raiz; y é
negativo para valores de x menores que a raiz
2º) a < 0 (a função é decrescente)
y>0
ax + b > 0
x<
y>0
ax + b < 0
x<
Conclusão: y é positivo para valores de x menores que a raiz; y é negativo
para valores de x maiores que a raiz.
EQUAÇÕES EXPONENCIAIS
Chamamos de equações exponenciais toda equação na qual a
incógnita aparece em expoente.
Exemplos de equações exponenciais:
1) 3x =81 (a solução é x=4)
2) 2x-5=16 (a solução é x=9)
3) 16x-42x-1-10=22x-1 (a solução é x=1)
4) 32x-1-3x-3x-1+1=0 (as soluções são x’=0 e x’’=1)
Para resolver equações exponenciais, devemos realizar dois passos
importantes:
1º) redução dos dois membros da equação a potências de mesma
base;
2º) aplicação da propriedade:
a m = a n ⇒ m = n (a ≠ 1 e a > 0)
EXERCÍCIOS RESOLVIDOS:
1) 3x=81
Resolução: Como 81=34, podemos escrever 3x = 34
E daí, x=4.
2) 9x = 1
Resolução: 9x = 1 ⇒ 9x = 90 ; logo x=0.
x
81
3
3)   =
256
4
x
x
x
4
81
34
3
3
3
3
Resolução :   =
⇒   = 4 ⇒   =   ; então x = 4.
256
4
4
4
4
4
4) 3 x = 4 27
3
4
Resolução : 3 = 27 ⇒ 3 = 3 ⇒ 3 = 3 ; logo x =
x
5) 23x-1 = 322x
4
x
4
3
x
3
4
Resolução: 23x-1 = 322x ⇒ 23x-1 = (25)2x ⇒ 23x-1 = 210x ; daí 3x-1=10,
de onde x=-1/7.
6) Resolva a equação 32x–6.3x–27=0.
Resolução: vamos resolver esta equação através de uma transformação:
32x–6.3x–27=0 ⇒ (3x)2-6.3x–27=0
Fazendo 3x=y, obtemos:
y2-6y–27=0 ; aplicando Bhaskara encontramos ⇒ y’=-3 e y’’=9
Para achar o x, devemos voltar os valores para a equação auxiliar 3x=y:
y’=-3 ⇒ 3x’ = -3 ⇒ não existe x’, pois potência de base positiva é
positiva
y’’=9 ⇒ 3x’’ = 9 ⇒ 3x’’ = 32 ⇒ x’’=2
Portanto a solução é x=2
FUNÇÃO EXPONENCIAL
Chamamos de funções exponenciais aquelas nas quais temos a
variável aparecendo em expoente.
A função f:IRIR+ definida por f(x)=ax, com a ∈ IR+ e a≠1, é
chamada função exponencial de base a. O domínio dessa função é o
conjunto IR (reais) e o contradomínio é IR+ (reais positivos, maiores que
zero).
GRÁFICO CARTESIANO DA FUNÇÃO EXPONENCIAL
Temos 2 casos a considerar:
 quando a>1;
 quando 0<a<1.
Acompanhe os exemplos seguintes:
1) y=2x (nesse caso, a=2, logo a>1)
Atribuindo alguns valores a x e calculando os correspondentes valores
de y, obtemos a tabela e o gráfico abaixo:
X
y
-2
1/4
-1
1/2
0
1
1
2
2
4
2) y=(1/2)x (nesse caso, a=1/2, logo 0<a<1)
Atribuindo alguns valores a x e calculando os correspondentes valores
de y, obtemos a tabela e o gráfico abaixo:
X
Y
-2
4
-1
2
0
1
1
1/2
2
1/4
Nos dois exemplos, podemos observar que
a) o gráfico nunca intercepta o eixo horizontal; a função não tem
raízes;
b) o gráfico corta o eixo vertical no ponto (0,1);
c) os valores de y são sempre positivos (potência de base positiva é
positiva), portanto o conjunto imagem é Im=IR+.
Além disso, podemos estabelecer o seguinte:
a>1
0<a<1
f(x) é crescente e Im=IR+
Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2>y1 (as desigualdades têm
mesmo sentido)
f(x) é decrescente e Im=IR+
Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2<y1 (as desigualdades têm
sentidos diferentes)
INEQUAÇÕES EXPONENCIAIS
Chamamos de inequações exponenciais toda inequação na qual a
incógnita aparece em expoente.
Exemplos de inequações exponenciais:
1) 3 x > 81 (a solução é x > 4)
2) 2 2x -2 ≤ 2 x
x
2
−1
(que é satisfeita para todo x real)
−3
4
4
3)   ≥  
(que é satisfeita para x ≤ -3)
5
5
4) 25 x - 150.5 x + 3125 < 0 (que é satisfeita para 2 < x < 3)
Para resolver inequações exponenciais, devemos realizar dois passos
importantes:
1º) redução dos dois membros da inequação a potências de mesma
base;
2º) aplicação da propriedade:
a>1
0<a<1
am > an ⇒ m>n
am > an ⇒ m<n
(as desigualdades têm mesmo sentido)
(as desigualdades têm sentidos
diferentes)
EXERCÍCIO RESOLVIDO:
1) 4 x −1 + 4 x − 4 x +1 >
− 11
4
Resolução :
4x
− 11
A inequação pode ser escrita
+ 4 x − 4 x .4 >
.
4
4
Multiplicando ambos os lados por 4 temos :
4 x + 4.4 x − 16.4 x > −11 , ou seja :
(1 + 4 − 16).4 x > −11 ⇒ -11.4 x > −11 e daí, 4 x < 1
Porém, 4 x < 1 ⇒ 4 x < 4 0.
Como a base (4) é maior que 1, obtemos :
4 x < 40 ⇒ x < 0
Portanto S = IR - (reais negativos)
FUNÇÃO LOGARÍTMICA
A função f:IR+IR definida por f(x)=logax, com a≠1 e a>0, é
chamada função logarítmica de base a. O domínio dessa função é o
conjunto IR+ (reais positivos, maiores que zero) e o contradomínio é IR
(reais).
GRÁFICO CARTESIANO DA FUNÇÃO LOGARÍTMICA
Temos 2 casos a considerar:
 quando a>1;
 quando 0<a<1.
Acompanhe nos exemplos seguintes, a construção do gráfico em
cada caso:
3)
y=log2x (nesse caso, a=2, logo a>1)
Atribuindo alguns valores a x e calculando os correspondentes valores
de y, obtemos a tabela e o gráfico abaixo:
x
y
4)
1/4
-2
1/2
-1
1
0
2
1
4
2
y=log(1/2)x (nesse caso, a=1/2, logo 0<a<1)
Atribuindo alguns valores a x e calculando os correspondentes valores
de y, obtemos a tabela e o gráfico abaixo:
x
y
1/4
2
1/2
1
1
0
2
-1
4
-2
Nos dois exemplos, podemos observar que
d) o gráfico nunca intercepta o eixo vertical;
e) o gráfico corta o eixo horizontal no ponto (1,0). A raiz da função é
x=1;
f) y assume todos os valores reais, portanto o conjunto imagem é
Im=IR.
Além disso, podemos estabelecer o seguinte:
a>1
0<a<1
f(x) é crescente e Im=IR
Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2>y1 (as desigualdades têm
mesmo sentido)
f(x) é decrescente e Im=IR
Para quaisquer x1 e x2 do domínio:
x2>x1 ⇒ y2<y1 (as desigualdades têm
sentidos diferentes)
EQUAÇÕES LOGARÍTMICAS
Chamamos de equações logarítmicas toda equação que envolve
logaritmos com a incógnita aparecendo no logaritmando, na base ou em
ambos.
Exemplos de equações logarítmicas:
log3x =5 (a solução é x=243)
2
8) log(x -1) = log 3 (as soluções são x’=-2 e x’’=2)
9) log2(x+3) + log2(x-3) = log27 (a solução é x=4)
2
10) logx+1(x -x)=2 (a solução é x=-1/3)
7)
Alguns exemplos resolvidos:
log3(x+5) = 2
Resolução: condição de existência: x+5>0 => x>-5
log3(x+5) = 2 => x+5 = 32 => x=9-5 => x=4
Como x=4 satisfaz a condição de existência, então o conjunto
solução é S={4}.
1)
log2(log4 x) = 1
Resolução: condição de existência: x>0 e log4x>0
log2(log4 x) = 1 ; sabemos que 1 = log2(2), então
log2(log4x) = log2(2) => log4x = 2 => 42 = x => x=16
Como x=16 satisfaz as condições de existência, então o
conjunto solução é S={16}.
2)
3) Resolva o sistema:
log x + log y = 7

3. log x − 2. log y = 1
Resolução: condições de existência: x>0 e y>0
Da primeira equação temos:
log x+log y=7 => log y = 7-log x
Substituindo log y na segunda equação temos:
3.log x – 2.(7-log x)=1 => 3.log x-14+2.log x = 1 => 5.log x = 15 =>
=> log x =3 => x=103
Substituindo x= 103 em log y = 7-log x temos:
log y = 7- log 103 => log y = 7-3 => log y =4 => y=104.
Como essas raízes satisfazem as condições de existência, então o conjunto
solução é S={(103;104)}.
INEQUAÇÕES LOGARÍTMICAS
Chamamos de inequações logarítmicas toda inequação que envolve
logaritmos com a incógnita aparecendo no logaritmando, na base ou em
ambos.
Exemplos de inequações logarítmicas:
1) log2x > 0 (a solução é x>1)
2) log4(x+3) ≤ 1 (a solução é –3<x≤1)
Para resolver inequações logarítmicas, devemos realizar dois passos
importantes:
1º) redução dos dois membros da inequação a logaritmos de mesma
base;
2º) aplicação da propriedade:
a>1
0<a<1
logam > logan ⇒ m>n>0
logam > logan ⇒ 0<m<n
(as desigualdades têm mesmo sentido)
(as desigualdades têm sentidos
diferentes)
EXERCÍCIOS RESOLVIDOS:
1) log2(x+2) > log28
Resolução:
Condições de existência: x+2>0, ou seja, x>-2 (S1)
Como a base (2) é maior que 1, temos:
x+2>8 e, daí, x>6 (S2)
O conjunto solução é S= S1 ∩ S2 = {x ∈ IR| x>6}.
Portanto a solução final é a intersecção de S1 e S2, como está
representado logo abaixo no desenho:
2) log2(log3x) ≥ 0
Resolução:
Condições de existência: x>0 e log3x>0
Como log21=0, a inequação pode ser escrita assim:
log2(log3x) ≥ log21
Sendo a base (2) maior que 1, temos: log3x ≥ 1.
Como log33 = 1, então, log3x ≥ log33 e, daí, x ≥ 3, porque a base (3) é
maior que 1.
As condições de existência estão satisfeitas, portanto S={x ∈ IR| x ≥ 3}.
Função Quadrática
Definição
Chama-se função quadrática, ou função polinomial do 2º grau, qualquer
função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a,
b
e
c
são
números
reais
e
a
0.
Vejamos alguns exemplos de função quadráticas:
1.
2.
3.
4.
5.
f(x) = 3x2 - 4x + 1, onde a = 3, b = - 4 e c = 1
f(x) = x2 -1, onde a = 1, b = 0 e c = -1
f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5
f(x) = - x2 + 8x, onde a = 1, b = 8 e c = 0
f(x) = -4x2, onde a = - 4, b = 0 e c = 0
Gráfico
O gráfico de uma função polinomial do 2º grau, y = ax2 + bx + c, com a
0, é uma curva chamada parábola.
Exemplo:
Vamos construir o gráfico da função y = x2 + x:
Primeiro atribuímos a x alguns valores, depois calculamos o valor
correspondente de y e, em seguida, ligamos os pontos assim obtidos.
x
-3
-2
-1
y
6
2
0
0
1
2
0
2
6
Observação:
Ao construir o gráfico de uma função quadrática y = ax2 + bx + c,
notaremos sempre que:
•
se a > 0, a parábola tem a concavidade voltada para cima;
•
se a < 0, a parábola tem a concavidade voltada para baixo;
Zero e Equação do 2º Grau
Chama-se zeros ou raízes da função polinomial do 2º grau f(x) = ax2 +
bx + c , a 0, os números reais x tais que f(x) = 0.
Então as raízes da função f(x) = ax2 + bx + c são as soluções da equação
do 2º grau ax2 + bx + c = 0, as quais são dadas pela chamada fórmula de
Bhaskara:
Temos:
Observação
A quantidade de raízes reais de uma função quadrática depende do valor
obtido para o radicando
, chamado discriminante, a saber:
•
quando é positivo, há duas raízes reais e distintas;
•
quando é zero, há só uma raiz real;
•
quando é negativo, não há raiz real.
Coordenadas do vértice da parábola
Quando a > 0, a parábola tem concavidade voltada para cima e um ponto
de mínimo V; quando a < 0, a parábola tem concavidade voltada para baixo
e um ponto de máximo V.
Em qualquer caso, as coordenadas de V são
Imagem
. Veja os gráficos:
O conjunto-imagem Im da função y = ax2 + bx + c, a
dos valores que y pode assumir. Há duas possibilidades:
1ª - quando a > 0,
a>0
2ª quando a < 0,
a<0
0, é o conjunto
Construção da Parábola
É possível construir o gráfico de uma função do 2º grau sem montar a
tabela de pares (x, y), mas seguindo apenas o roteiro de observação
seguinte:
1.
O valor do coeficiente a define a concavidade da parábola;
2. Os zeros definem os pontos em que a parábola intercepta o eixo dos
x;
3.
O vértice V
máximo (se a< 0);
indica o ponto de mínimo (se a > 0), ou
4. A reta que passa por V e é paralela ao eixo dos y é o eixo de simetria
da parábola;
5.
Para x = 0 , temos y = a · 02 + b · 0 + c = c; então (0, c) é o ponto em
que a parábola corta o eixo dos y.
Sinal
Consideramos uma função quadrática y = f(x) = ax2 + bx + c e
determinemos os valores de x para os quais y é negativo e os valores de x
para
os
quais
y
é
positivos.
2
Conforme o sinal do discriminante = b - 4ac, podemos ocorrer os
seguintes casos:
1º- >0
Nesse caso a função quadrática admite dois zeros reais distintos (x1
x2). a parábola intercepta o eixo Ox em dois pontos e o sinal da função é o
indicado nos gráficos abaixo:
quando a > 0
y
>
0
y < 0 x1 < x < x2
(x
<
x1
ou
x
>
x2)
quando a < 0
y
y<0
>
0
(x < x1 ou x > x2)
x1
<
x
<
x2
2º -
=0
quando a > 0
quando a < 0
3º -
<0
quando a > 0
quando a < 0
GEOMETRIA ANALÍTICA
Retas
Introdução
Entre os pontos de uma reta e os números reais existe uma
correspondência biunívoca, isto é, a cada ponto de reta corresponde um
único número real e vice-versa.
Considerando uma reta horizontal x, orientada da esquerda para direita
(eixo), e determinando um ponto O dessa reta ( origem) e um segmento u,
unitário e não-nulo, temos que dois números inteiros e consecutivos
determinam sempre nesse eixo um segmento de reta de comprimento u:
Medida algébrica de um segmento
Fazendo corresponder a dois pontos, A e B, do eixo x os números reais xA
e xB , temos:
A medida algébrica de um segmento orientado é o número real que
corresponde à diferença entre as abscissas da extremidade e da origem
desse segmento.
Plano cartesiano
A geometria analítica teve como principal idealizador o filósofo francês
René Descartes ( 1596-1650). Com o auxílio de um sistema de eixos
associados a um plano, ele faz corresponder a cada ponto do plano um par
ordenado e vice-versa.
Quando os eixos desse sistemas são perpendiculares na origem, essa
correspondência determina um sistema cartesiano ortogonal ( ou plano
cartesiano). Assim, há uma reciprocidade entre o estudo da geometria
( ponto, reta, circunferência) e da Álgebra ( relações, equações etc.),
podendo-se representar graficamente relações algébricas e expressar
algebricamente representações gráficas.
Observe o plano cartesiano nos quadros quadrantes:
Exemplos:
•
A(2, 4) pertence ao 1º quadrante (xA > 0 e yA > 0)
•
B(-3, -5) pertence ao 3º quadrante ( xB < 0 e yB < 0)
Observação: Por convenção, os pontos localizados sobre os eixos não estão
em nenhum quadrante.
Distância entre dois pontos
Dados os pontos A(xA, yA) e B(xB, yB) e sendo dAB a distância entre eles,
temos:
Aplicando o teorema de Pitágoras ao triângulo retângulo ABC, vem:
Como exemplo, vamos determinar a distância entre os pontos A(1, -1) e
B(4, -5):
Equações de uma reta
Equação geral
Podemos estabelecer a equação geral de uma reta a partir da condição de
alinhamento de três pontos.
Dada uma reta r, sendo A(xA, yA) e B(xB, yB) pontos conhecidos e
distintos de r e P(x,y) um ponto genérico, também de r, estando A, B e P
alinhados, podemos escrever:
Fazendo yA - yB = a, xB - xA = b e xAyB - xByA=c, como a e b não são
simultaneamente nulos
, temos:
ax + by + c = 0
(equação geral da reta r)
Essa equação relaciona x e y para qualquer ponto P genérico da reta.
Assim, dado o ponto P(m, n):
•
se am + bn + c = 0, P é o ponto da reta;
•
se am + bn + c
0, P não é ponto da reta.
Acompanhe os exemplos:
•
Vamos considerar a equação geral da reta r que passa por A(1, 3) e B(2,
4).
Considerando um ponto P(x, y) da reta, temos:
•
Vamos verificar se os pontos P(-3, -1) e Q(1, 2) pertencem à reta r do
exemplo anterior. Substituindo as coordenadas de P em x - y + 2 = 0,
temos:
-3 - (-1) + 2 = 0
-3 + 1 + 2 = 0
Como a igualdade é verdadeira, então P r.
Substituindo as coordenadas de Q em x - y + 2 = 0, obtemos:
1-2+2
0
Como a igualdade não é verdadeira, então Q r.
Geometria Analítica: Circunferência
Equações da circunferência
Equação reduzida
Circunferência é o conjunto de todos os pontos de um plano
eqüidistantes de um ponto fixo, desse mesmo plano, denominado centro da
circunferência:
Assim, sendo C(a, b) o centro e P(x, y) um ponto qualquer da
circunferência, a distância de C a P(dCP) é o raio dessa circunferência.
Então:
Portanto, (x - a)2 + (y - b)2 =r2 é a equação reduzida da circunferência e
permite determinar os elementos essenciais para a construção da
circunferência: as coordenadas do centro e o raio.
Observação: Quando o centro da circunfer6encia estiver na origem
( C(0,0)), a equação da circunferência será x2 + y2 = r2 .
Equação geral
Desenvolvendo a equação reduzida, obtemos a equação geral da
circunferência:
Como exemplo, vamos determinar a equação geral da circunferência de
centro C(2, -3) e raio r = 4.
A equação reduzida da circunferência é:
( x - 2 )2 +( y + 3 )2 = 16
Desenvolvendo os quadrados dos binômios, temos:
Geometria Analítica - Cônicas
Elipse
Considerando, num plano , dois pontos distintos, F1 e F2 , e sendo 2a
um número real maior que a distância entre F1 e F2, chamamos de elipse o
conjunto dos pontos do plano tais que a soma das distâncias desses
pontos a F1 e F2 seja sempre igual a 2a.
Por exemplo, sendo P, Q, R, S, F1 e F2 pontos de um mesmo plano e F1F2
< 2a, temos:
A figura obtida é uma elipse.
Observações:
1ª) A Terra descreve uma trajetória elíptica em torno do sol, que é um dos
focos dessa trajetória.
A lua em torno da terra e os demais satélites em relação a seus
respectivos planetas também apresentam esse comportamento.
2ª) O cometa de Halley segue uma órbita elíptica, tendo o Sol como um dos
focos.
3ª) As elipses são chamadas cônicas porque ficam configuradas pelo corte
feito em um cone circular reto por um plano oblíquo em relação à sua base.
Elementos
Observe a elipse a seguir. Nela, consideramos os seguintes elementos:
•
focos : os pontos F1 e F2
•
centro: o ponto O, que é o ponto médio de
•
semi-eixo maior: a
•
semi-eixo menor: b
•
semidistância focal: c
•
vértices: os pontos A1, A2, B1, B2
•
eixo maior:
•
eixo menor:
•
distância focal:
Relação fundamental
Na figura acima, aplicando o Teorema de Pitágoras ao tri6angulo OF2B2 ,
retângulo em O, podemos escrever a seguinte relação fundamental:
a2 =b2 + c2
Excentricidade
Chamamos de excentricidade o número real e tal que:
Pela definição de elipse, 2c < 2a, então c < a e, conseqüentemente, 0 < e
< 1.
Observação:Quando os focos são muito próximos, ou seja, c é muito
pequeno, a elipse se aproxima de uma circunferência.
Equações
Vamos considerar os seguintes casos:
a) elipse com centro na origem e eixo maior horizontal
Sendo c a semidistância focal, os focos da elipse são F1(-c, 0) e F2(c, 0):
Aplicando a definição de elipse
elipse:
, obtemos a equação da
b) elipse com centro na origem e eixo maior vertical
Nessas condições, a equação da elipse é:
Hipérbole
Considerando, num plano , dois pontos distintos, F1 e F2 , e sendo 2a
um número real menor que a distância entre F1 e F2 , chamamos de
hipérbole o conjunto dos pontos do plano tais que o módulo da diferença
das dist6ancias desses pontos a F1 e F2 seja sempre igual a 2a.
Por exemplo, sendo P, Q, R, S, F1 e F2 pontos de um mesmo plano e
F1F2 = 2c, temos:
A figura obtida é uma hipérbole.
Observação:Os dois ramos da
hipérbole são determinados por um
plano paralelo ao eixo de simetria de
dois cones circulares retos e opostos
pelo vértice:
Parábola
Dados uma reta d e um ponto F
parábola o conjunto de pontos do plano
, de um plano , chamamos de
eqüidistantes de F e d.
Assim, sendo, por exemplo, F, P, Q e R pontos de um plano e d uma
reta desse mesmo plano, de modo que nenhum ponto pertença a d, temos:
Observações:
1ª) A parábola é obtida seccionando-se obliquamente um cone circular reto:
2ª) Os telescópios refletores mais simples têm espelhos com secções planas
parabólicas.
3ª) As trajetórias de alguns cometas são parábolas, sendo que o Sol ocupa o
foco.
4ª) A superfície de um líquido contido em um cilindro que gira em torno de
seu eixo com velocidade constante é parabólica.
Matrizes
Introdução
O crescente uso dos computadores tem feito com que a teoria das
matrizes seja cada vez mais aplicada em áreas como Economia,
Engenharia, Matemática, Física, dentre outras. Vejamos um exemplo.
A tabela a seguir representa as notas de três alunos em uma etapa:
Química Inglês
Literatura Espanhol
A
8
7
9
8
B
6
6
7
6
C
4
8
5
9
Se quisermos saber a nota do aluno B em Literatura, basta procurar o
número que fica na segunda linha e na terceira coluna da tabela.
Vamos agora considerar uma tabela de números dispostos em linhas e
colunas, como no exemplo acima, mas colocados entre parênteses ou
colchetes:
Em tabelas assim dispostas, os números são os elementos. As linhas são
enumeradas de cima para baixo e as colunas, da esquerda para direita:
Tabelas com m linhas e n colunas ( m e n números naturais diferentes de
0) são denominadas matrizes m x n. Na tabela anterior temos, portanto,
uma matriz 3 x 3.
Veja mais alguns exemplos:
é uma matriz do tipo 2 x 3
•
•
é uma matriz do tipo 2 x 2
Notação geral
Costuma-se representar as matrizes por letras maiúsculas e seus
elementos por letras minúsculas, acompanhadas por dois índices que
indicam, respectivamente, a linha e a coluna que o elemento ocupa.
Assim, uma matriz A do tipo m x n é representada por:
ou, abreviadamente, A = [aij]m x n, em que i e j representam, respectivamente,
a linha e a coluna que o elemento ocupa. Por exemplo, na matriz anterior,
a23 é o elemento da 2ª linha e da 3ª coluna.
Na matriz
, temos:
Ou na matriz B = [ -1 0 2 5 ], temos: a11 = -1, a12 = 0, a13 = 2 e a14 = 5.
Denominações especiais
Algumas matrizes, por suas características, recebem denominações
especiais.
•
Matriz linha: matriz do tipo 1 x n, ou seja, com uma única linha. Por
exemplo, a matriz A =[4 7 -3 1], do tipo 1 x 4.
•
Matriz coluna: matriz do tipo m x 1, ou seja, com uma única coluna.
Por
exemplo,
,
do
tipo
3
x
1
•
Matriz quadrada: matriz do tipo n x n, ou seja, com o mesmo número
de linhas e colunas; dizemos que a matriz é de ordem n. Por exemplo, a
matriz
é do tipo 2 x 2, isto é, quadrada de ordem 2.
Numa matriz quadrada definimos a diagonal principal e a diagonal
secundária. A principal é formada pelos elementos aij tais que i = j. Na
secundária, temos i + j = n + 1.
Veja:
Observe a matriz a seguir:
a11 = -1 é elemento da diagonal principal, pis i = j = 1
a31= 5 é elemento da diagonal secundária, pois i + j = n + 1 ( 3 + 1 = 3 + 1)
•
Matriz nula: matriz em que todos os elementos são nulos; é
representada por 0m x n.
Por
•
exemplo,
.
Matriz diagonal: matriz quadrada em que todos os elementos que não
estão na diagonal principal são nulos. Por exemplo:
•
Matriz identidade: matriz quadrada em que todos os elementos da
diagonal principal são iguais a 1 e os demais são nulos; é representada
por In, sendo n a ordem da matriz. Por exemplo:
Assim,
•
para
uma
matriz
identidade
.
Matriz transposta: matriz At obtida a partir da matriz A trocando-se
ordenadamente as linhas por colunas ou as colunas por linhas. Por
exemplo:
Desse modo, se a matriz A é do tipo m x n, At é do tipo n x m.
Note que a 1ª linha de A corresponde à 1ª coluna de At e a 2ª linha de A
corresponde à 2ª coluna de At.
•
Matriz simétrica: matriz quadrada de ordem n tal que A = At . Por
exemplo,
ou
•
seja,
é simétrica, pois a12 = a21 = 5, a13 = a31 = 6, a23 = a32 = 4,
temos
sempre
a
=
a
ij
ij.
Matriz oposta: matriz -A obtida a partir de A trocando-se o sinal de
todos os elementos de A. Por exemplo,
.
Igualdade de matrizes
Duas matrizes, A e B, do mesmo tipo m x n, são iguais se, e somente se,
todos os elementos que ocupam a mesma posição são iguais:
.
Operações envolvendo matrizes
Adição
Dadas as matrizes
matrizes a matriz
:
, chamamos de soma dessas
, tal que Cij = aij + bij , para todo
A+B=C
Exemplos:
•
•
Observação: A + B existe se, e somente se, A e B forem do mesmo tipo.
Propriedades
Sendo A, B e C matrizes do mesmo tipo ( m x n), temos as seguintes
propriedades para a adição:
a) comutativa: A + B = B + A
b) associativa: ( A + B) + C = A + ( B + C)
c) elemento neutro: A + 0 = 0 + A = A, sendo 0 a matriz nula m x n
d) elemento oposto: A + ( - A) = (-A) + A = 0
Subtração
Dadas as matrizes
, chamamos de diferença entre
essas matrizes a soma de A com a matriz oposta de B:
A- B =A+ (- B )
Observe:
Multiplicação de um número real por uma matriz
Dados um número real x e uma matriz A do tipo m x n, o produto de x
por A é uma matriz B do tipo m x n obtida pela multiplicação de cada
elemento de A por x, ou seja, bij = xaij:
B = x.A
Observe o seguinte exemplo:
Propriedades
Sendo A e B matrizes do mesmo tipo ( m x n) e x e y números reais
quaisquer, valem as seguintes propriedades:
a) associativa: x . (yA) = (xy) . A
b) distributiva de um número real em relação à adição de matrizes: x . (A +
B) = xA + xB
c) distributiva de uma matriz em relação à adição de dois números reais: (x
+ y) . A = xA + yA
d) elemento neutro : xA = A, para x=1, ou seja, A=A
Multiplicação de matrizes
O produto de uma matriz por outra não é determinado por meio do
produto dos sus respectivos elementos.
Assim, o produto das matrizes A = ( aij) m x p e B = ( bij) p x n é a matriz C =
(cij) m x n em que cada elemento cij é obtido por meio da soma dos produtos
dos elementos correspondentes da i-ésima linha de A pelos elementos da jésima coluna B.
Vamos multiplicar a matriz
obtém cada Cij:
•
1ª linha e 1ª coluna
•
1ª linha e 2ª coluna
para entender como se
•
2ª linha e 1ª coluna
•
2ª linha e 2ª coluna
Assim,
.
Observe que:
Portanto,
.A, ou seja, para a multiplicação de matrizes não vale a
propriedade comutativa.
Vejamos outro exemplo com as matrizes
:
Da definição, temos que a matriz produto A . B só existe se o número de
colunas de A for igual ao número de linhas de B:
A matriz produto terá o número de linhas de A (m) e o número de
colunas de B(n):
•
Se A3 x 2 e B 2 x 5 , então ( A . B ) 3 x 5
•
Se A 4 x 1 e B 2 x 3, então não existe o produto
•
Se
A
4
x
2
e
B
2
x
,
1
então
(
A
.
B
)
4
x
1
Propriedades
Verificadas as condições de existência para a multiplicação de matrizes,
valem as seguintes propriedades:
a) associativa: ( A . B) . C = A . ( B . C )
b) distributiva em relação à adição: A . ( B + C ) = A . B + A . C ou
A+ B ) . C =A. C + B . C
(
c) elemento neutro: A . In = In . A = A, sendo In a matriz identidade de
ordem n
Vimos que a propriedade comutativa, geralmente, não vale para a
multiplicação de matrizes. Não vale também o anulamento do produto, ou
seja: sendo 0 m x n uma matriz nula, A .B =0 m x n não implica,
necessariamente, que A = 0 m x n ou B = 0 m x n.
Matriz inversa
Dada uma matriz A, quadrada, de ordem n, se existir uma matriz A', de
mesma ordem, tal que A . A' = A' . A = I n , então A' é matriz inversa de A .
Representamos a matriz inversa por A-1 .
Grandezas - Introdução
Entendemos por grandeza tudo aquilo que pode ser medido, contado.
As grandezas podem ter suas medidas aumentadas ou diminuídas.
Alguns exemplos de grandeza: o volume, a massa, a superfície, o
comprimento, a capacidade, a velocidade, o tempo, o custo e a produção.
É comum ao nosso dia-a-dia situações em que relacionamos duas ou
mais grandezas. Por exemplo:
Em uma corrida de "quilômetros contra o relógio", quanto maior for a
velocidade, menor será o tempo gasto nessa prova. Aqui as grandezas são a
velocidade e o tempo.
Num forno utilizado para a produção de ferro fundido comum, quanto
maior for o tempo de uso, maior será a produção de ferro. Nesse caso, as
grandezas são o tempo e a produção.
Grandezas diretamente proporcionais
Um forno tem sua produção de ferro fundido de acordo com a tabela
abaixo:
Tempo (minutos) Produção (Kg)
5
100
10
200
15
300
20
400
Observe que uma grandeza varia de acordo com a outra. Essas grandezas
são variáveis dependentes. Observe que:
Quando duplicamos
5min ----> 100Kg
10 min ----> 200Kg
o
tempo,
a
produção
também
duplica.
Quando triplicamos
5min ----> 100Kg
15 min ----> 300Kg
o
tempo,
a
produção
também
triplica.
Assim:
Duas grandezas variáveis dependentes são diretamente
proporcionais quando a razão entre os valores da 1ª grandeza é
igual a razão entre os valores correspondentes da 2ª
Verifique na tabela que a razão entre dois valores de uma grandeza é igual a
razão entre os dois valores correspondentes da outra grandeza.
Grandezas inversamente proporcionais
Um ciclista faz um treino para a prova de "1000 metros contra o
relógio", mantendo em cada volta uma velocidade constante e obtendo,
assim, um tempo correspondente, conforme a tabela abaixo
Velocidade (m/s)
5
8
10
16
20
Tempo (s)
200
125
100
62,5
50
Observe que uma grandeza varia de acordo com a outra. Essas grandezas
são variáveis dependentes. Observe que:
Quando duplicamos a velocidade, o tempo fica reduzido à metade.
5m/s ----> 200s
10 m/s ----> 100s
Quando quadriplicamos a velocidade, o tempo fica reduzido à quarta
parte.
5m/s ----> 200s
20 m/s ----> 50s
Assim:
Duas grandezas variáveis dependentes são inversamente proporcionais quando a
razão entre os valores da 1ª grandeza é igual ao inverso da razão entre os
valores correspondentes da 2ª.
Verifique na tabela que a razão entre dois valores de uma grandeza é igual
ao inverso da razão entre os dois valores correspondentes da outra
grandeza.
POLINÔMIOS
• Definição
Uma função polinomial ou simplesmente polinômio, é toda função
definida pela relação P(x)=anxn + an-1.xn-1 + an-2.xn-2 + ... + a2x2 + a1x + a0.
Onde:
an, an-1, an-2, ..., a2, a1, a0 são números reais chamados coeficientes.
n ∈ IN
x ∈ C (nos complexos) é a variável.
GRAU DE UM POLINÔMIO:
Grau de um polinômio é o expoente máximo que ele possui. Se o
coeficiente an≠0, então o expoente máximo n é dito grau do polinômio e
indicamos gr(P)=n. Exemplos:
a) P(x)=5 ou P(x)=5.x0 é um polinômio constante, ou seja, gr(P)=0.
b) P(x)=3x+5 é um polinômio do 1º grau, isto é, gr(P)=1.
c) P(x)=4x5+7x4 é um polinômio do 5º grau, ou seja, gr(P)=5.
Obs: Se P(x)=0, não se define o grau do polinômio.
• Valor numérico
O valor numérico de um polinômio P(x) para x=a, é o número que se
obtém substituindo x por a e efetuando todas as operações indicadas pela
relação que define o polinômio. Exemplo:
Se P(x)=x3+2x2+x-4, o valor numérico de P(x), para x=2, é:
P(x)= x3+2x2+x-4
P(2)= 23+2.22+2-4
P(2)= 14
Observação: Se P(a)=0, o número a chamado raiz ou zero de P(x).
Por exemplo, no polinômio P(x)=x2-3x+2 temos P(1)=0; logo, 1 é raiz
ou zero desse polinômio.
Alguns exercícios resolvidos:
1º) Sabendo-se que –3 é raiz de P(x)=x3+4x2-ax+1, calcular o valor de a.
Resolução: Se –3 é raiz de P(x), então P(-3)=0.
P(-3)=0 => (-3)3+4(-3)2-a.(-3)+1 = 0
3a = -10 => a=-10/3
Resposta: a=-10/3
2º) Calcular m ∈ IR para que o polinômio
P(x)=(m2-1)x3+(m+1)x2-x+4 seja:
a) do 3ºgrau
b) do 2º grau
c) do 1º grau
Resposta:
a) para o polinômio ser do 3º grau, os coeficientes de x2 e x3 devem ser
diferentes de zero. Então:
m2-1≠0 => m2≠1 => m≠1
m+1≠0 => m≠-1
Portanto, o polinômio é do 3º grau se m≠1 e m≠-1.
b) para o polinômio ser do 2º grau, o coeficiente de x 3 deve ser igual a
zero e o coeficiente de x2 diferente de zero. Então:
m2-1=0 => m2=1 => m=±1
m+1≠0 => m≠-1
Portanto, o polinômio é do 2º grau se m=1.
c) para o polinômio ser do 1º grau, os coeficientes de x2 e x3 devem ser
iguais a zero. Então:
m2-1=0 => m2=1 => m=±1
m+1=0 => m=-1
Portanto, o polinômio é do 1º grau se m=-1.
3º) Num polinômio P(x), do 3º grau, o coeficiente de x3 é 1. Se
P(1)=P(2)=0 e P(3)=30, calcule o valor de P(-1).
Resolução:
Temos o polinômio: P(x)=x3+ax2+bx+c.
Precisamos encontrar os valores de a,b e c (coeficientes).
Vamos utilizar os dados fornecidos pelo enunciado do problema:
P(1)=0 => (1)3+a.(1)2+b(1)+c = 0 => 1+a+b+c=0 => a+b+c=-1
P(2)=0 => (2)3+a.(2)2+b(2)+c = 0 => 8+4a+2b+c=0 => 4a+2b+c=-8
P(3)=30 => (3)3+a.(3)2+b(3)+c = 30 => 27+9a+3b+c=30 => 9a+3b+c=3
Temos um sistema de três variáveis:
a + b + c = -1

4a + 2b + c = -8
9a + 3b + c = 3

Resolvendo esse sistema encontramos as soluções:
a=9, b=-34, c=24
Portanto o polinômio em questão é P(x)= x3+9x2-34x+24.
O problema pede P(-1):
P(-1)= (-1)3+9(-1)2-34(-1)+24 => P(-1)=-1+9+34+24
P(-1)= 66
Resposta: P(-1)= 66
• Polinômios iguais
Dizemos que dois polinômios A(x) e B(x) são iguais ou idênticos (e
indicamos A(x)≡B(x)) quando assumem valores numéricos iguais para
qualquer valor comum atribuído à variável x. A condição para que dois
polinômios sejam iguais ou idênticos é que os coeficientes dos termos
correspondentes sejam iguais.
Exemplo:
Calcular a,b e c, sabendo-se que x2-2x+1 ≡ a(x2+x+1)+(bx+c)(x+1).
Resolução: Eliminando os parênteses e somando os termos semelhantes
do segundo membro temos:
x2-2x+1 ≡ ax2+ax+a+bx2+bx+cx+c
1x2-2x+1 ≡ (a+b)x2+(a+b+c)x+(a+c)
Agora igualamos os coeficientes correspondentes:
a + b = 1

a + b + c = −2
a + c = 1

Substituindo a 1ª equação na 2ª:
1+c = -2 => c=-3.
Colocando esse valor de c na 3ª equação, temos:
a-3=1 => a=4.
Colocando esse valor de a na 1ª equação, temos:
4+b=1 => b=-3.
Resposta: a=4, b=-3 e c=-3.
Obs: um polinômio é dito identicamente nulo se tem todos os seus
coeficientes nulos.
• Divisão de polinômios
Sejam dois polinômios P(x) e D(x), com D(x) não nulo.
Efetuar a divisão de P por D é determinar dois polinômios Q(x) e R(x),
que satisfaçam as duas condições abaixo:
1ª) Q(x).D(x) + R(x) = P(x)
2ª) gr(R) < gr(D) ou R(x)=0
P( x)
D( x )
R( x)
Q( x)
Nessa divisão:
P(x) é o dividendo.
D(x) é o divisor.
Q(x) é o quociente.
R(x) é o resto da divisão.
Obs: Quando temos R(x)=0 dizemos que a divisão é exata, ou seja, P(x)
é divisível por D(x) ou D(x) é divisor de P(x).
Se D(x) é divisor de P(x) ⇔ R(x)=0
Exemplo:
Determinar o quociente de P(x)=x4+x3-7x2+9x-1 por D(x)=x2+3x-2.
Resolução: Aplicando o método da chave, temos:
x 4 + x3 − 7 x 2 + 9 x − 1
x 2 + 3x − 2
− x 4 − 3x3 + 2 x 2
x 2 − 2 x + 1 → Q( x)
− 2 x3 − 5x2 + 9 x − 1
+ 2 x3 + 6 x 2 − 4 x
x2 + 5x − 1
− x 2 − 3x + 2
2 x + 1 → R ( x)
Verificamos que:
4
3
2
2
x
+ 3x - 2) (x 2 - 2x + 1) + (2x + 1)
  + x  - 7x + 9x
 - 1 ≡ (x
         
   
P(x)
D(x)
Q(x)
R(x)
• Divisão de um polinômio por um binômio da forma ax+b
Vamos calcular o resto da divisão de P(x)=4x2-2x+3 por D(x)=2x-1.
Utilizando o método da chave temos:
4 x2 − 2 x + 3
− 4 x2 + 2 x
2x − 1
2x
3
Logo: R(x)=3
A raiz do divisor é 2x-1=0 => x=1/2.
Agora calculamos P(x) para x=1/2.
P(1/2) = 4(1/4) – 2(1/2) + 3
P(1/2) = 3
Observe que R(x) = 3 = P(1/2)
Portanto, mostramos que o resto da divisão de P(x) por D(x) é igual ao
valor numérico de P(x) para x=1/2, isto é, a raiz do divisor.
• Teorema do resto
O resto da divisão de um polinômio P(x) pelo binômio ax+b é igual a P(-b/a).
Note que –b/a é a raiz do divisor.
Exemplo: Calcule o resto da divisão de x2+5x-1 por x+1.
Resolução: Achamos a raiz do divisor:
x+1=0 => x=-1
Pelo teorema do resto sabemos que o resto é igual a P(-1):
P(-1)=(-1)2+5.(-1)-1 => P(-1) = -5 = R(x)
Resposta: R(x) = -5.
• Teorema de D’Alembert
Um polinômio P(x) é divisível pelo binômio ax+b se P(-b/a)=0
Exemplo: Determinar o valor de p, para que o polinômio P(x)=2x 3+5x2px+2 seja divisível por x-2.
Resolução: Se P(x) é divisível por x-2, então P(2)=0.
P(2)=0 => 2.8+5.4-2p+2=0 => 16+20-2p+2=0 => p=19
Resposta: p=19.
• Divisão de um polinômio pelo produto (x-a)(x-b)
Vamos resolver o seguinte problema: calcular o resto da divisão do
polinômio P(x) pelo produto (x-a)(x-b), sabendo-se que os restos da divisão
de P(x) por (x-a) e por (x-b) são, respectivamente, r1 e r2.
Temos:
a é a raiz do divisor x-a, portanto P(a)=r1
(eq. 1)
b é a raiz do divisor x-b, portanto P(b)=r2
(eq. 2)
E para o divisor (x-a)(x-b) temos P(x)=(x-a)(x-b) Q(x) + R(x)
(eq.
3)
O resto da divisão de P(x) por (x-a)(x-b) é no máximo do 1º grau, pois o
divisor é do 2º grau; logo:
R(x)=cx+d
Da eq.3 vem:
P(x)=(x-a)(x-b) Q(x) + cx + d
Fazendo:
x=a => P(a) = c(a)+d
(eq. 4)
x=b => P(b) = c(b)+d
(eq. 5)
Das equações 1, 2, 4 e 5 temos:
ca + d = r1

cb + d = r2
Resolvendo o sistema obtemos:
r1 − r2
ar − ar1
e d= 2
, com a ≠ b
a−b
a−b
r −r
ar − ar1
Logo : R ( x) = 1 2 x + 2
, com a ≠ b
a−b
a−b
c=
Observações:
1ª) Se P(x) for divisível por (x-a) e por (x-b), temos:
P(a)= r1 =0
P(b)= r2 =0
Portanto, P(x) é divisível pelo produto (x-a)(x-b), pois:
R( x) =
r1 − r2
ar − ar1
x+ 2
= 0+0 = 0
a−b
a−b
2ª) Generalizando, temos:
Se P(x) é divisível por n fatores distintos (x-a1), (x-a2),..., (x-an) então
P(x) é divisível pelo produto (x-a1)(x-a2)...(x-an).
Exemplo:
Um polinômio P(x) dividido por x dá resto 6 e dividido por (x-1) dá
resto 8. Qual o resto da divisão de P(x) por x(x-1)?
Resolução:
0 é a raiz do divisor x, portanto P(0)=6
(eq. 1)
1 é a raiz do divisor x-1, portanto P(1)=8
(eq. 2)
E para o divisor x(x-1) temos P(x)=x(x-1) Q(x) + R(x)
(eq. 3)
O resto da divisão de P(x) por x(x-1) é no máximo do 1º grau, pois o
divisor é do 2º grau; logo:
R(x)=ax+b
Da eq.3 vem:
P(x)=x(x-1) Q(x) + ax + b
Fazendo:
x=0 => P(0) = a(0)+b => P(0) = b
x=1 => P(1) = a(1)+b => P(1) = a+b
(eq. 4)
(eq. 5)
Das equações 1, 2, 4 e 5 temos:
b = 6

a + b = 8
Logo, b=6 e a=2.
Agora achamos o resto: R(x) = ax+b = 2x+6
Resposta: R(x) = 2x+6.
• O dispositivo de Briot-Ruffini
Serve para efetuar a divisão de um polinômio P(x) por um binômio da
forma (ax+b).
Exemplo: Determinar o quociente e o resto da divisão do polinômio
P(x)=3x3-5x2+x-2 por (x-2).
Resolução:
   
2
RAIZ DO DIVISOR
      COEFICIENT
    ES
 DE P(x)
     
3
−5
1
−2
↓
3.( 2) − 5
1.(2) + 1
 3     1      3
COEFICIENTES DO QUOCIENTE Q(x)
3.( 2) − 2
 4 
RESTO
Observe que o grau de Q(x) é uma unidade inferior ao de P(x), pois o
divisor é de grau 1.
Resposta: Q(x)=3x2+x+3 e R(x)=4.
Para a resolução desse problema seguimos os seguintes passos:
1º) Colocamos a raiz do divisor e os coeficientes do dividendo
ordenadamente na parte de cima da “cerquinha”.
2º) O primeiro coeficiente do dividendo é repetido abaixo.
3º) Multiplicamos a raiz do divisor por esse coeficiente repetido abaixo
e somamos o produto com o 2º coeficiente do dividendo, colocando o
resultado abaixo deste.
4º) Multiplicamos a raiz do divisor pelo número colocado abaixo do 2º
coeficiente e somamos o produto com o 3º coeficiente, colocando o
resultado abaixo deste, e assim sucessivamente.
5º) Separamos o último número formado, que é igual ao resto da
divisão, e os números que ficam à esquerda deste serão os coeficientes do
quociente.
• Decomposição de um polinômio em fatores
Vamos analisar dois casos:
1º caso: O polinômio é do 2º grau.
De uma forma geral, o polinômio de 2º grau P(x)=ax2+bx+c que
admite as raízes r1 e r2 pode ser decomposto em fatores do 1º grau, da
seguinte forma:
ax2+bx+c = a(x-r1)(x-r2)
Exemplos:
1) Fatorar o polinômio P(x)=x2-4.
Resolução: Fazendo x2-4=0, obtemos as raízes r1=2 e r2=-2.
Logo: x2-4 = (x-2)(x+2).
2) Fatorar o polinômio P(x)=x2-7x+10.
Resolução: Fazendo x2-7x+10=0, obtemos as raízes r1=5 e r2=2.
Logo: x2-7x+10 = (x-5)(x-2).
2º caso: O polinômio é de grau maior ou igual a 3.
Conhecendo uma das raízes de um polinômio de 3º grau, podemos
decompô-lo num produto de um polinômio do 1º grau por um polinômio do
2º grau e, se este tiver raízes, podemos em seguida decompô-lo também.
Exemplo: Decompor em fatores do 1º grau o polinômio 2x3-x2-x.
Resolução:
2x3-x2-x = x.(2x2-x-1)  colocando x em evidência
Fazendo x.(2x2-x-1) = 0 obtemos: x=0 ou 2x2-x-1=0.
Uma das raízes já encontramos (x=0).
As outras duas saem da equação: 2x2-x-1=0 => r1=1 e r2=-1/2.
Portanto, o polinômio 2x3-x2-x, na forma fatorada é:
2.x.(x-1).(x+(1/2)).
Generalizando, se o polinômio P(x)=anxn+an-1xn-1+...+a1x+a0 admite n raízes
r1, r2,..., rn, podemos decompô-lo em fatores da seguinte forma:
anxn+an-1xn-1+...+a1x+a0 = an(x-r1)(x-r2)...(x-rn)
Observações:
1) Se duas, três ou mais raiz forem iguais, dizemos que são raízes
duplas, triplas, etc.
2) Uma raiz r1 do polinômio P(x) é dita raiz dupla ou de
multiplicidade 2 se P(x) é divisível por (x-r1)2 e não por (x-r1)3.
PROBABILIDADE
A história da teoria das probabilidades, teve início com os jogos de
cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos
de jogos de azar no estudo da probabilidade. A teoria da probabilidade
permite que se calcule a chance de ocorrência de um número em um
experimento aleatório.
Experimento Aleatório
É aquele experimento que quando repetido em iguais condições, podem
fornecer resultados diferentes, ou seja, são resultados explicados ao acaso.
Quando se fala de tempo e possibilidades de ganho na loteria, a abordagem
envolve cálculo de experimento aleatório.
Espaço Amostral
É o conjunto de todos os resultados possíveis de um experimento
aleatório. A letra que representa o espaço amostral, é S.
Exemplo:
Lançando uma moeda e um dado, simultaneamente, sendo S o espaço
amostral, constituído pelos 12 elementos:
S = {K1, K2, K3, K4, K5, K6, R1, R2, R3, R4, R5, R6}
1. Escreva explicitamente os seguintes eventos: A={caras e m número
par aparece}, B={um número primo aparece}, C={coroas e um
número ímpar aparecem}.
2. Idem, o evento em que:
a)
A ou B ocorrem;
b)
B e C ocorrem;
c)
Somente B ocorre.
3. Quais dos eventos A,B e C são mutuamente exclusivos
Resolução:
1. Para obter A, escolhemos os elementos de S constituídos de um K e
um número par: A={K2, K4, K6};
Para obter B, escolhemos os pontos de S constituídos de números
primos: B={K2,K3,K5,R2,R3,R5}
Para obter C, escolhemos os pontos de S constituídos de um R e um
número ímpar: C={R1,R3,R5}.
2. (a) A ou B = AUB = {K2,K4,K6,K3,K5,R2,R3,R5}
(b) B e C = B ∩ C = {R3,R5}
(c) Escolhemos os elementos de B que não estão em A ou C;
B ∩ Ac ∩ Cc = {K3,K5,R2}
3.
A e C são mutuamente exclusivos, porque A ∩ C = ∅
Conceito de probabilidade
Se em um fenômeno aleatório as possibilidades são igualmente
prováveis, então a probabilidade de ocorrer um evento A é:
Por, exemplo, no lançamento de um dado, um número par pode ocorrer
de 3 maneiras diferentes dentre 6 igualmente prováveis, portanto, P =
3/6= 1/2 = 50%
Dizemos que um espaço amostral S (finito) é equiprovável quando seus
eventos elementares têm probabilidades iguais de ocorrência.
Num espaço amostral equiprovável S (finito), a probabilidade de
ocorrência de um evento A é sempre:
Propriedades Importantes:
1. Se A e A’ são eventos complementares, então:
P( A ) + P( A' ) = 1
2. A probabilidade de um evento é sempre um número entre ∅
(probabilidade de evento impossível) e 1 (probabilidade do evento
certo).
Probabilidade Condicional
Antes da realização de um experimento, é necessário que já tenha
alguma informação sobre o evento que se deseja observar. Nesse caso, o
espaço amostral se modifica e o evento tem a sua probabilidade de
ocorrência alterada.
Fórmula de Probabilidade Condicional
P(E1 e E2 e E3 e ...e En-1 e En) é igual a P(E1).P(E2/E1).P(E3/E1 e
E2)...P(En/E1 e E2 e ...En-1).
Onde P(E2/E1) é a probabilidade de ocorrer E2, condicionada pelo fato
de já ter ocorrido E1;
P(E3/E1 e E2) é a probabilidade ocorrer E3, condicionada pelo fato de já
terem ocorrido E1 e E2;
P(Pn/E1 e E2 e ...En-1) é a probabilidade de ocorrer En, condicionada ao fato
de já ter ocorrido E1 e E2...En-1.
Exemplo:
Uma urna tem 30 bolas, sendo 10 vermelhas e 20 azuis. Se ocorrer um
sorteio de 2 bolas, uma de cada vez e sem reposição, qual será a
probabilidade de a primeira ser vermelha e a segunda ser azul?
Resolução:
Seja o espaço amostral S=30 bolas, bolinhas e considerarmos os
seguintes eventos:
A: vermelha na primeira retirada e P(A) = 10/30
B: azul na segunda retirada e P(B) = 20/29
Assim:
P(A e B) = P(A).(B/A) = 10/30.20/29 = 20/87
Eventos independentes
Dizemos que E1 e E2 e ...En-1, En são eventos independentes quando a
probabilidade de ocorrer um deles não depende do fato de os outros terem
ou não terem ocorrido.
Fórmula da probabilidade dos eventos independentes:
P(E1 e E2 e E3 e ...e En-1 e En) = P(E1).P(E2).p(E3)...P(En)
Exemplo:
Uma urna tem 30 bolas, sendo 10 vermelhas e 20 azuis. Se sortearmos 2
bolas, 1 de cada vez e respondo a sorteada na urna, qual será a
probabilidade de a primeira ser vermelha e a segunda ser azul?
Resolução:
Como os eventos são independentes, a probabilidade de sair vermelha
na primeira retirada e azul na segunda retirada é igual ao produto das
probabilidades de cada condição, ou seja, P(A e B) = P(A).P(B). Ora, a
probabilidade de sair vermelha na primeira retirada é 10/30 e a de sair
azul na segunda retirada 20/30. Daí, usando a regra do produto, temos:
10/30.20/30=2/9.
Observe que na segunda retirada forma consideradas todas as bolas, pois
houve reposição. Assim, P(B/A) =P(B), porque o fato de sair bola
vermelha na primeira retirada não influenciou a segunda retirada, já que
ela foi reposta na urna.
Probabilidade de ocorrer a união de eventos
Fórmula da probabilidade de ocorrer a união de eventos:
P(E1 ou E2) = P(E1) + P(E2).P(E1 e E2)
De fato, se existirem elementos comuns a E1 e E2, estes eventos estarão
computados no cálculo de P(E1) e P(E2). Para que sejam considerados
uma vez só, subtraímos P(E1 e E2).
Fórmula de probabilidade de ocorrer a união de eventos mutuamente
exclusivos:
P(E1 ou E2 ou E3 ou ... ou En) = P(E1) + P(E2) + ... + P(En)
Exemplo: Se dois dados, azul e branco, forem lançados, qual a
probabilidade de sair 5 no azul e 3 no branco?
Considerando os eventos:
A: Tirar 5 no dado azul e P(A) = 1/6
B: Tirar 3 no dado branco e P(B) = 1/6
Sendo S o espaço amostral de todos os possíveis resultados, temos:
n(S) = 6.6 = 36 possibilidades. Daí, temos:P(A ou B) = 1/6 + 1/6 – 1/36
= 11/36
Exemplo: Se retirarmos aleatoriamente uma carta de baralho com 52
cartas, qual a probabilidade de ser um 8 ou um Rei?
Sendo S o espaço amostral de todos os resultados possíveis, temos: n(S)
= 52 cartas. Considere os eventos:
A: sair 8 e P(A) = 4/52
B: sair um rei e P(B) = 4/52
Assim, P(A ou B) = 4/52 + 4/52 – 0 = 8/52 = 2/13. Note que P(A e B) =
0, pois uma carta não pode ser 8 e rei ao mesmo tempo. Quando isso
ocorre dizemos que os eventos A e B são mutuamente exclusivos.
Progressões Aritméticas
Progressão aritmética é uma sequência numérica na qual, a partir
do segundo, cada termo é igual à soma de seu antecessor com uma
constante, denominada razão.
Fórmula do termo geral de uma P.A. : a n = a1 + ( n − 1).r
Soma de termos de uma P.A. finita : S n =
(a1 + a n ).n
2
Logo abaixo temos alguns exercícios de progressões aritméticas
resolvidos.
1) Dada a P.A. (-19,-15,-11,...) calcule o seu enésimo termo.
Primeiramente encontramos a razão : r = a2 − a1 ⇒ r = −15 − (−19) ⇒ r = 4.
Logo, o termo geral é :
an = a1 + (n − 1).r ⇒ an = −19 + (n − 1).4 ⇒ an = −19 + 4n − 4 ⇒ an = 4n − 23
2) Interpole seis meios aritméticos entre –8 e 13.
No problema : a1 = −8, an = 13, n = 8 (pois 6 meios aritméticos serão interpolados
entre os dois extremos, que são - 8 e 13. Logo, existem 8 termos na P.A.).
Para interpolar os valores, devemos encontrar a razão :
an = a1 + (n − 1).r ⇒ 13 = −8 + (8 − 1).r ⇒ 13 = −8 + 7 r ⇒ 13 + 8 = 7 r ⇒
21
⇒ r = 3.
7
Encontrada a razão, basta interpolar os meios aritméticos :
- 8, - 5, - 2, 1, 4, 7, 10, 13
7r = 21 ⇒ r =
3) Escreva uma P.A. de três termos, sabendo que a soma desses termos
vale 12 e que a soma de seus quadrados vale 80.
a1 + a 2 + a 3 = 12
 2
a1 + a 2 2 + a3 2 = 80
Sabemos que a 2 = a1 + r e que a3 = a1 + 2r. Então substituimos no sistema acima :
a1 + (a1 + r ) + (a1 + 2r ) = 12
3a1 + 3r = 12
⇒
⇒
 2
 2
2
2
2
2
2
2
a1 + (a1 + r ) + (a1 + 2r ) = 80
a1 + a1 + 2a1 r + r + a1 + 4a1 r + 4r = 80

→
3a1 + 3r = 12
⇒ 
3a 2 + 6a r + 5r 2 = 80
 1
1
a1 =
12 − 3r
3
→
a1 = 4 − r
Substituindo na segunda equação temos :
3(4 − r ) 2 + 6(4 − r )r + 5r 2 = 80
3(16 − 8r + r 2 ) + (24 − 6r )r + 5r 2 = 80
48 − 24r + 3r 2 + 24r − 6r 2 + 5r 2 = 80
48 + 2r 2 = 80 → 2r 2 = 80 − 48 → 2r 2 = 32 → r 2 = 16 → r = 16 → r = ±4
Agora encontramos o primeiro termo :
1) Para r = 4 :
a1 = 4 - r → a 1 = 4 - 4 → a 1 = 0
P.A : (0,4,8)
1) Para r = −4 :
a1 = 4 - r → a 1 = 4 - (-4) → a 1 = 8
P.A : (8,4,0)
Resposta : (0,4,8) ou (8,4,0).
4) Calcule quantos números inteiros existem entre 13 e 247 que não são
múltiplos de 3.
Entre 13 e 247 existem 233 números. Para calcular quantos números NÃO são múltiplos de 3,
nós devemos calcular primeiramente quantos números SÃO múltiplos de 3, e logo após subtrair o número
total de números (233) pelo número de múltiplos, o que dará como resultado o número de NÃO múltiplos.
Para calcular o número de múltiplos de 3 :
a1 = 15 (pois é o primeiro múltiplo de 3 depois do 13)
r = 3,
a n = 246 (pois é o último múltiplo de 3 antes do 247). Basta achar o n, que é o número de múltiplos :
a n = a1 + (n − 1).r → 246 = 15 + (n - 1)3 → 231 = 3n - 3 → n =
Dos 233 números, 78 são múltiplos de 3, logo 155 não são múltiplos de 3.
234
3
→ n = 78
5) Encontre o valor de x para que a sequência (2x, x+1, 3x) seja uma
progressão aritmética.
Para ser uma P.A. : a3 − a 2 = a 2 − a1
3 x − ( x + 1) = ( x + 1) − 2 x
2x − 1 = 1 − x
2x + x = 1 + 1
→
3x = 2
→
x=
2
3
6) Numa progressão aritmética em que a2+a7=a4+ak, o valor de k é:
(a1 + r ) + (a1 + 6r ) = (a1 + 3r ) + a k
2a1 + 7 r = a1 + 3r + a k
2a1 − a1 + 7 r − 3r = a k
→ a k = a1 + 4r
Logo k = 5, pois a5 = a1 + 4r.
7) Se Sn é a soma dos n primeiros termos da progressão aritmética (-90,86,-82,...) então o menor valor de n para que se tenha Sn>0 é:
r = 4

Pelo enunciado, obtemos os seguintes dados : a1 = −90
a = 94 (pois a S deve ser maior que zero)
n
 n
Basta encontrar o número de termos :
a n = a1 + (n − 1).r
94 = −90 + (n − 1).4
94 + 90 = 4n − 4
184 + 4 = 4n → n =
188
→ n = 47
4
8) A soma dos n primeiros números pares positivos é 132. Encontre o valor
de n.
r = 2 ; a1 = 2 ; S n = 132
a n = a1 + (n − 1).r → a n = 2 + (n − 1).2 → a n = 2 + 2n − 2 → a n = 2n
Substituindo na fórmula da soma temos :
( a + a n ).n
( 2 + 2n) n
Sn = 1
→ 132 =
→ n 2 + n − 132 = 0
2
2
− 1 ± 1 + 4.1.132
− 1 ± 529
− 1 ± 23 n = −12
n=
=
=
=
⇒ n = 11
2
2
2
n = 11
PROGRESSÕES GEOMÉTRICAS
Podemos definir progressão geométrica, ou simplesmente P.G., como
uma sucessão de números reais obtida, com exceção do primeiro,
multiplicando o número anterior por uma quantidade fixa q, chamada
razão.
Podemos calcular a razão da progressão, caso ela não esteja
suficientemente evidente, dividindo entre si dois termos consecutivos. Por
exemplo, na sucessão (1, 2, 4, 8,...), q = 2.
Cálculos do termo geral
Numa progressão geométrica de razão q, os termos são obtidos, por
definição, a partir do primeiro, da seguinte maneira:
a1
a2
a3
...
a1
a1xq a1xq2 ...
a20
...
a1xq19
an
...
a1xqn-1
...
Assim, podemos deduzir a seguinte expressão do termo geral,
também chamado enésimo termo, para qualquer progressão geométrica.
an = a1 x qn-1
Portanto, se por exemplo, a1 = 2 e q = 1/2, então:
an = 2 x (1/2)n-1
Se quisermos calcular o valor do termo para n = 5, substituindo-o na
fórmula, obtemos:
a5 = 2 x (1/2)5-1 = 2 x (1/2)4 = 1/8
A semelhança entre as progressões aritméticas e as geométricas é
aparentemente grande. Porém, encontramos a primeira diferença
substancial no momento de sua definição. Enquanto as progressões
aritméticas formam-se somando-se uma mesma quantidade de forma
repetida, nas progressões geométricas os termos são gerados pela
multiplicação, também repetida, por um mesmo número. As diferenças não
param aí.
Observe que, quando uma progressão aritmética tem a razão positiva,
isto é, r > 0, cada termo seu é maior que o anterior. Portanto, trata-se de
uma progressão crescente. Ao contrário, se tivermos uma progressão
aritmética com razão negativa, r < 0, seu comportamento será decrescente.
Observe, também, a rapidez com que a progressão cresce ou diminui. Isto é
conseqüência direta do valor absoluto da razão, |r|. Assim, quanto maior for
r, em valor absoluto, maior será a velocidade de crescimento e vice-versa.
Soma dos n primeiros termos de uma PG
Seja a PG (a1, a2, a3, a4, ... , an , ...) . Para o cálculo da soma dos n
primeiros
termos
Sn,
vamos
considerar
o
que
segue:
Sn = a1 + a2 + a3 + a4 + ... + an-1 + an
Multiplicando
ambos
os
membros
Sn.q = a1 . q + a2 .q + .... + an-1 . q + an .q
pela
razão
q
vem:
Conforme a definição de PG, podemos reescrever a expressão como:
Sn . q = a2 + a3 + ... + an + an . q
Observe que a2 + a3 + ... + an é igual a Sn - a1 . Logo, substituindo, vem:
Sn . q = S n - a 1 + an . q
Daí, simplificando convenientemente, chegaremos à seguinte fórmula da
soma:
Se substituirmos an = a1 . qn-1 , obteremos uma nova apresentação para a
fórmula da soma, ou seja:
Exemplo:
Calcule
Temos:
a
soma
dos
10
primeiros
termos
da
PG
(1,2,4,8,...)
Observe que neste caso a1 = 1.
5 - Soma dos termos de uma PG decrescente e ilimitada
Considere uma PG ILIMITADA ( infinitos termos) e decrescente. Nestas
condições, podemos considerar que no limite teremos an = 0. Substituindo
na fórmula anterior, encontraremos:
Exemplo:
Resolva a equação: x + x/2 + x/4 + x/8 + x/16 + ... =100
O primeiro membro é uma PG de primeiro termo x e razão 1/2. Logo,
substituindo na fórmula, vem:
Dessa equação encontramos como resposta x = 50.
Proporções - Introdução
Rogerião e Claudinho passeiam com seus cachorros. Rogerião pesa 120kg,
e seu cão, 40kg. Claudinho, por sua vez, pesa 48kg, e seu cão, 16kg.
Observe a razão entre o peso dos dois rapazes:
Observe, agora, a razão entre o peso dos cachorros:
Verificamos que as duas razões são iguais. Nesse caso, podemos
afirmar que a igualdade
é uma proporção. Assim:
Proporção é uma igualdade entre duas
razões.
Elementos de uma proporção
Dados quatro números racionais a, b, c, d, não-nulos, nessa ordem, dizemos
que eles formam uma proporção quando a razão do 1º para o 2º for igual à
razão do 3º para o 4º. Assim:
ou a:b=c:d
(lê-se "a está para b assim como c está para d")
Os números a, b, c e d são os termos da proporção, sendo:
•
•
b e c os meios da proporção.
a e d os extremos da proporção.
Exemplo:
Dada a proporção
, temos:
Leitura: 3 está para 4 assim como 27 está para 36.
Meios: 4 e 27
Extremos: 3 e 36
Razões - Introdução
Vamos considerar um carro de corrida com 4m de comprimento e um kart
com 2m de comprimento. Para compararmos as medidas dos carros, basta
dividir o comprimento de um deles pelo outro. Assim:
(o tamanho do carro de corrida é duas vezes o tamanho do kart).
Podemos afirmar também que o kart tem a metade
do
comprimento do carro de corrida.
A comparação entre dois números racionais, através de uma divisão,
chama-se razão.
A razão pode também ser representada por 1:2 e significa que cada
metro do kart corresponde a 2m do carro de corrida.
Denominamos de razão entre dois números a e b (b
diferente de zero)
o quociente
ou a:b.
A palavra razão, vem do latim ratio, e significa "divisão". Como no
exemplo anterior, são diversas as situações em que utilizamos o conceito de
razão. Exemplos:
•
Dos 1200 inscritos num concurso, passaram 240 candidatos.
Razão dos candidatos aprovados nesse concurso:
(de cada 5 candidatos inscritos, 1 foi
aprovado).
•
Para cada 100 convidados, 75 eram mulheres.
Razão entre o número de mulheres e o número de convidados:
(de cada 4 convidados, 3 eram mulheres).
Observações:
1) A razão entre dois números racionais pode ser apresentada de três
formas. Exemplo:
Razão entre 1 e 4:
1:4 ou
ou 0,25.
2) A razão entre dois números racionais pode ser expressa com sinal
negativo, desde que seus termos tenham sinais contrários. Exemplos:
A razão entre 1 e -8 é
A razão entre
.
é
.
Observe a razão:
(lê-se "a está para b" ou "a para b").
Na razão a:b ou , o número a é denominado antecedente e o
número b é denominado consequente. Veja o exemplo:
3:5 =
Leitura da razão: 3 está para 5 ou 3 para 5.
Regra de três simples
Regra de três simples é um processo prático para resolver problemas que
envolvam quatro valores dos quais conhecemos três deles. Devemos,
portanto, determinar um valor a partir dos três já conhecidos.
Passos utilizados numa regra de três simples:
1º) Construir uma tabela, agrupando as grandezas da mesma espécie
em colunas e mantendo na mesma linha as grandezas de espécies diferentes
em correspondência.
2º) Identificar se as grandezas são diretamente ou inversamente
proporcionais.
3º) Montar a proporção e resolver a equação.
Exemplos:
1) Com uma área de absorção de raios solares de 1,2m2, uma lancha
com motor movido a energia solar consegue produzir 400 watts por hora de
energia. Aumentando-se essa área para 1,5m2, qual será a energia
produzida?
Solução: montando a tabela:
Área (m2)
1,2
1,5
Energia (Wh)
400
x
Identificação do tipo de relação:
Inicialmente colocamos uma seta para baixo na coluna que contém o x
(2ª coluna).
Observe que: Aumentando a área de absorção, a energia solar
aumenta.
Como as palavras correspondem (aumentando - aumenta), podemos
afirmar que as grandezas são diretamente proporcionais. Assim sendo,
colocamos uma outra seta no mesmo sentido (para baixo) na 1ª coluna.
Montando a proporção e resolvendo a equação temos:
Logo, a energia produzida será de 500 watts por hora.
2) Um trem, deslocando-se a uma velocidade média de 400Km/h, faz
um determinado percurso em 3 horas. Em quanto tempo faria esse mesmo
percurso, se a velocidade utilizada fosse de 480km/h?
Solução: montando a tabela:
Velocidade
(Km/h)
400
480
Tempo (h)
3
x
Identificação do tipo de relação:
Inicialmente colocamos uma seta para baixo na coluna que contém o x
(2ª coluna).
Observe que: Aumentando a velocidade, o tempo do percurso
diminui.
Como as palavras são contrárias (aumentando - diminui), podemos
afirmar que as grandezas são inversamente proporcionais. Assim sendo,
colocamos uma outra seta no sentido contrário (para cima) na 1ª coluna.
Montando a proporção e resolvendo a equação temos:
Logo, o tempo desse percurso seria de 2,5 horas ou 2 horas e 30 minutos.
3) Bianca comprou 3 camisetas e pagou R$120,00. Quanto ela pagaria
se comprasse 5 camisetas do mesmo tipo e preço?
Solução: montando a tabela:
Camisetas
3
5
Preço (R$)
120
x
Observe que: Aumentando o número de camisetas, o preço aumenta.
Como as palavras correspondem (aumentando - aumenta), podemos
afirmar que as grandezas são diretamente proporcionais. Montando a
proporção e resolvendo a equação temos:
Logo, a Bianca pagaria R$200,00 pelas 5 camisetas.
4) Uma equipe de operários, trabalhando 8 horas por dia, realizou
determinada obra em 20 dias. Se o número de horas de serviço for reduzido
para 5 horas, em que prazo essa equipe fará o mesmo trabalho?
Solução: montando a tabela:
Horas por dia
8
5
Prazo para término
(dias)
20
x
Observe que: Diminuindo o número de horas trabalhadas por dia, o
prazo para término aumenta.
Como as palavras são contrárias (diminuindo - aumenta), podemos
afirmar que as grandezas são inversamente proporcionais. Montando a
proporção e resolvendo a equação temos:
Regra de três composta
A regra de três composta é utilizada em problemas com mais de duas
grandezas, direta ou inversamente proporcionais.
Exemplos:
1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5
horas, quantos caminhões serão necessários para descarregar 125m3?
Solução: montando a tabela, colocando em cada coluna as grandezas
de mesma espécie e, em cada linha, as grandezas de espécies diferentes que
se correspondem:
Horas
8
5
Caminhões
20
x
Volume
160
125
Identificação dos tipos de relação:
Inicialmente colocamos uma seta para baixo na coluna que contém o x
(2ª coluna).
A seguir, devemos comparar cada grandeza com aquela onde está o x.
Observe que:
Aumentando o número de horas de trabalho, podemos diminuir o
número de caminhões. Portanto a relação é inversamente proporcional
(seta para cima na 1ª coluna).
Aumentando o volume de areia, devemos aumentar o número de
caminhões. Portanto a relação é diretamente proporcional (seta para baixo
na 3ª coluna). Devemos igualar a razão que contém o termo x com o
produto das outras razões de acordo com o sentido das setas.
Montando a proporção e resolvendo a equação temos:
Logo, serão necessários 25 caminhões.
2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5
dias. Quantos carrinhos serão montados por 4 homens em 16 dias?
Solução: montando a tabela:
Homens
8
4
Carrinhos
20
x
Dias
5
16
Observe que:
Aumentando o número de homens, a produção de carrinhos
aumenta. Portanto a relação é diretamente proporcional (não precisamos
inverter a razão).
Aumentando o número de dias, a produção de carrinhos aumenta.
Portanto a relação também é diretamente proporcional (não precisamos
inverter a razão). Devemos igualar a razão que contém o termo x com o
produto das outras razões.
Montando a proporção e resolvendo a equação temos:
Logo, serão montados 32 carrinhos.
3) Dois pedreiros levam 9 dias para construir um muro com 2m de
altura. Trabalhando 3 pedreiros e aumentando a altura para 4m, qual será o
tempo necessário para completar esse muro?
Inicialmente colocamos uma seta para baixo na coluna que contém o
x. Depois colocam-se flechas concordantes para as grandezas diretamente
proporcionais com a incógnita e discordantes para as inversamente
proporcionais, como mostra a figura abaixo:
Montando a proporção e resolvendo a equação temos:
Logo, para completar o muro serão necessários 12 dias.
Exercícios complementares
Agora chegou a sua vez de tentar. Pratique tentando fazer esses
exercícios:
1) Três torneiras enchem uma piscina em 10 horas. Quantas horas
levarão 10 torneiras para encher 2 piscinas? Resposta: 6 horas.
2) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas
de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão
extrair 5,6 toneladas de carvão? Resposta: 35 dias.
3) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para
construir um muro de 300m. Quanto tempo levará uma turma de 16
operários, trabalhando 9 horas por dia, para construir um muro de 225m?
Resposta: 15 dias.
4) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas
por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele
deveria viajar para entregar essa carga em 20 dias, a uma velocidade média
de 60 km/h? Resposta: 10 horas por dia.
5) Com uma certa quantidade de fio, uma fábrica produz 5400m de
tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com
1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos?
Resposta: 2025 metros.
Sistemas Lineares
Equação linear
Equação linear é toda equação da forma:
a1x1 + a2x2+ a3x3 + ... + anxn = b
em que a1, a2, a3, ... , an são números reais, que recebem o nome de
coeficientes das incógnitas
x1, x2,x3, ... , xn, e b é um número real chamado termo independente
quando b=0, a equação recebe o nome de linear homogênea).
(
Veja alguns exemplos de equações lineares:
•
3x - 2y + 4z = 7
•
-2x + 4z = 3t - y + 4
(homogênea)
•
As equações a seguir não são lineares:
•
xy - 3z + t = 8
•
x2- 4y = 3t - 4
•
Sistema linear
Um conjunto de equações lineares da forma:
é um sistema linear de m equações e n incógnitas.
A solução de um sistema linear é a n-upla de números reais ordenados
(r1, r2, r3,..., rn) que é, simultaneamente, solução de todas as equações do
sistema.
Matrizes associadas a um sistema linear
A um sistema linear podemos associar as seguintes matrizes:
•
matriz incompleta: a matriz A formada pelos coeficientes das incógnitas
do sistema.
Em relação ao sistema:
a matriz incompleta é:
•
matriz completa: matriz B que se obtém acrescentando à matriz
incompleta uma última coluna formada pelos termos independentes das
equações do sitema.
Assim, para o mesmo sistema acima, a matriz completa é:
Sistemas homogêneos
Um sistema é homogêneo quando todos os termos independentes da
equações são nulos:
Veja um exemplo:
A n-upla (0, 0, 0,...,0) é sempre solução de um sistema homogêneo com n
incógnitas e recebe o nome de solução trivial. Quando existem, as demais
soluções são chamadas não-triviais.
Classificação de um sistema quanto ao número de soluções
Resolvendo o sistema
, encontramos uma única solução: o par
ordenado (3,5). Assim, dizemos que o sistema é possível (tem solução) e
determinado (solução única).
No caso do sistema
, verificamos que os pares ordenados (0,8),
(1,7),(2,6),(3,5),(4,4),(5,3),...são algumas de suas infinitas soluções. Por
isso, dizemos que o sistema é possível (tem solução) e indeterminado
(infinitas soluções).
Para
, verificamos que nenhum par ordenado satisfaz
simultaneamente as equações. Portanto, o sistema é impossível (não tem
solução).
Resumindo, um sistema linear pode ser:
a)
possível
e
determinado
b)
possível
e
indeterminado
c) impossível (não tem solução).
(solução
(infinitas
única);
soluções);
Sistema normal
Um sistema é normal quando tem o mesmo número de equações (m) e de
incógnitas (n) e o determinante da matriz incompleta associada ao sistema
é diferente de zero.
Se m=n e det A 0, então o sistema é normal.
Regra de Cramer
Todo sistema normal tem uma única solução dada por:
em que i { 1,2,3,...,n}, D= det A é o determinante da matriz incompleta
associada ao sistema, e Dxi é o determinante obtido pela substituição, na
matriz incompleta, da coluna i pela coluna formada pelos termos
independentes.
Discussão de um sistema linear
Se um sistema linear tem n equações e n incógnitas, ele pode ser:
a) possível e determinado, se D=det A 0; caso em que a solução é única.
Exemplo:
m=n=3
Então, o sistema é possível e determinado, tendo solução única.
b) possível e indeterminado, se D= Dx1 = Dx2 = Dx3 = ... = Dxn= 0, para n=2.
Se n 3, essa condição só será válida se não houver equações com
coeficientes das incógnitas respectivamente proporcionais e termos
independentes não-proporcionais.
Um sistema possível e indeterminado apresenta infinitas soluções.
Exemplo:
D=0, Dx =0, Dy=0 e Dz=0
Assim, o sistema é possível e indeterminado, tendo infinitas soluções.
c) impossível, se D=0 e
solução.
Dxi 0, 1
i n; caso em que o sistema não tem
Exemplo:
Como D=0 e Dx 0, o sistema é impossível e não apresenta solução.
Sistemas Equivalentes
Dois sistemas são equivalentes quando possuem o mesmo conjunto
solução.
Por exemplo, dados os sistemas:
e
verificamos que o par ordenado (x, y) = (1, 2) satisfaz ambos e é único.
Logo, S1 e S2 são equivalentes: S1 ~ S2.
Propriedades
a) Trocando de posição as equações de um sistema, obtemos outro sistema
equivalente.
Por exemplo:
e
S1 ~S2
b) Multiplicando uma ou mais equações de um sistema por um número K
(K IR*), obtemos um sistema equivalente ao anterior. Por exemplo:
S1 ~S2
c) Adicionando a uma das equações de um sistema o produto de outra
equação desse mesmo sistema por um número k ( K IR*), obtemos um
sistema equivalente ao anterior.
Por exemplo:
Dado
, substituindo a equação (II) pela soma do produto
de (I) por -1 com (II), obtemos:
S1~S2, pois (x,y)=(2,1) é solução de ambos os sistemas.
Sistemas escalonados
Utilizamos a regra de Cramer para discutir e resolver sistemas lineares
em que o número de equações (m) é igual ao número de incógnitas (n).
Quando m e n são maiores que três, torna-se muito trabalhoso utilizar essa
regra. Por isso, usamos a técnica do escalonamento, que facilita a discussão
e resolução de quaisquer sistemas lineares.
Dizemos que um sistema, em que existe pelo menos um coeficiente nãonulo em cada equação, está escalonado se o número de coeficientes nulos
antes do primeiro coeficiente não nulo aumenta de equação para equação.
Para escalonar um sistema adotamos o seguinte procedimento:
a) Fixamos como 1º equação uma das que possuem o coeficiente da 1º
incógnita diferente de zero.
b) Utilizando as propriedades de sistemas equivalentes, anulamos todos os
coeficientes da 1ª incógnita das demais equações.
c) Repetimos o processo com as demais incógnitas, até que o sistema se
torne escalonado.
Vamos então aplicar a técnica do escalonamento, considerando dois
tipos de sistema:
I. O número de equações é igual ao número de incógnitas (m=n)
Exemplo 1:
1ºpasso: Anulamos todos os coeficientes da 1º incógnita a partir da 2º
equação, aplicando as propriedades dos sistemas equivalentes:
•
Trocamos de posição a 1º equação com a 2º equação, de modo que o 1º
coeficiente de x seja igual a 1:
•
Trocamos a 2º equação pela soma da 1º equação, multiplicada por -2,
com a 2º equação:
•
Trocamos a 3º equação pela soma da 1º equação, multiplicada por -3,
com a 3º equação:
2º passo: Anulamos os coeficientes da 2º incógnita a partir da 3º equação:
•
Trocamos a 3º equação pela soma da 2º equação, multiplicada por -1,
com a 3º equação:
Agora o sistema está escalonado e podemos resolvê-lo.
-2z=-6
z=3
Substituindo z=3 em (II):
-7y - 3(3)= -2
-7y - 9 = -2
y=-1
Substituindo z=3 e y=-1 em (I):
x + 2(-1) + 3= 3
x=2
Então, x=2, y=-1 e z=3
Exemplo 2:
1º passo: Anulamos todos os coeficientes da 1º incógnita a partir da 2º
equação:
•
Trocamos a 2º equação pela soma do produto da 1º equação por -2 com a
2º equação:
•
Trocamos a 3º equação pela soma do produto da 1º equação por -3 com a
3º equação:
2º passo: Anulamos os coeficientes da 2ª incógnita, a partir da 3º equação:
•
Trocamos a 3ª equação pela soma do produto da 2ª equação por -1 com a
3º equação:
Dessa forma, o sistema está escalonando. Como não existe valor real de z
tal que 0z=-2, o sistema é impossível.
II) O número de equações é menor que o número de incógnitas (m < n)
Exemplo:
1º passo: Anulamos todos os coeficientes da 1º incógnita a partir da 2º
equação:
•
Trocamos a 2º equação pela soma do produto da 1º equação por -2 com a
2º equação:
•
Trocamos a 3º equação pela soma do produto da 1º equação por -1 com a
3º equação:
2º passo: Anulamos os coeficientes da 2º incógnita, a partir da 3º equação:
•
Trocamos a 3º equação pela soma do produto da 2º equação por -3 com a
3º equação
O sistema está escalonado. Como m<n, o sistema é possível e
indeterminado, admitindo infinitas soluções. A diferença entre o número de
incógnitas (n) e o de equações (m) de um sistema nessas condições é
chamada grau de indeterminação (GI):
GI= n - m
Para resolver um sistema indeterminado, procedemos do seguinte modo:
•
Consideramos o sistema em sua forma escalonada:
•
Calculamos o grau de indeterminação do sistema nessas condições:
GI = n-m = 4-3 = 1
Como o grau de indeterminação é 1, atribuímos a uma das incógnitas um
valor , supostamente conhecido, e resolvemos o sistema em função desse
valor. Sendo t= , substituindo esse valor na 3º equação, obtemos:
12z - 6 = 30
12z= 30 + 6
=
Conhecidos z e t, substituímos esses valores na 2º equação:
Conhecidos z,t e y, substituímos esses valores na 1º equação:
Assim, a solução do sistema é dada por S=
IR.
Para cada valor que seja atribuído a
solução para o sistema.
, com
, encontraremos uma quádrupla que é
Trigonometria
Catetos e Hipotenusa
Em um triângulo chamamos o lado oposto ao ângulo reto de hipotenusa
e os lados adjacentes de catetos.
Observe a figura:
Hipotenusa:
Catetos:
e
Seno, Cosseno e Tangente
Considere um triângulo retângulo BAC:
Hipotenusa:
, m(
) = a.
Catetos:
, m(
) = b.
, m(
) = c.
Ângulos:
,
e
.
Tomando por base os elementos desse triângulo, podemos definir as
seguintes razões trigonométricas:
•
Seno de um ângulo agudo é a razão entre a medida do cateto oposto a
esse ângulo e a medida da hipotenusa.
Assim:
•
Cosseno de um ângulo agudo é a razão entre a medida do cateto
adjacente a esse ângulo e a medida da hipotenusa.
Assim:
Tangente
•
Tangente de um ângulo agudo é a razão entre a medida do cateto oposto
e a medida do cateto adjacente a esse ângulo.
Assim:
Exemplo:
Observações:
1. A tangente de um ângulo agudo pode ser definida como a razão entre
seno deste ângulo e o seu cosseno.
Assim:
2. A tangente de um ângulo agudo é um número real positivo.
3. O seno e o cosseno de um ângulo agudo são sempre números reais
positivos menores que 1, pois qualquer cateto é sempre menor que a
hipotenusa.
As razões trigonométricas de 30º, 45º e 60º
Considere as figuras:
quadrado de lado l e diagonal
Triângulo
eqüilátero
lado I e altura
Seno, cosseno e tangente de 30º
de
Aplicando as definições de seno, cosseno e tangente para os ângulos de
30º, temos:
Seno, cosseno e tangente de 45º
Aplicando as definições de seno, cosseno e tangente´para um ângulo de
45º, temos:
Seno, cosseno e tangente de 60º
Aplicando as definições de seno, cosseno e tangente para um ângulo de
60º, temos:
Resumindo
x
30º
45º
60º
sen x
cos x
tg x