1 RELAÇÕES HÍDRICAS 2 Prof. Dr. Roberto Cezar Lobo da Costa “DETERMINAÇÃO DO CONTEÚDO RELATIVO DE ÁGUA (C.R.A.) E DO DÉFICIT DE SATURAÇÃO DE ÁGUA (D.S.A.) EM DISCOS DE FOLHAS” 1. INTRODUÇÃO A água é o principal constituinte das células vegetais, podendo chegar até 97%, como é o caso das folhas de alface. Ela possui uma série de características que a tornam meio fundamental para a manifestação de todos os fenômenos físicos, químicos e biológicos essenciais para o desenvolvimento das plantas. Nos tecidos lenhosos e nos órgãos dormentes o conteúdo de água cai abaixo de 80%. Em algumas sementes secas o conteúdo de água pode ser de apenas 5%. As sementes maduras de algumas plantas (ex. Amaryllis e Crinum spp.) tem alto teor de água (normalmente acima de 70%), o que lhes possibilita germinarem sem suprimento de água. O método usual para a determinar o conteúdo de água consiste em secar o material em estufa até peso constante. Deve-se tomar cuidado para evitar carbonização, o que acarretará perda de matéria seca, razão pela qual em geral se usam temperaturas relativamente baixas (inferiores a 85%). Uma pequena quantidade de água, associadas a substâncias orgânicas (água de ligação), não e removida por esse processo. O conteúdo de água pode ser expresso em porcentagem de peso fresco ou de peso seco. Geralmente se usa porcentagem de peso fresco, mas algumas vezes é preferível usar porcentagem de peso seco, especialmente quando o conteúdo de água é elevado, uma vez que em tais casos, grandes variações de quantidade de água presente podem causar pequenas alterações no teor expresso como porcentagem de peso fresco. Por outro lado, o conteúdo de água representado como porcentagem de peso seco pode algumas vezes ser mal interpretado, porque se a matéria seca é alterada, por exemplo, como o resultado de acumulo ou consumo de produção de reserva, o conteúdo de água por unidade matéria seca se alterará se a quantidade real de água presente permanecer constante. O conteúdo de água de uma planta é bastante variável e muda muito com as flutuações de umidade do solo e do ar. Em muitos casos a transpiração excede a absorção de água durante a maior parte do dia e o teor de água diminui. A noite a situação se inverte. Desse modo uma planta reabastece durante a noite, os tecidos que perderam água durante o dia anterior. Em cactus, como por exemplo, em Opuntia cujos estômatos se fecham durante o dia ocorre o contrario. De modo análogo, o conteúdo de água do tronco de uma árvore decídua em regiões temperadas se eleva durante o inverno, quando a transpiração é baixa, e diminui no verão, quando a transpiração é alta. Isto tem conseqüências importantes na industria da silvicultura, quando os troncos de madeira são transportados flutuando rio abaixo; os que têm água são mais densos do que os que tiver sua água parcialmente substituída por ar. O conteúdo relativo de água (CRA), é a quantidade de água de um tecido comparada com a quantidade que ele poderá reter sem infiltração nos espaços aéreos. A (CRA) de uma folha é medido tomando-se seu peso da matéria fresca (PMF1) e a seguir colocando-a para flutuar na água, preferivelmente à luz, e depois, pesando-a novamente (PMF2) depois de enxugar a água superficial. O peso da matéria seca (PMS) é então determinado conforme descrito acima e o seu CRA calculado a partir da fórmula: CRA = PMF1 – PMS X 100 PMF2 – PMS Assim, o valor máximo do CRA é a UNIDADE, freqüentemente o CRA é expresso como porcentagem do conteúdo máximo de água, multiplicando-se o valor obtido na fórmula acima por 100. O 3 déficit de saturação de água (DSA) é o termo algumas vezes aplicado á diferença entre CRA, expresso como porcentagem e 100, isto é: DSA= 100 – CRA (%) 2. OBJETIVO Determinar o conteúdo relativo de água (CRA) e o déficit de saturação de água (DSA) de discos de folhas de várias espécies vegetais. 3. MATERIAL NECESSÁRIO Placas de petri Furador de rolhas Estufa de ventilação forçada de ar Balança Câmara iluminada (bancada iluminada) Folhas de espécies vegetais sugeridas pelo instrutor. 4. PROCEDIMENTO Retire (corte) 50 discos (2 cm de diâmetro) de uma folha de cada uma das espécies sugerida pelo instrutor e pese-a imediatamente, anotando o peso da matéria fresca inicial (PMF1). Coloque-as em uma placa de petri com água e leve-as para baixo da bancada iluminada, deixando-as ai por um período de 10 horas. Após esse período, pese-os novamente (PMF2) depois de enxugar a água superficial. Determine o peso da matéria seca (PMS) após colocá-los por 24 horas em estufa de ventilação forçada com temperatura de 80 0C +/- 5ºC. Com os resultados das pesagens, calcule o conteúdo relativo de água (CRA) e o déficit de saturação de água (DSA) de cada folha e construa uma tabela mostrando as espécies utilizadas e os respectivos resultados. 5. QUESTIONÁRIO 1. 2. 3. 4. 5. Defina CRA e DAS. Por que na determinação do Peso da Matéria Seca (PMS) usa-se a estufa com temperaturas mais ou menos 800C? Qual a diferença em se determinar o conteúdo de água em termo de porcentagem de peso da matéria seca ou porcentagem de peso da matéria fresca? Qual a importância do conhecimento do conteúdo de água para Silvicultura? Determine o C.R.A. de uma folha determinando espécie vegetal sabendo-se que o peso da folha após a sua retirada da planta era de 1,05g; o peso após ressaturação era de 1,15g e o peso após 48 horas em estufa de ventilação forçada era de 0,05g. Indicar o C.R.A. em porcentagem. 4 Prof. Dr. Roberto Cezar Lobo da Costa “PLAMASMÓLISE, TURGESCÊNCIA E EFEITO DE SUBSTÁNCIAS TÓXICAS SOBRE A PERMEABILIDADE DAS MEMBRANAS CELULARES” 1. INTRODUÇÃO Quando se coloca uma célula vegetal numa solução, ela ganhará ou perderá água, conforme seu potencial hídrico seja menor ou maior do que o potencial hídrico da solução externa. Se o potencial da célula for maior do que o da solução externa, ela perderá água, e o protoplasma, com o vacúolo irão contrair-se, até separar-se da parede celular. Esse fenômeno denomina-se plasmólise. O fenômeno inverso chama-se Deplasmólise. Eles só ocorrem por existir uma permeabilidade diferencial (Permeabilidade seletiva ou semipermeabilidade) que mantém as duas fases - SOLUÇÃO EXTERNA e SOLUÇÃO INTERNA separadas. A membrana celular deixa a água passar livremente, mais impede em maior ou menor grau a passagem dos solutos, e isso faz com que as fases, externas e interna se conservem individualizadas. É certo que o vacúolo funcionam como um todo, em suas relações hídricas. Se as membranas plasmáticas, cuja integridade física é essencial para a manutenção da permeabilidade, forem danificadas por agentes químicos e físicos, os solutos terão livre trânsito e se distribuirão no meio aquoso (EXTERNO e INTERNO) por difusão. As células e organelas perderão, portanto a capacidade de reter solutos contra o gradiente de concentração (Potencial eletroquímico, mais precisamente). A parede células das células vegetais, por outro lado não oferecem restrições à passagem de água e solutos (exceto moléculas muito grandes). Como os microsporos e microcapilares de sua estrutura estão cheios de água, retida com grandes forças mátricas, moléculas gasosas não a atravessam. No tecido que perde água por evaporação (TRANSPIRAÇÃO), as paredes celulares estarão hidratadas, já que o fluxo de água se dá do vacúolo para a parede celular. Grandes tensões desenvolvem-se assim nas células, podendo levar à ruptura e desorganização da estrutura protoplasmática e consequentemente morte. 2- OBJETIVOS a) Observar os processos de plasmólise, deplasmólise e turgescência em células de tecido foliar. b) Verificar o efeito do álcool etílico sobre a permeabilidade das membranas celulares. 3. MATERIAL NECESSÁRIO Solução de sacarose a 0,25M Microscópios Tiras de papel filtro Pinça de ponta fina Água destilada Lâminas e lamínulas de vidro para microscopia Álcool etílico Lâmina de barbear Estilete e bastão de vidro Folha de Zebrina pendula 4. PROCEDIMENTOS Com o auxilio de uma lâmina de barbear e uma pinça remova alguns fragmentos da epiderme inferior de urna folha de Zebrina (de preferência sobre a nervura principal). Coloque-os em uma lâmina com uma gota de água destilada, cobrindo com a lamínula, e observe ao microscópio. Substitua a água secando com papel de filtro, por uma solução de sacarose 0,25M. Observe como o protoplasma se desloca da 5 parede celular em conseqüência da sua diminuição de volume. Este fenômeno chama-se PLASMÓLISE. Substitua novamente a solução de açúcar por água destilada, se não houver mudança alguma, repita o procedimento com células plasmolisadas recentemente. Depois de provocar plasmólise num fragmento de epiderme de Zebrina segundo a técnica usada anteriormente, trate-o com uma ou duas gotas de álcool. Observe o que acontece com o pigmento vermelho do vacúolo (ANTOCIANINA). 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. 7. 8. Defina plasmólise e deplasmólise. Desenhe uma célula normal e uma plasmolisada. Qual o pigmento vermelho nas células de Zebrina e onde se localiza? Que é que sai da célula durante a plasmólise, água ou suco celular? Qual é a evidência para sua conclusão. Por que a sacarose e não outro soluto qualquer é utilizado para provocar o fenômeno da plasmólise? Por que o pigmento não saiu das células quando houve plasmólise e saiu quando as células plasmolisadas foram tratadas com álcool? Por que quando se quer determinar plasmólise em células utiliza-se solução de sacarose ou de carbonato de cálcio e nunca substâncias tais como éter e acetona? Por que células de uma folha não se plasmolisam quando a folha murcha? 6 Prof. Dr. Roberto Cezar Lobo da Costa “DETERMINAÇÃO DO POTENCIAL OSMÓTICO (os) DE TECIDOS VEGETAIS PELO MÉTODO PLASMOLÍTICO” 1. INTRODUÇÃO Este método baseia-se no fato de que, numa célula em condição de “plasmólise incipiente” à solução plasmolisante externa e o suco celular têm a mesma pressão osmótica (). Sendo a pressão de parede, neste ponto igual a zero (e desprezando o valor da pressão mátrica), tem-se que os valores de dos potenciais hídricos da solução externa e do suco celular são também iguais. O problema, para ocaso de uma única célula, resume-se então em encontrar uma solução que cause a plasmólise incipiente (estado fisiológico no qual a pressão da parede começa a eqüivaler a zero). Para o caso de tecidos, considera-se que a plasmólise incipiente se manifesta quando 50% das células estão plasmolisadas. 2. OBJETIVO Determinar a pressão osmótica de um tecido foliar empregando o método plasmolítico. 3. MATERIAL NECESSÁRIO Solução de sacarose 0,08 – 0,10 - 0,12 - ........... 0,26M Lâminas e lamínulas Papel absorvente Microscópios Folha de Zebrina pendula 4. PROCEDIMENTOS Coloque algumas gotas de cada uma das soluções de sacarose separadamente em cada lâmina. Tome, em cada uma 2 ou 3 fragmentos de epiderme de Zebrina. Após 20 a 30 minutos examinar no microscópio os pedaços correspondentes a cada solução, contando o número de células vermelhas túrgidas e células vermelhas plasmolisadas. Determine a porcentagem de células plasmolisada para cada solução. Construa um gráfico em que na abcissa estão as concentrações das soluções e nas ordenadas, a porcentagem de células plasmolisadas. Identifique a solução equivalente à plasmólise incipiente. 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. 7. Defina plamólise incipiente. Por que a plasmólise incipiente pode ser utilizada para determinar a pressão osmótica () de um tecido? Por que a plasmólise qualquer não poderia ser utilizada para medir esse parâmetro? Qual é a pressão omótica das células do material usado, em MPa, a 20 oC? Por que em plasmólise incipiente, a pressão osmótica da célula é igual à pressão osmótica da solução externa? Na determinação da pressão osmótica das células de Zebrina pelo método plasmolítico você chegou a um valor equivalente a uma solução 0,12M da sacarose: a) Qual é o valor da pressão de parede das células em plasmólise incipiente? b) Qual é o potencial hídrico das células nessa mesma condição? A pressão osmótica da célula em plasmólise incipiente tem o mesmo valor que a pressão osmótica da célula em sua condição inicial? Explique. O que seria necessário para corrigir o valor da primeira para que ela eqüivalesse ao valor da segunda? Quais são as principais vantagens e desvantagens deste método para determinar a pressão osmótica do tecido? 7 Prof. Dr. Roberto Cezar Lobo da Costa “DETERMINAÇÃO DO POTENCIAL HÍDRICO ( w) DE TECIDOS VEGETAIS PELO MÉTODO DENSIMÉTRICO OU SCHARDAKOW” 1. INTRODUÇÃO O método tem como princípio, a medição da transferência de água líquida entre amostras de tecido vegetal e soluções testes de pressão osmótica conhecidas. No método de Schardakow, a transferência é determinada pela mudança de densidade das soluções testes. A densidade das soluções aumentará, diminuirá ou permanecerá invariável, conforme o tecido tenha potencial hídrico maior, menor ou igual ao da solução. 2. OBJETIVO Determinar o potencial hídrico de um tecido foliar mediante o método densimétrico. 3. MATERIAL NECESSÁRIO Soluções de sacarose de 0,05 – 0,10 - 0,15 – 0,20 - ....... 0,50M Tubos de ensaio grandes (10) Tubos de ensaio pequenos (10) Azul de metileno (cristais) Pipetas de ponta capilar (pipeta Pasteur) Tesoura ou lâmina de barbear Pinça(1) 4. PROCEDIMENTO Tome 2ml de cada uma das soluções de sacarose 0,05 – 0,10 – 0,15 – 0,20 - .......0,50M, em tubos de ensaio grandes. Tome também a mesma série paralela de soluções em tubos de ensaio pequenos. Do material indicado pelo Instrutor, tome pequenos fragmentos (cortados com lâmina de barbear ou tesoura) e coloque-os em cada um dos tubos de ensaio grande até nivelar os 2ml das soluções de sacarose. Após 1 hora, coloque um pequeno cristal de azul de metileno em cada tubo grande, a fim de colorir as soluções que estiverem em contato com os fragmentos. Com uma pipeta de ponta capilar, tome um pouco de cada solução colorida e solte lentamente uma gota no meio da solução de igual concentração que permaneceu sem fragmentos nos tubos de ensaio pequenos, observe, contra uma fonte de iluminação, se a gota se desloca para cima, para baixo, ou permanece mais ou menos estacionária (segundo seja o potencial hídrico do material estudado, superior, inferior, ou igual da solução em que está submerso). Caso a gota colorida não estacione em qualquer das soluções, pode-se repetir o ensaio, utilizando-se uma série de soluções cujas concentrações sejam intermediárias entre as concentrações em que a gota desceu e subiu, respectivamente. Determine o potencial hídrico do tecido, em MPa, consultando a tabela apropriada que relaciona as molaridades das soluções de sacarose e suas pressões osmóticas. 5. QUESTIONÁRIO 1. Qual é o fundamento de método de Schardakow de determinação do potencial hídrico em tecidos vegetais? 2. Porque o método de Schardakow de determinação do potencial hídrico é também denominado de método densimétrico? 3. Em folhas de Zebrina pendula encontrou-se, pelo método densimétrico um potencial hídrico de – 0,3MPa. Em plasmólise incipiente o mesmo apresentou uma pressão osmótica de +0,2 MPa. Considerando que não tenha havido alteração no volume celular, pergunta-se: a) Qual a pressão de turgescência (P) do tecido (potencial de pressão)? b) Este tecido absorveria água, se colocado em água pura? Porque? 4. Você pode com esse método, determinar o valor da pressão osmótica das células? Explique. 8 5. 6. Quais são as vantagens e desvantagens do método densimétrico na determinação do potencial hídrico em tecidos vegetais? Qual é a função do azul de metileno nestes exercícios? Se fosse tecido de beterraba haveria necessidade desse corante? Pressões osmóticas () de soluções molares de sacarose, à 20º C, em BARS. Molaridade (M) 0,00 0,01 0,02 SEGUNDAS DECIMAIS 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 0,00 2,67 5,36 8,23 11,24 14,49 18,03 21,78 25,83 30,09 35,05 0,26 2,95 5,64 8,52 11,55 14,79 18,34 22,18 26,34 30,59 35,56 0,54 3,21 5,94 8,82 11,85 15,20 18,74 22,59 26,74 31,10 36,16 0,80 3,47 6,22 9,12 12,26 15,50 19,15 23,00 27,15 31,50 36,67 1,87 4,54 7,36 10,33 13,47 16,92 20,67 24,62 28,77 33,53 38,70 2,14 4,81 7,65 10,64 13,88 17,32 20,97 25,02 29,17 34,04 39,30 2,41 5,08 7,94 10,94 14,18 17,63 21,37 25,43 29,68 34,54 39,81 1,07 3,75 6,50 9,41 12,56 15,80 19,45 23,40 27,55 32,01 37,18 1,34 4,01 6,79 9,70 12,87 16,21 19,85 23,70 27,96 32,52 37,68 1,61 4,27 7,07 10,00 13,17 16,61 20,26 24,11 28,36 33,02 38,19 9 Prof. Dr. Roberto Cezar Lobo da Costa “DEMONSTRAÇÃO DA OSMOSE NA CÉLULA DE TRAUBE” 1. INTRODUÇÃO As membranas de permeabilidade diferencial são de diversas naturezas. Nos primeiros estudos sobre os fenômenos osmóticos empregavam-se membranas inorgânicas aderidas à parte interior de cápsulas de argila ou porcelana que são permeáveis à água e impermeável a solutos de peso molecular elevado, conseguindo-se desta maneira um osmômetro perfeito. A membrana de Traube, formada pela combinação química do CuS0 4 com K4Fe (CN)6, é facilmente observada em laboratório, quando esses dois compostos reagem em meio aquoso. Quando um cristal de ferrocianeto é adicionado à uma solução de sulfato de cobre, nota-se facilmente a formação contínua de membranas através do rompimento (absorção de água além do limite da resistência da membrana) e aumento de tamanho, quando ocorre a combinação dos dois solutos, ao entrarem em contato. 2. OBJETIVOS Observar o processo de osmose e o crescimento osmótico da célula de Traube. 3. MATERIAL NECESSÁRIO Solução de CuSO4 a 2% Cristal de K4Fe (CN)6 Tubo de ensaio (1) 4. PROCEDIMENTOS Coloque no tubo de ensaio 10mL de solução de sulfato de cobre e adicione um cristal de ferrocianeto de potássio. Ponha o tubo num lugar firme e sem tocar nele ou movê-lo, observe o que acontece no período de 1 hora. 5. QUESTIONÁRIO 1. Escreva a reação química que esta envolvida na formação da célula artificial de Traube. Qual é a constituição química da membrana? 2. Que substância existe dentro e fora da célula de Traube? 3. Qual é a substância que atravessa a membrana? Qual é a evidência de sua resposta? 4. Que aconteceria se a membrana de Traube fosse permeável aos íons cobre? 5. Durante a formação da célula de Traube, as membranas se rompem e se refazem continuamente até que o processo se detém. Qual a causa da paralisação do processo? 6. Por que a célula artificial de Traube se presta para demonstrar o fenômeno osmose? 7. Por que as células vegetais não se rompem quando colocadas em água destiladas, mesmo sabendo-se que a sua concentração de soluto (meio interno) é maior que o lado de fora (meio externo)? 10 Prof. Dr. Roberto Cezar Lobo da Costa “SUDAÇÃO OU GUTAÇÃO” 1. INTRODUÇÃO Além da perda d’água em forma de vapor (transpiração), as plantas herbáceas, em certas situações, podem perder água na forma líquida (sudação ou gutação). Ao longo das margens das folhas dessas plantas existem poros de abertura fixa, associados com um tecido parenquimatoso modificado (epitema) - os hidatódios. Quando sobre pressão no xilema, a chamada pressão radicular, a água é forçada a sair através dos hidatódios na forma de gotas (GUTAÇÃO). 2. OBJETIVOS Estudar as condições necessárias para a ocorrência do fenômeno da gutação ou sudação. 3. MATERIAL NECESSÁRIO 2 vasos (de plástico ou papel parafinado, pequenos) com 2 ou 3 plantinhas de milho em cada um Solução de sal de cozinha (NaCl) a 5% Campânula ou cuba de vidro 4. PROCEDIMENTO Obtenha dois vasos pequenos com 2 ou 3 plantinhas de milho de 5cm ou mais. Regue um dos vasos com solução de sal de cozinha a 5% e outro com água. Cubra ambos com uma campânula ou cuba de vidro. Observe as margens das folhas durante duas ou três horas. 5. QUESTIONÁRIO 1. 2. 3. 4. Por que não houve sudação no vaso irrigado com sal? Qual é a força responsável pela sudação, e como essa força se origina na planta? Por que há necessidade de cobrir as plantas com campânula? Descreva a estrutura típica de um hidatódio, fazendo um desenho e nomeando devidamente os tecidos existentes. 11 Prof. Dr. Roberto Cezar Lobo da Costa “CONSTRUÇÃO E USO DE UM OSMÔMETRO” 1. INTRODUÇÃO A osmose é a difusão de moléculas de água através de uma membrana seletivamente permeável – uma membrana que permite o movimento de água mais inibe a passagem de solutos. Na ausência de outras forças, o movimento da água por osmose é de uma região de concentração de solutos mais baixa (meio hipotônico) para uma região de concentração de solutos mais alta (meio hipertônico) e, portanto de uma região de maior potencial hídrico para uma região de menor potencial hídrico. É importante enfatizar que na osmose, a difusão da água através de uma membrana semi-permeável ocorre tanto da solução hipotônica para a hipertônica quanto no sentido inverso. A pressão de difusão da água, porém, é maior no sentido da solução hipotônica para a hipertônica. A tendência da água de mover-se através da membrana, devido aos efeitos dos solutos sobre o potencial hídrico (W) (a energia potencial da água) é chamado potencial osmótico ou potencial dos solutos (os), que é sempre negativa. 2. OBJETIVOS O objetivo desta prática é construir um osmômetro e observar o fenômeno da osmose. 3. MATERIAL NECESSÁRIO Fita de diálise de 15 cm. Pipeta graduada de 1,0 mL. Elástico ou liga de borracha. Solução de Sacarose 25 % Solução de corante azul de metileno 1 % Becker de 1,0 L Tesoura. Suporte para pipeta. 4. PROCEDIMENTO Coloque uma fita de diálise de 15 cm em um recipiente com água destilada por aproximadamente 1 hora. Após esse período, arrume a fita de diálise em forma de saco, vendando completamente um dos seus lados. Em seguida, adiciona uma solução de sacarose 25 % juntamente com 3 gotas de azul de metileno no saco de diálise e posteriormente coloque a ponta da pipeta graduada na abertura do saco e vede (amarre) com elástico ou liga de borracha. Prenda a pipeta no suporte e mergulhe o saco de diálise com a solução de sacarose em um Becker contendo água destilada. Marque o nível inicial na pipeta e observe o resultado depois de aproximadamente 1 hora. Faça um desenho esquemático do resultado encontrado e discuta-o. 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. O que é osmose? Qual a finalidade de se colocar o corante azul de metileno nessa experiência? Por que ocorreu uma elevação da coluna líquida na pipeta? Qual a diferença entre uma substância que se move a favor de um gradiente de concentração e uma substância que se move contra esse gradiente? Em termos de concentração de solutos e potencial hídrico, qual a diferença entre soluções isotônicas, hipotônicas e hipertônicas? O potencial hídrico de uma célula X é igual a – 0,4 MPa e de uma célula Y é igual a – 1,8 MPa. Se estas células forem colocadas em contato tão íntimo, observa-se um movimento de água de uma para outra. Qual será o sentido do movimento da água? Justifique sua resposta. 12 TRANSLOCAÇÃO 13 Prof. Dr. Roberto Cezar Lobo da Costa “RECUPERAÇÃO DE TURGESCÊNCIA EM RAMOS CORTADOS” 1. INTRODUÇÃO A translocação de água no xilema, das raízes para a parte aérea, requer segundo a teoria de Dixon, que a coluna d’água permaneça íntegra, continua. Se a coluna se romper (cavitação), o fluxo de água cessará no vaso particular em que ocorrer a ruptura. A água nesse caso deve de algum modo contornar a bolha para haver movimento. Considera-se que a coesão da água é suficientemente elevada para não haver ruptura e manter assim a continuidade da coluna líquida. Por outro lado, a coluna pode separar-se por ventura entrar ar nos vasos do xilema (embolia). Normalmente isso não se verifica, dado à impermeabilidade dos vasos lenhosos, mesmo sob as altas tensões a que podem estar submetidos. Todavia, nos ramos cortados o ar penetra rapidamente nos vasos, interrompendo a continuidade da coluna líquida e interpondo uma grande resistência ao fluxo. 2. OBJETIVO Verificar o papel da presença de ar nos vasos, na translocação de água pelo xilema. 3. MATERIAL NECESSÁRIO Trompa de vácuo (ou bomba de vácuo) – lâmina de barbear Frasco de quítazato (Becker de 600ml) – ramos de plantas adequadas Massa plástica moldável 4. PROCEDIMENTO Obtenha quatro ramos ou menos iguais de tomateiro, feijoeiro, caruru de porco, quebra pedra ou outra planta qualquer sugerida pelo instrutor. Deixe-os murchar durante uma ou duas horas sobre mesa do laboratório. Quando os ramos estiverem “tombando” por falta de turgescência, submeta-os aos seguintes tratamentos. 1 2 . Mergulhe a base do primeiro em um copo contendo água. . Corte cerca de 5cm da base do segundo e mergulhe a extremidade cortada em um copo contendo água, como no caso anterior. 3 . Mergulhe em água a base do terceiro, corte cerca de 5cm (debaixo d’água) e deixe-o absorvendo água. 4 . Coloque a base quarto num frasco para vácuo (quítazato) contendo água até pela metade, tampe bem a boca do frasco com “massa plástica” (com cuidado para não quebrar ou amassar o caule), aplique vácuo durante 5-10 minutos, desligue o vácuo e deixe o ramo absorvendo a água do próprio frasco. Observe os quatro tratamentos continuamente durante uns 30 minutos. Explique detalhadamente as diferenças encontradas. 5. QUESTIONÁRIO 1. 2. 3. 4. 5. Dentro dos tratamentos aplicados, quais os ramos que recuperaram a turgescência mais rapidamente? Como você explica as diferenças na velocidade de recuperação da turgescência? Como você poderá correlacionar esse fenômeno com a teoria coeso-tenso-transpiratória de Dixon? Tendo em vista suas observações, que recomendação você faria a um floricultor quando ao período do dia mais indicado para cortar ramos de flores? Que explicação você daria para justificar sua recomendação? Como você trataria um ramo de flores para conservá-lo túrgido por mais tempo? 14 Prof. Dr. Roberto Cezar Lobo da Costa DESENVOLVIMENTO DE TENSÕES INTERNAS DE ÁGUA EM PLANTAS . 1. INTRODUÇÃO Durante o dia, a absorção de água pelo sistema radicular não compensa a perda de água pela transpiração nas folhas, o que provoca diminuição do potencial hídrico nestas. Uma vez que nos elementos dos vasos do xilema a água deve manter-se coesa (Teoria de Dixon), a queda do potencial hídrico nas folhas é transmitida para os elementos dos vasos (xilema), originando tensões internas. A contração dos troncos de muitas espécies florestais, durante o dia, é uma prova de que se encontram sob tensão. Qualquer fator que promova mais rápida perda de água do que absorção, ou que reduza a absorção (falta de água no solo, por exemplo) leva ao desenvolvimento de tensões internas de diferentes magnitudes. Essas tensões podem alcançar magnitudes bastante baixas (valor negativo), o que pressupõe uma alta resistência mecânica dos vasos, impedindo o seu colapso. 2. OBJETIVO Demonstrar a existência de tensões internas na planta, através da absorção de corante solúvel em água. 3. MATERIAL NECESSÁRIO Vasos com plantas de girassol ou outra planta sugerida pelo instrutor (6), com comprimento de aproximadamente 30 cm. Solução de azul de metileno a 1%. Placas de Petri (6). 4. PROCEDIMENTO Tome 6 (seis) vasos com plantinhas de girassol, com 30 cm de comprimento, três dos quais tenha sido submetidos a déficit hídrico ( 2 tratamentos, sendo 1 com água e outro sem água com três repetições). Coloque as plantas com déficit de água em posição horizontal, imergindo a porção mediana na solução de azul de metileno a 1% contida na placa de Petri. Com uma lâmina de barbear, corte a haste (caule) da planta, mantendo, as secções cortadas submersas na solução de azul de metileno a 1% por um minuto. Retire as partes seccionadas e lave-as rapidamente em água de torneira, enxugando-as com papel absorvente. Remova as folhas da parte terminal e seccione ao nível do solo a parte inferior. Tome a parte apical e faça cortes transversais de 0,5 cm de comprimento. Examine cuidadosamente as superfícies seccionadas (de preferência com o auxílio de uma lupa) e determine a presença do azul de metileno nos feixes vasculares. Registre a distância máxima, a partir do seccionamento original, em que o mais leve indício do corante é observado em qualquer feixe, em direção ao ápice (movimento acrópeto). Proceda da mesma forma para determinar a distância do movimento do corante na parte inferior (movimento basípeto). Repita o processo para a planta com suprimento abundante de água e em todas as repetições. Apresente seus resultados na forma de desenho esquemático uma secção transversal da haste (caule), indicando principalmente os tecidos em que o corante é observado e/ou como tabela e discuta-os. 5. 1. 2. 3. 4. QUESTIONÁRIO. Em que tecido a solução de corante se movimenta? Caso o sistema fosse puramente físico (sem células vivas), as observações seriam diferentes? Que ocorreria caso a experiência fosse realizada com plantas submetidas a diferentes graus de deficiência hídrica? Dentre os dois tratamentos utilizados, em qual deles o corante atingiu maior distância, na direção do ápice das plantas de girassol? Como você explica sua resposta? 15 5. Quando se faz o corte no caule que esteja sob tensão interna de água, o corante sobe mais em direção do ápice do que da base? Explique. 6. Por que se desenvolvem maiores tensões internas de água na planta durante o dia do que durante a noite? 7. Tem-se observado, que o diâmetro dos troncos de certas árvores contraem-se durante o dia. Como se explica esse fato? 8. Que outro método experimental você poderia usar para provar que a perda de água na planta (transpiração) induz o desenvolvimento de tensões internas de água? 9. Por que aboboreiras apresentam murchas durante o período da tarde, em dias claros de verão, mesmo sabendo-se que há boa disponibilidade de água no solo? 10. Comente um critério fisiológico que você poderia empregar para diagnosticar deficiência de água no solo. 16 Prof. Dr. Roberto Cezar Lobo da Costa “MEDIÇÃO DA POTÔMETRO” TRANSPIRAÇÃO 1. PELO MÉTODO DO INTRODUÇÃO A intensidade na troca de gases varia na diferentes formas de vida. Nos vegetais, o intercâmbio de gás carbônico e de oxigênio é diretamente proporcional ao vapor de água. Logo, as plantas com altas taxas de absorção de CO2 apresentam altas perdas por transpiração, o que torna implícito que elevados consumos de água aumentam a produtividade das culturas. A fotossíntese e a respiração envolvem processos químicos complexos, sensíveis e muitas variações, diferentemente da transpiração, que é mais simples, controlada principalmente por variáveis físicas ligadas à difusão dos gases. Pode-se considerar a transpiração como fluxo de água proveniente de um reservatório de capacidade limitada, o solo, a outro de capacidade ilimitada, a atmosfera, sendo a força impulsora o gradiente de potencial de água. Se o solo estiver úmido, este gradiente pode cair a zero durante a noite, mas com a chegada do dia e a água evaporando das plantas ao ar, haverá decréscimo nos potenciais e o conseqüente aumento no gradiente de potencial e no fluxo, desde as raízes até o caule, as folhas e a atmosfera. Apenas uma pequena fração, geralmente menos de 1% da água absorvida, usa-se nas reações metabólicas e, portanto, é responsável pelo aumento da biomassa. As perdas de água por transpiração ocorrem em qualquer parte da planta exposta à atmosfera externa, ressaltando-se os estômatos, seguidos, em pequena escala, da cutícula das folhas. O conjunto solo-planta-atmosfera, em termos práticos, é uma série de condutores por onde flui a água com resistências variáveis. Têm-se empregado diversos métodos para a avaliação da transpiração, dentre eles têm o do POTÔMETRO DE GANONG, onde uma bolha de ar é introduzida no tubo capilar e o movimento dessa bolha, registrado em escala, é usado como indicação da taxa de transpiração. Se o diâmetro do tubo capilar for conhecido, pode ser calculada a quantidade de água absorvida em um dado tempo (Q = vazão). Os potômetros de um modo geral, são usados tanto para plantas inteiras como para ramos cortados. Quando não se tem o controle da temperatura onde se realizará o experimento, existe a necessidade de um potômetro controle, sem plantas, que indicará possíveis mudanças no volume da água devidas às variações da temperatura ambiente (gradiente de temperatura). É importante que a água esteja à temperatura ambiente antes de se iniciar as medidas. As velocidades de absorção de água de um ramo cortado, no potômetro, não são necessariamente iguais às que estariam ocorrendo se o ramo estivesse preso à planta, porque as tensões no xilema e a resistência do sistema radicular aos movimentos de água são eliminadas pelo corte. Pode entrar ar em alguns vasos do xilema durante o corte, tornando-os não funcionais, aumentando desse modo à resistência global do caule. Por essa razão, é desejável, quando possível, usar plantas intactas. Esses experimentos não podem ser prolongados, devido à dificuldade de se arejar as raízes convenientemente. Com base no princípio de conservação da massa, onde a massa (ou peso) de um fluido que atravessa uma seção qualquer da corrente é sempre a mesma, podemos inferir, também, que o volume de líquido por unidade de tempo, que atravessa todas as seções de um fluxo de corrente, tem sempre o mesmo volume. A1V1 = Q1 A2V2 = Q2 Quantidades Q1 = Q2 A1V1 = A2V2 Q = A . V (área x volume) Ao se iniciar o experimento, como o mesmo não se prolongará por um intervalo de tempo muito grande, podemos inferir que a taxa de absorção é igual a taxa de transpiração, e ainda: Q=A.V . D2 A= 4 17 . D2 Q= x V 4 . D2 . V Q= 4 . D2 . Vm Q= x 10 -6 dm3/seg 4 . D2 . Vm Q= x 10 -6 L / seg 4 . D2 . Vm Q= x L / seg 4 = 3,1416 .... D = Diâmetro do tubo capilar (mm) Vm = velocidade média da bolha de ar (mm/seg) Q = taxa de transpiração = taxa de absorção de água 1. OBJETIVO Determinar a taxa de transpiração do ramo de uma planta através do método do potômetro de GANONG. 2. MATERIAL NECESSÁRIO Potômetro de GANONG. Tubo de vidro capilar graduado (Ф = 2 mm). Escala milimétrica. Becker de 1 L. Rolhas de borracha. Funil de separação. Plantas sugeridas pelo instrutor. Cronômetro. 3. PROCEDIMENTO Coloque o ramo de uma planta no potômetro de GANONG, preencha o mesmo com água de torneira e vede, hermeticamente, o potômetro com as rolhas de borracha. Introduza uma pequena bolha de ar no tubo 18 capilar, suspendendo-o temporariamente do Becker com água, de modo a posicioná-la na origem (se necessário, afaste a bolha para a extremidade direita do tubo capilar, abrindo, vagarosamente a torneira do funil de separação). Anote o deslocamento (em milímetro) da bolha e o tempo (em segundos) gasto nesse deslocamento. Repita o experimento, quantas vezes for necessário, deslocando a bolha para a origem e anote novamente a distância percorrida (em mm) e o tempo gasto (em segundos), por cada repetição. Calcule, a velocidade média ( Vm ), sabendo-se que a velocidade é o espaço dividido pelo tempo e após, a transpiração do ramo utilizado no experimento. V1 + V2 + ... + Vn Vm = n Vm = velocidade média da bolha de ar. V1 = velocidade da bolha na primeira repetição. V2 = velocidade da bolha na segunda repetição. Vn = velocidade da bolha na repetição n. n = número de repetições. 5. QUESTIONÁRIO 1. O que é transpiração e absorção de água pela planta e qual a relação existente entre esses dois processos? 2. Por que se torna difícil fazer a correlação transpiração/absorção de água pela planta, utilizando-se esse método? 3. Por que as velocidades de absorção de água de um ramo cortado, no potômetro, não são necessariamente iguais às que estariam ocorrendo se o ramo estivesse preso a planta? 4. Explique o mecanismo de transpiração em plantas de grande porte, como por exemplo, as “sequóias gigantes” 5. Construa e analise um gráfico, mostrando o andamento diário da transpiração, absorção e resistência estomática, em um dia típico de verão. 6. Qual a transpiração de um ramo de uma planta herbácea, sabendo-se que o mesmo quando submetido ao potômetro de GANONG, foi observado que a bolha de ar do aparelho, levou 5 minutos para deslocar-se em 15 cm no tubo capilar de 2 mm de diâmetro? 19 Prof. Dr. Roberto Cezar Lobo da Costa “EXSUDAÇÃO DA SEIVA DO FLOEMA” 1. INTRODUÇÃO Quando se corta um caule sadio de abóbora, o floema exsuda rapidamente. A exsudação começa com velocidade acima de 1000cm/hora, mas dentro de 2 minutos diminui e pára. Cortando-se uma fatia de um milímetro da base do caule da base do caule, o processo se renova. Pode-se repetir a operação por horas, e o volume total do exsudado coletado e muitas vezes maior do que o volume do floema do caule que foi removido nos cortes sucessivos. O fato descrito comprova a existência de pressão (positiva) no conteúdo do floema, e constitui uma evidência a favor da hipótese do fluxo de massa. A existência da pressão na seiva do floema é um requisito fundamental para a hipótese de Münch (fluxo por pressão). 2. OBJETIVO Verificar a existência da pressão (positiva) na seiva do floema. 3. MATERIAL NECESSÁRIO Álcool etílico comercial Lâmina de barbear Tubo de ensaio grande e folha de abóbora com pecíolo 4. PROCEDIMENTO Tome um tubo de ensaio contendo álcool comum até cerca da metade da altura. Corte a base do pecíolo de uma folha de abóbora usando uma lâmina de barbear, e introduza rapidamente o pecíolo no tubo com álcool. Observe, quando a exsudação parar, remova o pecíolo do álcool, corte uma pequena fatia de sua base e introduza novamente no álcool. A observação é mais fácil colocando-se o tubo contra a luz. 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. 7. 8. 9. De quais regiões do pecíolo se verifica a saída do exsudado? Por que a saída de exsudado paralisa depois de alguns minutos de ter feito o corte? Qual é o estado normal da seiva do floema, sob pressão ou sob tensão? Que o levou a essa conclusão? Se a folha estivesse murcha, mesmo assim poderia haver exsudação de seiva do floema? Que relação existe entre os dois fenômenos? Qual é a composição da seiva do floema? Por que se utiliza álcool para visualizar a saída do exsudado? Por que você não utiliza água destilada? De que modo os afídeos (pulgões) se alimentam das plantas e que relação tem isso com o estado da seiva no floema? Os vasos Laticíferos da seringueira estão sob pressão ou sob tensão? Justifique. Você poderia correlacionar a saída do exsudado com o modelo da teoria do fluxo em massa por pressão de Münch? 20 Prof. Dr. Roberto Cezar Lobo da Costa “CONSTRUÇÃO DE UM MODELO DA HIPÓTESE DO FLUXO POR PRESSÃO DE MÜNCH” 1. INTRODUÇÃO A hipótese do fluxo por pressão, levantada por E. Münch em 1926 é a mais difundida para explicar a translocação no floema. Ela implica um mecanismo passivo de transporte no floema e baseia-se num modelo real de fácil construção, ou seja, dois osmômetros interligados por um tubo. 2. OBJETIVO Construir e observar o funcionamento do modelo físico da hipótese do fluxo em massa por pressão (hipótese de Münch) 3. MATERIAL NECESSÁRIO Sacos de diálise (2), diâmetro 2-3cm, comprimento 15cm (outro tipo sugerido pelo instrutor, por exemplo: tripa artificial) Solução de sacarose (25%) Solução de bicromato de potássio (coloração levemente alaranjada) copo (2) Tubo em “U” 2-3mm 4. PROCEDIMENTO Coloque em água por uma hora duas tiras de tubos de membrana de diálise (ou outro tipo de membrana sugerido pelo instrutor) de 15cm de comprimento. Amarre cuidadosamente uma extremidade de tiras de maneira a não deixar qualquer vazamento. Encha um dos sacos com solução de sacarose concentrada e amarre vigorosamente a outra extremidade na parte terminal de uma vara de vidro em forma de “U”. Encha o outro saco de diálise com água de torneira e amarre sua extremidade no outro terminal do tubo em “U”. Faça a imersão do saco com sacarose em um copo com água contendo a solução de bicromato de potássio. O saco, contendo água, deve estar imerso em um copo com água. Disponha os copos de tal maneira que o que receber o saco com água fique num nível superior a 10-15cm do copo com solução de sacarose. Observe o sistema em operação durante duas horas. 5. QUESTIONÁRIO 1. Como as três partes desse modelo podem ser correlacionados com as partes de uma planta viva? 2. Qual o papel do bicromato de potássio colocado em água no copo o com saco de sacarose? 3. Na hipótese do fluxo em massa de Münch, qual é a força matriz do movimento? Qual razão existe para que seja denominada “Fluxo em massa”. 4. Qual a evidência de que no modelo artificial de Münch, a translocação de solutos orgânicos se dá sob pressão e não sob tensão? 5. No modelo artificial de Münch o transporte de solução de sacarose de uma célula para a outra paralisa após algum tempo. Como se explica que, numa planta viva, o fluxo se mantenha sustentado, sempre da fonte (folha) para o dreno (raízes, por exemplo)? 21 METABOLISMO 22 Prof. Dr. Roberto Cezar Lobo da Costa “SEPARAÇÃO DE PIGMENTOS CROMATOGRAFIA EM PAPEL” 1. DE CLOROPLASTOS POR INTRODUÇÃO Os pigmentos dos cloroplastídeos localizam-se nos tilacóides, associados às porções lipoproteicas das membranas. Suas principais funções são a absorção da energia radiante e a transferência desta energia a uma série de compostos oxiredutíveis, os quais dão origem ao O 2, ATP e NADPH +H+. Dos pigmentos das plantas superiores, existentes nos cloroplastídeos, o único que participa diretamente da fotossíntese é a clorofila a, enquanto a clorofila b e os caratenóides participam indiretamente, transferindo energia luminosa à clorofila a. Em virtude das diferentes estruturas químicas que estes pigmentos apresentam, suas cores são bastante distintas. A clorofila a é verde-azulada, a clorofila b é verde-amarelada, as xantofilas são amarelas e os carotenos alaranjados. Além de suas cores, estes pigmentos apresentam diferentes afinidades, quer pela água, quer por solventes orgânicos. Uma técnica de separação destes pigmentos é a cromotografia em papel. Essa técnica tem revolucionado a separação ou detecção de produtos de reação, a determinação e a identificação de compostos, foi desenvolvida por A.J.P. Martin na Inglaterra em 1944. Ela consiste no uso de tiras de papel de filtro como suporte de uma fase aquosa, enquanto uma fase móvel orgânica se dirige para o ápice. A separação está baseada na partição, líquido-líquido dos compostos. A razão entre a distância percorrida pelos compostos e a distância percorrida pela frente do solvente é chamada de valor Rf do composto. 2. OBJETIVO Separar e identificar alguns pigmentos existentes nos cloroplastídeos, por meio de cromografia de papel. 3. MATERIAL NECESSÁRIO Folhas de plantas sugeridas pelo instrutor (3) Tesoura Areia lavada Almofariz Acetona Algodão Funil de vidro (1) Tubo de ensaio (1) 4. PROCEDIMENTO Tome 3 folhas de plantas sugeridas pelo Instrutor. Pique as folhas com uma tesoura e junte os pedaços com um pouco de areia num almofariz. Coloque um pouco de acetona e homogenize. Filtre o homogenado em algodão com funil de vidro e receba o filtrado num tubo de ensaio. Corte uma tira de papel de filtro de aproximadamente 20 por 4cm, tomando o cuidado de manuseálo o mínimo possível (a gordura da mão atrapalha). Com uma pipeta Pasteur, faça umas 5 a 10 camadas de extrato dos pigmentos foliares sobre a origem do cromatograma. As camadas de pigmentos deverão ser estreitas e concentradas, devendo-se, portanto ventilar levemente o papel, após espalhar cada camada. Tome 5 a 10ml de tetracloreto de carbono (solvente) no fundo de cuba. Fixe a tira de papel de filtro numa placa de petri e introduza-o no interior da cuba até que a sua extremidade encoste, no solvente, mas sem mergulhar a origem. Após 1 a 2 horas identifique os pigmentos, tendo em vista que a clorofila a é verde-azulada, a clorofila b é verde-amarelada, o caroteno laranja e a xantofila amarela. 23 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. Transcreva a estrutura molecular dos pigmentos dos cloroplastídeos. Os corotenos podem ser considerados hidrocarbonetos? Como se pode explicar a separação pela cromatografia de papel com base na estrutura molecular de cada composto? Por que as duas clorofilas não se separam bem por cromatografia em papel? Caracterize as fases, estacionárias e móvel do sistema e como estarão atuando na separação dos pigmentos? Caracterize “Frente”, “origem” e “Valor Rf” 24 Prof. Dr. Roberto Cezar Lobo da Costa “PIGMENTOS HIDROSSOLÚVEIS TECIDOS VEGETAIS” E LIPOSSOLÚVEIS EM 1. INTRODUÇÃO Além das clorofilas e carotenóides, as plantas contêm outros pigmentos tais como, os flavonóides, que constituem uma série de compostos relacionados, solúveis em água, tendo como estrutura básica um esqueleto C15 de flavona. Os flavonóides ocorrem universalmente nas plantas superiores, mas são incomuns nos Criptógamos. Encontram-se dissolvidos em água no suco celular, tanto de folhas, como frutos, raízes e especialmente flores, dando a estas as cores, características. Destes pigmentos, os mais conhecidos são as Antocianinas, cada uma delas com uma cor distinta que varia desde o azul ao vermelho, embora alguns sejam incolores. Sua coloração é sensível ao pH. Em geral a planta contém vários destes pigmentos. Sua presença é importante não só para beleza de flores. Mas, também, como atrativo para insetos polinizadores. Além disto, parecem ter função como inibidores de bactérias e recentemente têm sido usadas como marcadores por taxonomistas, na classificação das plantas. As Antocianinas ocorrem como glicosídeos, formados comumente com uma ou duas unidades de glicose ou galactose. A parte molecular sem o açúcar ainda mantém a coloração e se denomina antocianidina. O acúmulo de antocianinas em caules, folhas e frutos são estimulados por altos níveis de luz, por deficiências de certos nutrientes (nitrogênio, fósforo, enxofre e outros) e por temperaturas baixas. O acúmulo depende de uma certa predisposição de fundo genético. 2. OBJETIVO Observar as classes de pigmentos lipossolúveis e hidrossolúveis em tecidos vegetais, por meio de partição em solventes não miscíveis. 3. MATERIAL UTILIZADO Homogeinizador (liquidificador) Tubos de ensaio (2) Proveta de 50 ou 100ml (1) Funil separador(1) Funil de vidro(1) Folhas coloridas Acetona a 80% Éter etílico Papel de filtro Musselina (tecido leve e transparente) Pipetas de 5 ou 10ml (2) 4. PROCEDIMENTOS Homogenize 10 a 20g de folhas coloridas em 50ml ou 100ml de acetona a 80%. Filtre o homogenado através de oito camadas de musselina e filtrando novamente através de duas camadas de papel de filtro. Tome 20ml do filtrado num funil separador e adicione, escorrendo pelas paredes, igual quantidade de éter etílico e igual quantidade de água destilada. Proceda a movimentos leves de rotação no funil separador. Observe a separação das camadas. Num tubo de ensaio tome por estimativa 5ml da camada inferior e dilua com igual volume de água destilada. Proceda da mesma forma com a camada superior. Observe as diferenças. 25 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. 7. 8. Esquematicamente, mostre a partição de pigmentos lipo e hidrossolúveis nas fases do solvente. Onde se localizam, na célula, os pigmentos lipossolúveis das plantas? Quais são esses pigmentos? Em que parte da célula se localizam os pigmentos hidrossolúveis das plantas? Quais são esses pigmentos? Em que parte da célula se localizam os cloroplastídeos? Faça um esquema da célula vegetal, mostrando os seus principais constituintes. Por que podemos afirmar, com certeza, que as antocianinas não participam da fotossíntese? Por que certos frutos ficam mais vermelhos quando expostos a luz solar? Certas plantas possuem folhas de cores diferentes do verde. A que se devem essas cores? Onde se localizam os possíveis pigmentos? Se você fizesse um estrato de pétalas de uma flor avermelhada, que tipo de pigmentos seriam encontrados ao fazer-se sua separação por partição em solventes? Que aconteceria se você alterasse o pH da solução? 26 Prof. Dr. Roberto Cezar Lobo da Costa “FOTOSSÍNTESE: PROVA DO CONSUMO DE CO2” EM PLANTAS TERRESTRES” 1. INTRODUÇÃO Na fotossíntese, a luz (Radiação eletromagnética) é utilizada para transferir elétrons para a redução de NADP+ a NADPH2, com a oxidação da água e gerar energia para a formação de ATP, a partir da ADP e H2PO4-. Esse “poder assimilador” (elétrons e energia) é usado para reduzir CO2 a carboidratos, com um ganho líquido de energia (energia química). O processo como um todo pode ser representado pela equação geral: luz CO2 +2 H2O (CH2O)n + H2O + O2 cloroplasto Observa-se que o processo fotossintético compreende (3) três passos principais, a saber: 1. Processo fotoquímico, que resulta na conversão da energia luminosa em energia química pela formação NADPH2 e ATP. O processo envolve pigmentos para a absorção da luz (reação biofísica), cofatores e enzimas diversas (reações químicas e bioquímicas); os principais pigmentos responsáveis, pela absorção de luz são as clorofilas e posteriormente os carotenóides. 2. Processo físico de transporte, por difusão do CO 2 do ar externo até o centro de reação nos cloroplastídeos. 3. Processo bioquímico: relacionados com a redução do CO 2 e consta de várias reações enzimáticas. Os fatores externos que afetam diretamente a fotossíntese, como a luz, concentração de CO2 e temperatura tem efeito seletivo sobre cada um desses processos parciais. O processo fotoquímico é afetado apenas por luz. O processo difusivo é função da diferença de concentração de CO 2 no ar externo (ou turbulento) e no centro de reação dos cloroplastídeos, sendo levemente afetado pela temperatura. Já os processos bioquímicos são afetados principalmente pela temperatura. O estado hídrico da folha (medido pelo seu potencial hídrico) tem um efeito indireto no processo de transporte de CO2 através da abertura dos estômatos, que opõe uma maior ou menor resistência ao fluxo de gases e de vapor de água, do interior da folha para o meio externo. Os estômatos são, portanto reguladores tanto da fotossíntese quanto da transpiração. Um método simples para determinar o consumo de CO 2 em plantas terrestres utiliza-se uma solução de vermelho de cresol, que é indicadora do pH. Essa solução tem cor púrpura e serve para indicar o teor de CO2 no ar. Quando o CO2 aumenta, a solução torna-se mais ácida e a sua cor passa para amarelo (fotossíntese menor que a respiração); quando o CO 2 diminui, torna-se mais alcalina e sua cor passa para púrpura mais intensa (fotossíntese maior que a respiração). 2. OBJETIVO Determinar a fotossíntese de plantas terrestres pelo consumo de CO2. 3. MATERIAL UTILIZADO Tubo de ensaio grande( 4 ) Luminária ( 1 ) Solução indicadora de vermelho de cresol (NaHCO3 – 84mg/L KCl – 7,46g/L: vermelho cresol – 10mg/L); pH ajustado à 8,1 Suporte para tubos de ensaio ( 1 ) Folhas de plantas terrestres sugeridas pelo Instrutor Rolhas de borracha com fixador de folhas. 27 4. PROCEDIMENTO Tome 4 tubos de ensaio, munidos de rolha e coloque em cada um 3mL do reagente de cresol. Mantenha os tubos abertos durante duas horas para que haja equilíbrio entre o teor de CO 2 do meio e da solução. Em dois tubos coloque uma ou mais folhas de plantas suspensas com um fixador, tomando cuidado para que não entre em contato com a solução. Feche os 4 tubos, enrole completamente, um tubo com folha e outro sem folha de papel alumínio (tratamento escuro) e os outros dois devem ficar expostos à luz. Observe o que acontece com a solução após duas horas. 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. A solução indicadora de vermelho de cresol é bastante vermelha em meio alcalino, e amarela em meio ácido. Por que as folhas imprimem coloração amarelada a este tipo de solução quando mantidos no escuro? Escreva a equação geral da fotossíntese? Faça um desenho esquemático dessa experiência, indicando cada componente (material utilizado). Por que plantas de sol, quando colocadas a sombra, geralmente morrem? Como se prepara uma solução indicadora de vermelho de cresol? Por que a coloração indicadora de vermelho de cresol torna-se avermelhada quando a folha for iluminada e torna-se amarela quando a folha é mantida no escuro? Justifique sua resposta. 28 Prof. Dr. Roberto Cezar Lobo da Costa “FOTOSSÍNTESE: PRODUÇÃO DE O2 EM PLANTAS AQUÁTICAS” 1. INTRODUÇÃO Sabe-se hoje que, na presença de luz, os cloroplastídeos na planta formam um poder redutor o NADPH, pela redução do NADP+ e oxidação da água, com liberação de O2. Essa redução envolve a transferência de 4 elétrons por molécula de O2 liberada. Esta reação com liberação de O2, que ocorre na primeira fase da fotossíntese dá-se o nome da fotólise da água ou reação de Hill. Como a solubilidade do O 2 na água é pequena, a medição da qualidade deste gás desprendido pelas plantas aquáticas dá uma boa indicação da intensidade de fotossíntese. 2. OBJETIVOS a) Demonstrar a fotossíntese de plantas aquáticas pelo desprendimento de O 2. b) Saber construir um gráfico a partir dos resultados obtidos. 3. MATERIAL NECESSÁRIO Elódea sp. ou cabomba ou outra planta aquática sugerida pelo Instrutor, recentemente colhida. Becker de 600 mL, tubo de vidro de forma alta. Lâmina de barbear. Tubo de ensaio grande. Bicarbonato de sódio 2% (NaHCO3) Funil de vidro. Refletor com lâmpada de 200W. 4. PROCEDIMENTO Tome um Becker ou tubo de vidro e encha-o com água da torneira e solução de Bicarbonato de sódio 2%, na proporção de 1:1. Tome alguns ramos recém-cortados de Elódea sp ou outra planta sugerida pelo Instrutor, coloque-os sob um funil de vidro invertido e mergulhe o conjunto no Becker ou tubo de vidro. A haste do funil deve ficar totalmente imersa. Encha com água um tubo de ensaio, tape sua abertura com o dedo, inverta-o sobre a haste do funil, retirando o dedo lentamente depois de mergulhado, de modo a ficar totalmente cheio de água. Coloque o conjunto ao redor da lâmpada e observe o que acontece com a planta e a água do tubo. Determine o número de bolhas produzidas por minuto, durante três minutos consecutivos, com a planta situada a 90cm da fonte de luz, 30cm e 10cm. Cada vez que a lâmpada for mudada de posição, esperar cinco minutos (5”) antes de iniciar nova contagem. Faça um gráfico e uma tabela mostrando os resultados de seu experimento, colocando na ordenada o número médio de bolhas por minuto e na abscissa a distância em cm. 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. 7. O que é reação de Hill? Qual é o oxidante natural de Hill? Qual é o papel da luz e dos cloroplastos na fotossíntese? Que gás forma as bolhas que se desprendem de um ramo de Elódea iluminado? Que evidências você obteve como suporte de sua afirmação? Por que o aumento de intensidade luminosa faz também aumentar a fotossíntese em Elódea. Por quem, ao medir-se a taxa de fotossíntese em resposta à variação na intensidade de luz, deve-se sempre colocar o tubo contendo Elódea em um copo com água? Faça um desenho esquemático dessa experiência, indicando cada componente (material utilizado). Escreva a equação química da fotólise da água. 29 Prof. Dr. Roberto Cezar Lobo da Costa “DETERMINAÇÃO DO ESPECTRO DE ABSORÇÃO DOS PIGMENTOS FOTOSSINTÉTICOS E DO TEOR DE CLOROLAS a, b, (a + b) e RAZÃO CLOROFILA a CLOROFILA b EM FOLHAS DE CUPUAÇUZEIRO SUBMETIDAS AO SOMBREAMENTO E A PLENO SOL.” 1. INTRODUÇÃO As folhas absorvem quase que totalmente as radiações das faixas do azul-violeta e do amarelovermelho, mas transmitem ou refletem quase que toda a radiação da faixa do verde. É nos cloroplastos; estruturas anatômicas encontradas nas folhas; que encontramos os pigmentos responsáveis por essa absorção: caroteno, xantofila, clorofila a e clorofila b. Cada fóton da radiação absorvida irá excitar uma molécula da clorofila ou carotenóide nos tilacóides dos cloroplastos. Pode-se purificar um pigmento e medir, com auxílio de um espectrofotômetro, a sua absorbância relativa nos diferentes comprimentos de onda, e assim construir um espectro de absorção. Quando se estuda o efeito da luz de diferentes comprimentos de onda (usando quantidades não saturantes) num processo, por exemplo, fotossíntese, obtem-se o espectro de ação. O espectro de ação comparado com o espectro de absorção do pigmento, ajuda a elucidar a possível participação do pigmento no processo. Os pigmentos dos cloroplastos localizam-se nos tilacóides, associados às porções lipoprotéicas das membranas cloroplastidiais. Suas principais funções são a absorção da energia luminosa e a transferência desta energia a uma série de compostos oxirredutíveis, os quais dão origem ao O 2, ATP e NADPH2. Dos pigmentos das plantas superiores existentes nos cloroplastos, o único que participa diretamente da fotossíntese, é a clorofila a, enquanto a clorofila b e os carotenóides (caroteno e xantofila) participam indiretamente, transferindo energia luminosa à clorofila a. 2. OBJETIVOS a) b) Determinar o espectro de absorção dos pigmentos dos cloroplastos de folhas de plantas de cupuaçuzeiro cultivado a pleno sol e na sombra. Determinar o teor de clorofilas a, b, (a + b) e razão Clorofila a / Clrorofila b de folhas de plantas de cupuaçuzeiro cultivado a pleno sol e na sombra. 3. MATERIAL NECESSÁRIO Acetona P.A. Espectrofotômetro (visível) Almofariz com pistilo Bomba de vácuo Papel alumínio Isopor Gelo Balança semi-analítica Balão volumétrico de 25 mL Plantas de cupuaçuzeiro cultivadas a pleno sol e na sombra 4. PROCEDIMENTO Coletar algumas folhas (3 amostragens de cada planta = repetições), enrolar em papel alumínio, identificar e colocar sobre o gelo, dentro de um isopor e levar ao laboratório de Fisiologia Vegetal. A extração e o teor dos pigmentos serão feitos pelo método descrito por ARNON, 1949. Pesar 100 mg de cada amostra, colocar em um almofariz, contendo acetona 80%, macerar e posteriormente, filtrar a vácuo (repetir essa filtração até que o precipitado fique bege) (TODA A EXTRAÇÃO DEVE SER FEITA SOBRE O GELO E NO ESCURO). Transfira o sobrenadante para um balão volumétrico de 25 mL e aferir o volume. Utilizando esse extrato; denominado extrato cetônico de pigmentos foliares; meça a absorbância nos comprimentos de 30 onda na faixa de 390 a 700 nm, leituras a cada 20 nm de intervalo, com o auxílio de um espectrofotômetro. Utilize acetona 80% para ajustar o zero de absorbância. Nos pontos de maior absorção, faça leitura a cada 5 nm. Construa um gráfico com os seus dados, colocando nas abscissas os comprimentos de onda () e nas ordenadas, as respectivas absorbâncias (A). Posteriormente, com uma outra alíquota do extrato cetônico, ler em absorbância a 644 nm e 662 nm e o branco para zerar o aparelho é acetona 80%. As concentrações de clorofila a, clorofila b clorofilas (a + b) e razão Cl a/ Cl b serão determinadas conforme as relações a seguir (ARNON 1949) e expressas em mg de Clorofila / g MF: Clorofila a =(9,78 x A 662 - 0,99 x A 644) x 0,25 Clorofila b =(21,4 x A 644 - 4,65 x A 662) x 0,25 Clorofilas (a + b) = (5,13 x A 662 + 20,41 x A 644) x 0,25 5. QUESTIONÁRIO 1. Quais são as faixas de comprimento de onda que os extratos de pigmentos dos cloroplastídeos mais absorvem? 2. Por que a absorbância na região do verde é menor? 3. Os carotenóides apresentam um espectro de absorção semelhante ao das clorofilas? 4. Quais são os comprimentos de onda mais absorvidos pelos carotenóides (carotenos e xantofilas)? 5. Se quisermos quantificar as clorofilas a e b de um extrato cetônico de pigmentos por meio de um espectrofotômetro, pode-se utilizar comprimentos de onda na faixa da luz azul? E vermelho? Justifique sua resposta. 6. Qual é o princípio básico do funcionamento de um espectrofotômetro? 7. Transcreva a estrutura molecular dos pigmentos dos cloroplastos. 8. Os carotenóides podem ser considerados hidrocarbonetos? Por que? 9. Em que parte dos cloroplastos se localizam os pigmentos fotossintéticos? Mostre através de uma figura esquemática essa localização. 10. Faça um desenho esquemático de um cloroplastídeo (cloroplasto), mostrando seus principais constituintes. 31 Prof. Dr. Roberto Cezar Lobo da Costa DETERMINAÇÃO DO PONTO DE COMPENSAÇÃO LUMINOSO EM FOLHAS ISOLADAS DE PLANTA SUPERIOR. 1. INTRODUÇÃO A taxa fotossintética de folhas isoladas pode variar de acordo com a intensidade luminosa, se expostas ao ar atmosférico normal (320 ppm de CO2) com exceção das Crassuláceas, que fixam o CO2 mesmo em total obscuridade. A intensidade luminosa na qual a fotossíntese é igual a respiração (troca de CO 2 entre a folha e o meio ambiente é zero) é chamado de ponto de compensação luminoso. Este ponto varia com as espécies, com a intensidade luminosa durante o crescimento, com a temperatura e com a concentração de CO 2 . Somente acima deste ponto pode ocorrer aumento no peso da matéria seca das plantas. Um método simples para determinar o ponto de compensação luminoso utiliza-se uma solução de vermelho de cresol, que é indicadora de pH. Essa solução tem cor púrpura e serve para indicar o teor de CO 2 no ar. Quando o CO2 aumenta, a solução torna-se mais ácida e sua cor passa para amarelo (fotossíntese menor do que a respiração); quando o CO2 diminui, torna-se mais alcalina, e a sua cor passa a púrpura mais intensa (fotossíntese maior do que a respiração). Se não ocorrer variação em sua cor, significa que o CO 2 do ar permaneceu constante (fotossíntese igual à respiração). 2. OBJETIVO Determinar o ponto de compensação luminoso e verificar o efeito do déficit hídrico sobre a fotossíntese de folhas isoladas. 3. MATERIAL NECESSÁRIO Folhas de plantas sugeridas pelo Professor. Solução indicadora de vermelho de cresol composta de NaHCO 3 (84 mg/L) + KCl (7,46 g/L) + vermelho de cresol (10 mg/L); ajustando o pH à 8,1. Tubos de ensaio grande. Suporte para os tubos de ensaio. Rolhas de cortiça ou borracha com suporte para as folhas. Papel alumínio. Pipetas graduada de 10 mL. Lâmpada de 200 W. Abajur para colocar a lâmpada. 4. PROCEDIMENTO Coloque 2 mL da solução indicadora de vermelho de cresol em todos os tubos de ensaio, fechando-os bem com a tampa de cortiça ou borracha. Deixe o primeiro tubo como testemunha. Fixe um segmento de folha túrgida, ou a própria folha (dependendo do tamanho) em cada um dos tubos seguintes e coloque-os à distâncias de 50, 100, 150, 200 e 250 cm da fonte luminosa. Proceda do mesmo modo com um outro tubo, mas enrole-o completamente em papel alumínio (tratamento escuro), colocando-o a 100 cm da fonte. Tome num outro tubo um segmento de folha murcha e coloque-o frente à luz forte. Tome um tubo de ensaio que contenha apenas a solução indicadora, e sopre-o seguidamente observando a mudança de coloração. Após 2 horas ou mais um pouco, observe a coloração da solução indicadora nos diversos tratamentos e determine o ponto de compensação luminoso da(s) espécie(s) em estudo. 32 5. 1. 2. 3. 4. 5. 6. 7. 8. QUESTIONÁRIO Que é ponto de compensação luminoso? Se o ponto de compensação luminoso da planta é 500 lux, o que significa isso? Por que plantas de sol, quando colocadas à sombra, geralmente morrem? A solução indicadora de vermelho de cresol é bastante vermelha em meio alcalino, e amarela em meio ácido. Por que pedaços de folhas imprimem coloração amarelada a este tipo de solução quando são mantidas no escuro? Plantas mantidas sob intensidade luminosa abaixo do ponto de compensação luminoso não sobrevivem. Por que? Sob um dossel florestal, a intensidade média de luz incidente é de 3.000 lux. Dispõe-se de duas espécies arbóreas cujos pontos de compensação de luz são: A – 5.000 lux B – 1.500 lux Qual das duas teria condições de germinar e estabelecer-se sob a floresta? Justifique sua resposta. Determinou-se o ponto de compensação de luz de uma folha a 20ºC; posteriormente o ponto de compensação de luz da mesma folha foi determinado a 40ºC. Haveria alguma alteração nos valores medidos? Justifique sua resposta. Espécie Grama 50cm 100cm 150cm 200cm 250cm Capim Colonião Samambaia Cacau Café Acássia Obs: verificar com o auxílio de um luxímetro quando vale em lux cada distância. Murcha Escuro 33 Prof. Dr. Roberto Cezar Lobo da Costa “ATIVIDADE DESHIDROGENATIVA EM SEMENTES DE MILHO (Zea mays) E ATIVIDADE DE CATALASE EM TUBÉRCULOS DE BATATINHA (Solanum tuberosum L.)” 1. INTRODUÇÃO A degradação enzimática da molécula de glicose na respiração é fundamentalmente um processo de oxidorredução, em que o carbono é oxidado do nível de (CH 2O) a CO2 e o oxigênio é reduzido de O2 a H2O. Portanto, enzimas do grupo das oxirredutases, incluindo principalmente deshidrogenases e oxigenases, atuam em diversos passos metabólicos da seqüência degradativa. Além de oxirredutases, outras enzimas participam do processo respiratório em plantas. Alguns corantes agem como aceptores de hidrogênio, mudando de cor com a sua redução. Sais de tetrazólio (TTC), incolores quando oxidados, produzem sais de formazana insolúveis e coloridos, quando reduzidos. Com o uso de sais de tetrazólio, que são aceptores de hidrogênio, é possível verificar a presença “in situ” da atividade de deshidrogenases, pois as formazanas precipitam-se onde ocorre essa atividade. A presença de deshidrogenases ativas é considerada sinal de vitalidade do tecido vegetal. As enzimas deshidrogenases catalisam reações bioquímicas do tipo: B H2 + A+ (substrato reduzido) (aceptor oxidado) B+ + AH2 (produto oxidado) (aceptor reduzido) Durante a respiração, pode haver formação de peróxido de hidrogênio (H 2O2), que é tóxico para as células. Sabe-se que esta substância é um potente inibidor de muitas enzimas, devendo existirportanto um mecanismo enzimático nos tecidos que promova sua destruição. Há evidências de que as células geralmente; contém enzimas chamadas catalases, que utilizam H2O2 como substrato: 2 H2O2 CATALASE 2 H2O + O2 Outras funções de catalases nas plantas superiores ainda não estão bem definidas ou determinadas. 2. OBJETIVOS a) Verificar a presença e localização da atividade de deshidrogenases em sementes de milho. b) Determinar a presença e observar a atividade de catalases em tubérculos de batatinha. 3. MATERIAL NECESSÁRIO Sementes de milho, embebidas durante 12-24 horas, em água corrente de torneira. Tubos de ensaio (2) ou pequenos frascos de boca larga. Solução a 1% de cloreto de 2,3,5-trifenil-tetrazólio (TTC). Lâmina de barbear. Água oxigenada a 20 volumes. Placa de Petri (1). Tubérculo de batatinha. 34 4. PROCEDIMENTO Tome 10 sementes de milho embebidas de véspera e ponha em água fervente (100ºC), deixando aí por 5 minutos. Com uma lâmina de barbear, corte cada semente longitudinalmente, num plano perpendicular às faces chatas, expondo o eixo maior do embrião. Faça o mesmo com outro lote de sementes embebidas, mas que não sofreram fervura. Conserve os lotes separados. Emirja as sementes cortadas em solução de TTC. Utilize solução bastante para cobrir as sementes. Observe as mudanças de cor que ocorrem com tempo. Faça um esquema da distribuição da coloração vermelha nas sementes vivas (tome casos típicos se por ventura houver diferenças entre as sementes). Usando uma placa de Petri, cubra uma fatia fina de tubérculo de batatinha com uma solução diluída (30:1) de peróxido de hidrogênio 20 V. A evolução de bolhas de oxigênio denota a presença da catalase. Repita a operação com uma fatia de batatinha que tenha sido anteriormente fervida por 5 minutos. Interprete os resultados. Faça um desenho esquemático dos seus resultados. 5. QUESTIONÁRIO 1. 2. 3. O teste do TTC é específico para determinar a atividade de que tipo de enzima? Por que? Por que o teste do TTC pode ser usado para indicar a vitalidade de sementes? Quando sementes de milho divididas ao meio são colocadas em solução de TTC (incolor), apareceu coloração vermelha em certas regiões das sementes. Que tipo de reação é essa? Em que regiões da semente apareceu a coloração? 4. Zonas meristemáticas de raízes vivas apresentam reação positiva ao teste do TTC. Partes suberosas de raízes velhas dão resultado negativo ao mesmo tipo de teste. Explique esses resultados. 5. Dê o nome de pelo menos três (3) deshidrogenases que você conhece e por que o teste do TTC se presta muito bem para determinar a atividade dessas enzimas? 6. Escreva a equação geral para a ação de uma deshidrogenase. 7. Dê a reação da catalase, indicando o substrato e o produto dessa reação. 8. Cobrindo-se fatias de batatinha com água oxigenada, observa-se maior evolução de bolhas de oxigênio nos tecidos da periferia do que nos tecidos internos. Por que? 9. Que diferenças existem entre catalase e deshidrogenase quanto às reações que catalisam? 10. Explique a principal diferença entre enzimas “pré-existentes” e sintetizadas “de novo”. 35 Prof. Dr. Roberto Cezar Lobo da Costa “ATIVIDADE DA REDUTASE DO NITRATO EM FOLHAS PLANTAS SUPERIORES SUBMETIDAS AO ESTRESSE HÍDRICO” 1. INTRODUÇÃO O nitrogênio inorgânico é normalmente absorvido pelas plantas na forma de nitrato (NO3-), embora sob certas circunstâncias, íons amônio(NH4+) possam ser assimilados. A seqüência global da absorção do nitrogênio inorgânico no material orgânico pode ser resumida nas seguintes seqüências de reações: a) Redução do nitrato, via nitrito à amônio b) Assimilação de amônia no glutamato c) Transaminação do glutamato para aminoácidos d) Síntese de outros aminoácidos. Além disto, um número de bactérias e microorganismos simbióticos são capazes de reduzir o N 2 atmosférico a amônio. No caso das leguminosas, e outras plantas superiores o microorganismo fixador de nitrogênio é encontrado nos nódulos das raízes. Para a maioria das plantas no seu meio ambiente natural, o nitrato é a fonte usual de nitrogênio. O nitrato tem que ser transformado em amônio antes que possa se combinar com os compostos de carbono, de modo a formar os vários componentes nitrogenados da célula. O processo é conhecido como redução assimilatória do nitrato para diferencia-lo da redução do nitrato (tipo respiratório) feito por vários tipos de bactérias, as quais, sob micro-aerofilia ou condição anaeróbias, usa nitrato como um aceptor de elétrons no lugar do oxigênio molecular. Pode-se estimar que as plantas assimilam 1010 toneladas de nitrato por ano. A redução assimilatória do nitrato ocorre nas plantas superiores, algas e várias bactérias, fungos e leveduras. O processo pode ser resumido do seguinte modo: (+5) (+3) (-3) NO3ˉ 2eNO2ˉ 6eˉ NH4+ RN RNi Isto envolve a participação seqüencial de duas metaloprotéinas – redutase do nitrato e redutase do nitrito. A fonte fisiológica de elétrons é a piridina nucleotídeo reduzido ou ferredoxina reduzida, isto vária de acordo com o tipo de enzima. O ATP não é necessário para a redutase do nitrito ou nitrato. Ambas as reações ocorrem com decréscimo de energia livre. Em eucarióticos, a redutase do nitrato é um complexo enzimático (PM ~ 200 – 300.000 D), possuindo flavina (FAD), grupo heme (citocromo b 557) e molibdênio. Elétrons provenientes do NAD(P)H (da fotossíntese ou oxidação dos carboidratos) são transferidos para o nitrato através da cadeia enzimática de transporte de elétrons: NO 3ˉ NAD(P)H [FAD NAD(P)+ cit. b Mo] NO2ˉ + H2O Em algas e tecidos fotossintéticos, a redutase do nitrato parece estar localizada no citoplasma ou fracamente ligada à membrana externa do cloroplasto. A enzima apresenta uma alta taxa de regeneração protéica e esta presente em altos níveis quando as células são alimentadas com nitrato, porém esta enzima encontra-se reprimida quando a mesma encontra-se em meio contendo íons amônia. A atividade da redutase do nitrato é estimada medindo a quantidade de nitrito produzido a partir do nitrato, e a redutase do nitrito pelo desaparecimento do nitrito na mistura de reação. O metro “in vivo” utilizado para a determinação do nitrito (SNELL & SNELL, 1949), é baseado na formação de um sal de diazônio durante a reação em meio ácido com a sulfanilamida. Este complexo reage com o N-(1-Naftil) etilenodiamina (NNEDA), formando um complexo colorido, o qual é vermelho, e possui máximo de absorção em 540nm. 36 2. a) b) Determinar a atividade da redutase do nitrato em tecidos de plantas superiores. Diferenciar a atividade de redutase do nitrato sob condições de estresse hídrico. 3. OBJETIVOS MATERIAIS E REAGENTES Tampão fosfato (KH2PO4) 0,1 M pH 7,5 contendo isopropanol 1% (V/V), KNO 3ˉ (50mM) e cloranfenicol (15mg/L). Sufanilamida 1% em HCl 2,4 N. NNEDA 0,02%. Tubos de ensaio. Tubos de ensaio para bombas de vácuo, com rolha de borracha. Bomba de vácuo. Banho-maria. Termômetro (0 – 1000C). Espectrofotômetro (visível). Estantes para tubos de ensaio. Agulhas e mangueiras de borracha. Papel alumínio. Agitador de tubos Espécie sugerida pelo Instrutor. (6) Vasos plásticos de 1 Kg (6) Terra preta devidamente adubada. 4. PROCEDIMENTO Plante, em casa-de-vegetação, seis (6) unidades da espécie sugerida pelo Instrutor. Após um mês de crescimento e desenvolvimento das plantas, aplique aproximadamente quatro (4) dias consecutivos de estresse de água na metade dos vasos plantados – três (3) e em seguida, leve-as (três controles e três estressadas) ao laboratório de Fisiologia Vegetal para análise. Pesar aproximadamente 200 mg de discos foliares(ф=1cm 2) recém-colhidos da espécie sugerida pelo instrutor com e sem estresse hídrico. Transferir para tubos de ensaio para vácuo contendo 5,0mL do tampão fosfato (meio de reação) e em seguida fazer vácuo por 2 minutos após, colocar os tubos de ensaio um “banho-maria” à 300C por 30 minutos e ao abrigo da luz (escuro). Em tubo de ensaio comum, adicionar 1 mL de tampão + 2 mL do extrato de reação + 1 mL de sulfanilamida 1% + 1 mL de NNEDA 0,02%. Deixar em repouso por 15 minutos. Fazer a leitura no espectrofotômetro à 540nm contra o branco (3 mL de tampão fosfato + 1 mL de sulfanilamida + 1 mL de NNEDA). Comparar absorbância com o curto padrão de NO2ˉ (nitrito) e expressar a atividade da enzima em moles de NO2ˉ. hˉ1 gMF-1 . Apresentar os resultados em um gráfico e discute-o. OBS. Após a realização da curva-padrão do nitrito chega-se a uma formulação que transforma absorbância em concentração conforme descrita abaixo: W = 6 x L (moles NO2- / g MF / h) (quando tomamos 1 mL de extrato enzimático); L= leitura do espectrof. W = 3 x L (moles NO2- / g MF / h) (quando tomamos 2 mL de extrato enzimático); L= leitura do espectrof. 37 5. 1. 2. 3. 4. 5. 6. 7. 8. QUESTIONÁRIO Mostre a reação química de redução do nitrato a amônia e indique as enzimas envolvidas nesses passos metabólicos. Mostre a estrutura química da redutase do nitrato, indicando a cadeia transportadora de elétrons. Qual o efeito do estresse hídrico na atividade da redutase do nitrato? Justifique sua resposta. De que maneira é estimada a atividade da redutase do nitrato em plantas pelo método “in vivo” e mostre os principais passos metabólicos que ocorrem até a formação do complexo colorido o qual é vermelho, e possui máximo de absorção em 540nm? Explique qual a finalidade de se cobrir os tubos de ensaio com pepel alumínio nessa determinação?Na formulação do tampão fosfato você coloca um álcool (isopropanol). Qual a finalidade de se usar este álcool? Justifique sua resposta. Em que parte da célula vegetal ocorre à redução do nitrato a nitrito e a desse composto a amônia? Em quais regiões da planta ocorre a atividade de redutase do nitrato? Mostre um esquema de uma planta indicando no mesmo cada um dos passos de redução de nitrato à amônia. 38 CRESCIMENTO E DESENVOLVIMENTO 39 Prof. Dr. Roberto Cezar Lobo da Costa “EFEITO DA AUXINA SOBRE O CRESCIMENTO DIRECIONAL DE PLANTAS”. 1. INTRODUÇÃO Nos caules das plantas, a maior taxa de crescimento acorre nos tecidos logo abaixo do meristema apical. Estudos feitos com caules de plântulas (ervilha) mostraram que naquela região há uma forte correlação entre a taxa de crescimento e as quantidades de auxinas difusíveis. Foi também encontrado que a auxina extraída do coleóptilo de aveia estava intimamente relacionada com a taxa de crescimento deste órgão. Estas observações indicam que a concentração de auxina no tecido pode regular sua taxa de crescimento. A distribuição desigual de auxinas no caule é um dos fatores que podem ocasionar um crescimento diferencial (curvatura) de plantas. 2. OBJETIVO Observar os efeitos de auxinas no crescimento diferencial de caule de plantas. 3. MATERIAL NECESSÁRIO Vaso contendo duas plantas de feijão com 21 dias de idade. Pasta de lanolina com auxina (AIA) a 0,1%. Lanolina pura. 4. PROCEDIMENTO Aplique pasta de lanolina contendo auxina (AIA) lateralmente no caule de plantas de feijão, no entrenó situado logo abaixo do trifolíolo mais novo. Trate a outra planta de maneira idêntica à primeira, mas utilize apenas lanolina pura. Observe os resultados após uma semana. 5. QUESTIONÁRIO 1. 2. 3. Explique as diferenças encontradas. Por que não se faz aplicação de pasta de lanolina com auxina no caule logo abaixo das folhas cotiledonares ou primárias? Poderia você correlacionar este fenômeno com os tropismos de caules? 40 Prof. Dr. Roberto Cezar Lobo da Costa “EFEITO 2,4-D NO ALONGAMENTO DE RAÍZES” 1. INTRODUÇÃO As raízes são extremamente sensíveis a auxinas, quando comparadas aos caleóptilos e aos caules (cerca de 2000 vezes para AIA exógeno). Desde que as auxinas aparentemente não são sintetizadas na ponta da raiz, mas vem da parte aérea por transporte polar acrópeto (nas raízes), o seu papel regulador no alongamento é duvidoso. As raízes sintetizam etileno e sabe-se que o etileno exógeno inibe o alongamento radicular com a mesma eficiência com que inibe alongamento de caule (exceto em plantas aquáticas como arroz). É possível que a inibição do alongamento das raízes por concentrações supra-ótimas de auxina seja assim devida ao aumento na produção de etileno pelo tecido radicular. 2. OBJETIVO Avaliar o efeito de concentração crescente de auxina sintética 2,4-D no alongamento de raízes. 3. MATERIAL NECESSÁRIO Placa de Petri ou material semelhante (6). Tampão fosfato pH 6,0 (10mM). Solução mãe de 2,4-D a 1000mg/L– preparada em tampão fosfato Pipetas de 5 a 10mL. Papel de filtro ou mata-borrão. Régua graduada. Sementes de pepino. 4. PROCEDIMENTO A partir da solução mãe de 2,4-D (1000mg/L) prepare, em tampão as seguintes soluções: Tampão (controle) 10-3 mg/L de 2,4-D 10-2 mg/L de 2,4-D 10-1 mg/L de 2,4-D 1 mg/L de 2,4-D 10 mg/L de 2,4-D Coloque no fundo das placas de Petri um ou dois discos de papel mata-borrão. Marque as placas com a letra correspondente ao tratamento e coloque 25 sementes de pepino em cada. Adicione a cada, 10mL da solução respectiva. Coloque o conjunto em lugar escuro e no final de uma semana remova as sementes e meça o comprimento da raiz primária de cada plântula com aproximação de milímetros. Determine a média dos comprimentos de cada tratamento e construa um gráfico, em papel milimetrado, usando o comprimento médio das raízes no eixo das ordenadas contra o logaritmo das concentrações de 2,4-D no eixo das abscissas. a) b) c) d) e) f) 1. 2. 3. 4. 5. 6. 5. QUESTIONÁRIO Por que, no correr desse exercício, utilizaram-se soluções de 2,4-D em meio tamponado (tampão fosfato)? Que conclui você sobre o efeito da auxina sintética 2,4-D no alongamento das raízes? Como você poderia explicar, pelo menos uma parte, que altas concentrações de 2,4-D provocam um engrossamento das raízes? Pelas suas observações as raízes e caules apresentaram a mesma resposta as aplicações exógenas de 2,4-D? Como você explica as diferenças encontradas? Altas concentrações de 2,4-D podem ser consideradas inibidoras da germinação. Por que? Por que a aplicação de 2,4-D em solos, onde haja sementes em germinação, geralmente acarreta a morte de todas as plântulas, sejam mono ou dicotiledônea? 41 Prof. Dr. Roberto Cezar Lobo da Costa “INDUÇÃO DE RAÍZES ADVENTICIAS EM ESTACAS” 1. INTRODUÇÃO A propagação vegetativa por estacas de caule é uma prática comum em muitas plantas de interesse econômico. Dependendo do grau de lignificação, as estacas podem ser “herbáceas” ou “lenhosas”. Algumas espécies possuem iniciais radiculares pré-formados no periciclo e suas estacas enraízam facilmente. Na maioria das espécies, todavia o enraizamento pode ser estimulado pela aplicação de auxina. Algumas só enraízam com aplicação de auxina, havendo outras que não enraízam mesmo com a aplicação de auxina. As auxinas comumente usadas para induzir o enraizamento, são o ácido indolil-butírico (AIB) e o a ácido -naftaleno-acético (-ANA), ambas sintéticas, e por isso tendo a vantagem de serem mais estáveis na planta. Sua aplicação faz-se de três maneiras: a) Método de imersão lenta: as estacas são fixadas durante longo tempo (geralmente 24h) com suas bases numa solução aquosa diluída (20-200mg/L). b) Método de imersão rápida: as bases das estacas são imersas brevemente numa solução mais concentrada (1500 – 2000 mg/L) de auxina em álcool 50%. c) Método de pó: as bases das estacas são umedecidas e introduzidas num pó inerte, comumente talco, contendo a auxina, em geral na concentração de 1%. O bom processo do enraizamento não depende apenas de auxina, devem ser levados em conta outros fatores, como tipo de estaca (juvenil, madura), época do ano, composição do meio de enraizamento, grau de umidade, bem como a concentração de auxina pode induzir uma formação abundante de raízes, mas pode inibir o crescimento posterior tanto das raízes como do próprio caule. 2. OBJETIVO Verificar o efeito de auxina na formação de primórdios radiculares em estaca, e no crescimento posterior das raízes. 3. MATERIAL NECESSÁRIO Solução aquosa de AIB a 100, 50, 20, 10, e 0 mg/L. Estacas (Coleus, feijão) (20) Copos (vidros ou plástico) (5) 4. PROCEDIMENTO Tome copos contendo soluções de AIB nas concentrações de 100, 50, 20, 10 e 0mg/L e, em cada copo mergulhe 3cm da base de 4 estacas com folhas, de coleus ou feijão. Depois de 24horas substitua as soluções do regulador por água pura. Deixe as estacas à luz difusa do laboratório. Após duas semanas, conte o número de primórdios radiculares por tratamento e verifique comparativamente o comprimento das raízes. Se o intervalo de duas semanas for insuficiente, aguarde mais tempo. 5. QUETIONÁRIO 1. 2. 3. 4. 5. 6. Em que tratamento ocorreu maior enraizamento das estacas? Houve diferenças entre tratamentos quando ao tamanho das raízes? Qual é a origem anatômica das raízes adventícias em estacas? Por que estacas de determinadas espécies só enraízam se estiverem enfolhadas, enquanto estacas de outras espécies enraízam mesmo desfolhadas? Explique qual seriam os possíveis modos de ação de auxina sobre o enraizamento de estacas. Por que não se empregam soluções de auxina de concentração elevada no enraizamento de estacas? Poderia um outro tipo de hormônio, que não auxina, provocar o enraizamento de estacas? 42 Prof. Dr. Roberto Cezar Lobo da Costa “DOMINÂNCIA APICAL” 1. INTRODUÇÃO Ao fenômeno pelo qual, na grande maioria das espécies vegetais, a gema apical inibe o desenvolvimento das gemas laterais, denomina-se DOMINÂNCIA APICAL. A remoção da gema apical provoca o “arrebentamento” das gemas laterais, o que prova este tipo de inibição correlativa. Adicionando-se auxina na superfície decapitada de uma planta cuja gema apical foi removida, a dominância é mantida, o que leva a concluir que as auxinas estão envolvidas no controle desse fenômeno. Parece que as folhas novas da gema apical produzem grande quantidade de auxinas que seriam o sinal correlativo da dominância apical. Desde de que, uma baixa relação auxina / citocinina na gema lateral promove o seu desenvolvimento, pode-se supor que o suprimento de citocininas para as gemas laterais seja regulado pelas auxinas presentes na gema apical, através de um mecanismo de transporte dirigido por hormônios (altas concentrações de auxinas na gema apicais orientariam o transporte de citocininas ou de seus precursores para si ao invés de para as gemas laterais). Outros reguladores de crescimento como as giberelinas e o ácido abscísico parecem estar envolvidos no fenômeno da dominância apical. 2. OBJETIVOS Observar o efeito da remoção da gema apical sobre o crescimento das gemas laterais, bem como o efeito da aplicação exógena do ácido 3-indoil-acético (AIA) no controle da dominância apical. 2. MATERIAL NECESSÁRIO Plantas de feijão ou caupi apresentando o primeiro par de folhas trifoliadas. Lanolina ou vaselina pura. Pasta de lanolina ou vaselina contendo 0,1 % de AIA. Cotonetes. 3. PROCEDIMENTO Tome três vasos plantados com três feijoeiros ou plantas de caupi que apresentam a primeira folha trifoliada completamente expandida. Um vaso servirá de controle, enquanto que os outros dois serão decapitados na base da primeira folha. Aplique com o auxílio de um cotonete, lanolina ou vaselina pura na superfície decapitada das plantas de um dos vasos. No outro vaso cujas plantas foram decapitadas aplique com o auxílio de um cotonete, a pasta de lanolina ou vaselina contendo o AIA. Ao final de uma a duas semanas, meça (em mm) o comprimento das gemas axilares surgidas. Meça também, em mm, o diâmetro dos caules ao nível da superfície seccionada nas plantas decapitadas e intactas. Faça uma TABELA com os resultados encontrados e discute-os. 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. 7. Como se explica o desenvolvimento das gemas laterais após a retirada da gema apical? De que modo estaria agindo a auxina aplicada na parte decapitada do caule para inibir o crescimento das gemas laterais? Como se explicam às variações no diâmetro do caule ao nível das superfícies seccionadas? Cite tratamentos que poderiam induzir o crescimento das gemas laterais. Somente as auxinas estão envolvidas na dominância apical, ou outros fitohormônios podem estar envolvidos nesse fenômeno fisiológico? Pelo fato de que o AIA pode substituir a gema terminal na manutenção da dominância apical, você poderia dizer que esse hormônio “inibe” o crescimento das gemas laterais? Que outra explicação mais plausível você poderia dar? Um técnico agrícola obteve duas amostras, sendo uma de citocinina e outra de ácido 3 –ildolilacético, mas esqueceu-se de rotulá-las, não sabendo, portanto, identificá-las. Como você poderia ajudar o técnico na identificação, utilizando-se do fenômeno fisiológico da dominância apical como teste? 43 Prof. Dr. Roberto Cezar Lobo da Costa “ATIVIDADE HERBICIDA DO 2.4. - D” 1. INTRODUÇÃO O 2.4.-D (ácido 2,4 – diclorofenoxiacético) possui atividade auxínica considerável, em alguns casos superando o efeito do ácido indol-acético (AIA), provavelmente por não ser tão facilmente inativado, na planta, como a auxina natural. Em muitas espécies, o 2.4.-D estimula a produção de etileno, e os efeitos que aparecem na planta são assim devidos a esse hormônio gasoso. Parece que o 2.4.-D promove a ativação de genes não funcionais, alterando os tipos de RNAs sintetizados, aumentando a atividade das polimerases de RNA e DNA, e afetando a atividade de várias enzimas respiratórias. O 2.4.-D é um potente herbicida, injuriando ou matando muitas DICOTILEDÔNEAS; seus efeitos sobre o crescimento das MONOCOTILEDÔNEAS não são acentuados. Por isso é empregado como herbicida seletivo de plantas de folhas largas em campos de cereais, nas formulações de amina e éster. É prejudicial a peixes e pode levar à poluição (ilegal) de cursos de água. 2. OBJETIVO Observar a ação seletiva do 2.4.-D sobre plantas mono e dicotiledôneas. 3. MATERIAL NECESSÁRIO 1 - Solução de 2.4.-D a 1000 mg . L-1, contendo um agente espalhante. 2 - Água contendo agente espalhante na concentração usada na solução de 2.4.-D. 3 - Plantas jovens de milho e feijão cultivadas no mesmo vaso (6) 4 - Atomizadores (2) 4. PROCEDIMENTO Tome 6 vasos contendo, em cada um, uma planta de milho e outra de feijão. Com o atomizador, pulverize as plantas de 3 vasos com a solução de 2.4.-D, tomando o cuidado para não contaminar o ambiente de trabalho. Pulverize os outros 3 vasos apenas com a solução do agente espalhante. Deixe secar e transfira os vasos para local convenientemente iluminado. Observe as plantas durante UMA SEMANA, registre as diferenças encontradas. 5. 1. 2. 3. 4. 5. 6. QUESTIONÁRIO. Relacione em ordem de aparecimento, três sintomas de toxidez de 2.4.-D em feijão. Qual é a fórmula estrutural do 2.4.-D? Quais são as possíveis causas do efeito seletivo do 2.4.-D? Por que o 2.4.-D causa EPINASTIA em muitas plantas? Quais os possíveis modos de ação do 2.4.-D a nível celular? Como, ao invés da ação herbicida, o 2.4.- D pode ter ação estimulante do crescimento? 44 Prof. Dr. Roberto Cezar Lobo da Costa “EFEITO DE QUALIDADE DA LUZ NA GERMINAÇÃO DE SEMENTES FOTOBLÁSTICAS” 1. INTRODUÇÃO Muitas sementes, quando recém colhidas, estão dormentes e germinam apenas em presença da luz. A medida que envelhecem, o requerimento da luz para germinação vai desaparecendo. Determinadas faixas do aspecto da radiação visível são mais eficientes do que outras na indução da germinação e devem, naturalmente, ser captadas por um pigmento foto-receptor. Este pigmento, denominado de Fitocromo, é constituído de um grupo cromóforo tetrapirrólico de cadeia aberta associado a uma proteína, e apresenta-se sob duas formas fotoconversiveis: FV (fitocromo que absorve no vermelho-660nm) e FVE (fitocromo que absorve no vermelho extremo – 730nm). Quando o FV absorve luz vermelha (660nm) transforma-se em FVE. Quando o FVE absorve luz vermelho-extremo(730nm), transforma-se em FV. As interconversões são produtos de reações luminosas de baixa energia, diferentemente de outros fenômenos fisiológicos, que requerem alta energia. Tendo em vista que uma pequena variação na relação FVE/FV afeta consideravelmente mais a forma FVE, esta forma é considerada a forma fisiologicamente ativa. Após a percepção e a absorção da radiação pelo fitocromo, uma série de reações é desencadeada, e que leva a afetar o crescimento. Além da germinação de sementes, vários outros fenômenos fotomorfogênicos são controlados pelo sistema de FITOCROMO, tais como: floração, crescimento de entrenós, desenvolvimento normal da plântula, síntese de pigmentos, atividade da redutase do nitrato, etc. 2. OBJETIVO Determinar as faixas do espectro luminoso efetivo na quebra de dormência de sementes. 3. MATERIAL NECESSÁRIO Sementes sugeridas pelo Instrutor, preferencialmente sementes de alface variedade Grand rapids. Placa de Petri (6) Papel de filtro Banco de luz incandescente e fluorescente Papel celofane nas cores vermelhas, verdes e azuis intensas ou placas de acrílico ou mesmo vidro dessas cores. 4. PROCEDIMENTO Tome seis placas de Petri, forrando o seu fundo com uma folha de papel de filtro. Em cada placa, coloque no papel de filtro 100 sementes da espécie sugerida pelo Instrutor. Adicione então 10mL de água destilada a cada placa. Cuidadosamente, para não entonar a água, embrulhe uma placa com três camadas de papel celofane azul (que transmite entre 390 a 590nm – violeta e azul), outra placa com três camadas de papel celofane verde (que transmite entre 480 a 630nm, pico no verde), ainda outra com três camadas de papel celofane azul e duas camadas de celofane vermelho (que transmite luz acima de 670nm – vermelho extremo) e, outra, com duas camadas de papel celofane vermelho (que transmite entre 580 a 680nm com pico no vermelho). Embrulhe uma placa de Petri em papel alumínio ou coloque-a numa caixa escura (tratamento escuro). Deixe uma placa sem cobertura (luz branca). Alternativamente, as placas podem ser colocadas em caixas com tampas de vidro ou acrílico, nas cores mencionadas. Exponha as seis placas a um banco de luz fluorescente incandescente. Ao cabo de uma a duas semanas, examine a protusão das radículas nos diversos tratamentos, e determine a porcentagem de germinação. 45 5. QUESTIONÁRIO 1. 2. 3. 4. 5. 6. 7. 8. Qual é o pigmento envolvido nesse processo e quais são os comprimentos de onda efetivos? Por que as sementes desta espécie praticamente não germinam no escuro? Explique de que maneira a luz pode desencadear a germinação de sementes fotoblásticas positivas. Algum fitohormônio pode substituir a luz na germinação de sementes fotoblásticas positivas? Por que? Se sementes fossem colocadas para germinar em total obscuridade e se interrompesse esse período com lampejo de luz vermelha, o que você esperaria da taxa de germinação destas sementes? E se o lampejo fosse com luz vermelho extremo? Explique. Cite algumas espécies de interesse comercial, cujas sementes requerem luz para a germinação. Como o preparo do solo poderia fazer aumentar a quantidade de ervas daninhas, tendo-se em conta os resultados obtidos do presente exercício? Como se explica a germinação de algumas sementes, após a abertura de clareira em uma floresta? 46 Prof. Dr. Roberto Cezar Lobo da Costa “ANÁLISE DE CRESCIMENTO EM PLANTAS” 1. INTRODUÇÃO O crescimento de uma planta pode ser medido de medido de várias maneiras. Em alguns casos, a determinação da altura é suficiente mas, às vezes, maiores informações são necessárias, como por exemplo, o tamanho das folhas (comprimento, largura e área), o peso da matéria seca total ou de órgãos individuais, como raízes, caules, folhas e frutos. O fundamento da análise do crescimento é a medida seqüencial da acumulação de matéria orgânica e a sua determinação é feita, normalmente, considerando o peso da matéria seca da planta. Devido ao fato deste procedimento ser destrutivo, as plantas tomadas como amostra, a cada tempo, devem representar a população em estudo, a fim de que técnicas estatísticas apropriadas possam ser utilizadas. Via de regra, além das determinações de peso da matéria seca, as áreas foliares são também calculadas. A medida do peso a matéria seca das diferentes partes da planta é simples e exige apenas uma estufa para aquecimento até 100ºC, com circulação de ar forçada, e uma balança apropriada para pesar a quantidade de material em estudo. Os tecidos são submetidos à temperatura de aproximadamente 70ºC, até atingirem peso constante, de modo a segurar que o peso da matéria seca real foi obtido. A fim de que o crescimento total da planta possa ser estimado, as raízes devem ser consideradas como importantes componentes do vegetal. Em geral, a recuperação do sistema radicular requer um trabalho adicional bastante significativo, o que faz com que aquela parte da planta seja, freqüentemente, desconsiderada nos cálculos de análise do crescimento. A determinação da superfície foliar pode ser feita por diferentes métodos, alguns utilizando células fotoelétricas, componentes de instrumentos eletrônicos, outros empregando o planímetro e ainda outros baseados na comparação do peso de uma área conhecida de papel com o peso dos recortes dos perímetros das folhas, traçados sobre o mesmo papel. A determinação da área foliar é importante porque as folhas são as principais responsáveis pela captação da energia solar e pela produção de matéria orgânica através da fotossíntese. Se a superfície foliar é conhecida e a alteração do peso da planta, durante um certo período de tempo, é calculada, torna-se possível avaliar a eficiência das folhas e sua contribuição para o crescimento da planta como um todo. 2. BASE O aumento em área foliar (AF) e no peso da matéria seca (PMS) ou (W) num período determinado de tempo, permite a obtenção da TAXA ASSIMILATÓRIA LÍQUIDA (TAL ou E A) e da TAXA DE CRESCIMENTO RELATIVO (TCR ou RA), sendo que se pode efetuar a determinação instantânea da RAZÃO DE ÁREA FOLIAR (RAF ou FA). 3. OBJETIVO Determinar EA , R e FA e analisar o crescimento de plantas através da técnica da análise do crescimento. 4. PROCEDIMENTO Cultive, aproximadamente, 100 plantas de caupi [Vígna unguiculata (L.) Walp]. Retire ao acaso vinte (20) plantas com 15 dias após a emergência tomando o cuidado para não danificar o sistema radicular das mesmas. Determine a área foliar (AF) e o peso da matéria seca total das plantas (WT) após a secagem em estufa de ventilação de ar forçada a 70ºC durante dois dias. Deixe 20 plantas sob estresse hídrico, suspendendo a irrigação. Uma semana (7 dias) depois faça uma nova amostragem de 20 plantas (20 controles e 20 estressadas), realizando as mesmas determinações. Com os resultados determine a taxa assimilatória líquida (EA) , a taxa de crescimento relativo (R A) e a razão de área foliar (F A) tanto das planta controle quanto das plantas estressadas, com o auxílio das seguintes fórmulas: 47 a) (W2 – W1) . (lnA2 – lnA1) EA = g/dm2/dia (A2 – A1) . (T2 – T1) b) lnW2 – lnW1 RA = g/g/dia T2 – T1 c) FA = AF wT dm2/g onde: W2 – W1 = diferença de peso, em grama, entre duas amostras consecutivas. A2 – A1 = diferença de área foliar, em dm2, entre as mesmas amostras. T2 – T1 = tempo transcorrido em dias, entre colheitas ln = logaritmo neperiano AF = Área foliar (dm2) WT = peso da matéria seca total (grama) 5. 1. Conceitue: a. b. c. d. e. f. g. h. 2. QUESTIONÁRIO Razão de área foliar (FA). Taxa assimilatória líquida (EA). Taxa de crescimento relativo (RA). Área foliar específica (SA). Razão de peso foliar (Fw). Índice de colheita (Hi). Índice de área foliar (L). Duração de área foliar (DA). Dois sistemas de semeaduras de feijão manipulados por duas densidades de plantio (Alta densidade e Baixa densidade) apresentaram um crecimento exponencial da forma W T = W0 . eR t , onde: WT = peso da matéria seca total; W0 = peso da matéria seca inicial; R = taxa de crescimento relativo e t = tempo. Quanto tempo (dias) será gasto para que cada um dos sistemas dobre a matéria seca inicial ? 48 R1 = 0,1 g/g/dia (alta densidade) R2 = 0,04 g/g/dia (baixa densidade) WT Tempo (t) 3. Num experimento com milho, plantado na densidade de 60.000 plantas/ha, foram obtidos os seguintes dados médios: Dias após a emergência 14 28 42 56 70 Matéria Seca Total g/m2 Área Foliar m2/m2 2,1 23,2 150,9 169,8 1066,2 0,04 0,37 1,84 4,80 5,78 Calcular a taxa assimilatória líquida média (EA) entre a 6ª e a 8ª semana após a emergência das plantas. 4. Aplicou-se uma regressão polinomial aos dados primários, foi encontrada uma significância de 3º grau e foram obtidas as seguintes equações ajustadas: W = 0,45 t3 – 0,20 t2 + 0,35 t – 0,45 AF = 0,05 t3 + 0,02 t2 + 0,01 t + 0,50 Onde: W = peso da matéria seca total AF = área foliar t = tempo As unidades empregadas foram: grama, metro e dia. Calcular a taxa de produção de matéria seca instantânea: Ct = dw/dt ; a taxa de crescimento relativo instantâneo: RW = 1/w . dw/dt e a taxa assimilatória líquida instantânea : EA = 1/AF . dw/dt ; respectivamente no 20º e 80º dia após a emergência da cultura, sabendo que o valor calorífico da cultura é de 4000 cal/g e a radiação solar média foi de 400 cal/cm 2/dia. Calcular a eficiência da conversão da energia solar no 80º dia após a emergência. 49 E% = (100 x C x ) / RA Onde: E% = eficiência da conversão. C= taxa de produção de matéria seca. = valor calorífico. RA = valor médio diário da radiação total incidente (Cal/m2/dia) 5. Dar a equação definidora dos valores instantâneos e médios dos seguintes parâmetros de crescimento: a. Taxa de crescimento da área foliar. b. Taxa de crescimento relativo. c. Taxa assimilatória líquida. d. Taxa de crescimento. e. Razão de área foliar. f. Área foliar específica. g. Razão de peso foliar. Prof. Dr. Roberto Cezar Lobo da Costa