29/05/2017 maTematikuri fizikis gantolebebi leqcia 8 3.3.4. gausis formulebi. vTqvaT, R n SemosazRvruli area A k ,h , k 1 , klasis sazRvriT. ganvixiloT ormagi fenis potenciali erTis toli simkvriviT. davamtkicoT, rom 1, Tu , 1 E (3.3.11) ( x , ) dS , Tu , x x 2 0, Tu , sadac x gare normalia -s mimarT. roca , maSin E ( x, ) funqcia harmoniulia areSi da amitom, rogorc viciT (ix. Teorema 3.1.1), E ( x, )dS x 0 . x ganvixiloT SemTxveva (ix. nax. 3.3.2). vTqvaT, d : x da \ d . advili dasanaxia, rom Tu 0 sakmaod mcire ricxvia, maSin sazRvari Sedgeba: a) -sgan da S : d sferosgan, roca ; b) -s 1 nawilisgan da d -is 2 nawilisgan, roca . cxadia, rom areSi E ( x, ) x-is mimarT harmoniuli funqciaa, amitom sazRvarze normaliT warmoebulisgan integrali nulis tolia. cal-calke ganvixiloT orive SemTxveva: a) Tu , maSin E E ( x, )dS x * ( x, )dS x 0 , S saidanac E ( x, )dS x E 1 ( x, )dS x * n S dS x S n 1 1. sadac * aris S -is mimarT Siga normali. b) Tu , maSin E ( x, )dS x 1 saidanac E * ( x, )dS x 0, 2 E E 1 (3.3.12) ( x , )dS x dS x . * n n 1 advili dasanaxia (ix. nax. 3.3.3), rom, roca 0 , maSin 2 miiswrafvis naxevar- ( x, )dS 1 sferosken. maSasadame, x 2 2 leqcia 8 maTematikuri fizikis gantolebebi * d 2 1 * S nax. 3.3.2 lim dS x 0 2 n 2 n 1 . amitom, Tu (3.3.12)-Si -s nulisken mivaswrafebT, E E 1 ( x, )dS x . x ( x, )dS x lim 0 2 x 1 2 nax. 3.3.3 amiT gausis (3.3.11) formula damtkicebulia. ganvixiloT U ( x) f ( ) E ( x, )d ~ moculobiTi potenciali. vTqvaT, R n SemosazRvruli area A k ,h , k 1 , klasis sazRvriT. maSin, radganac U E ( x) f ( ) ( x, )d , amitom U E E ( x)dS x dS f ( ) ( x, )d f ( )d ( x, )dS x ~ ~ ~ 2 leqcia 8 maTematikuri fizikis gantolebebi E f ( )d ( x, )dS ~ ~ x E f ( )d ( x, )dS ~ x , * sadac ~ *: \ , ~ magram, (3.3.11) formulis Tanaxmad, aq Semavali meore integrali -ze nulis tolia, xolo ~ pirveli integrali -ze erTis tolia, amitom U ( x)dS x f ( )d , ~ ~ romelsac aseve gausis formula ewodeba. 3.3.5. ormagi fenis potenciali. ganvixiloT R n SemosazRvruli are A k ,h , k 1 , klasis sazRvriT da ormagi fenis E W ( x) ( ) ( x, )dS potenciali. radgan da E ( x, ) harmoniulia yvelgan, sadac x , amitom W funqcia harmoniulia R n \ -Si. amasTan, radgan E ( x, ) 0 , roca x , amitom W ( x) 0 , roca x . SemoviRoT aRniSvnebi : da : R n \ . gamovikvlioT W funqciis yofaqceva sazRvarze da mis maxloblad. ganvixiloT n 2 SemTxveva, maSin ormagi fenis potenciali Semdegi saxiT Caiwereba: 1 (3.3.13) W ( x) ( ) ln x dS , 2 sadac Caketili martivi wiria uwyveti simrudiT, xolo uwyveti funqciaa. gausis (3.3.11) formulis gamoyenebiT mtkicdeba, rom 1 W x0 x0 W x0 , 2 (3.3.14) 1 0 0 0 W x x W x , 2 sadac W x 0 : lim 0 W ( x) , W x 0 : lim 0 W ( x) . x x x x (3.3.14) formulebidan cxadia, rom, roca x x , ormagi fenis potenciali wyvetas ganicdis. aRsaniSnavia, rom ormagi fenis potencialis normaluri warmoebuli am dros wyvetas ar ganicdis. (3.3.14)-Si Tu pirvels gamovaklebT meores, miviRebT, rom W x0 W x0 x0 . 0 am formulas naxtomis formula ewodeba. ganvixiloT dirixles u( x ) 0 , x , 3 leqcia 8 maTematikuri fizikis gantolebebi u g, amocana [(+) Seesabameba Siga, xolo (-) _ gare amocanas. am ukanasknel SemTxvevaSi damatebiT viTxovT amonaxsnis SemosazRvrulobas uasasrulobaSi (roca n 3 , es piroba usasrulobaSi qrobis pirobiT icvleba)], sadac wirs uwyveti simrude aqvs da g uwyveti funqciaa. veZeboT am amocanis amonaxsni ormagi fenis 1 u ( x) ( ) ln x dS 2 potencialis saxiT. radgan ormagi fenis potenciali harmoniulia areSi, amitom saWiroa, Semowmdes mxolod sasazRvro pirobis Sesruleba. maSin, (3.3.14) formulebis Tanaxmad, funqciisTvis miiReba 1 u x 0 x 0 u x 0 2 gantoleba, romelic Caiwereba e. w. fredholmis meore gvaris Semdegi integraluri gantolebis saxiT 1 1 (3.3.15) x0 ( ) ln x 0 dS g x 0 . 2 2 integralur gantolebaTa Teoriidan cnobilia, rom (3.3.15) gantoleba amoxsnadia, Tu mis Sesabamis erTgvarovan gantolebas aqvs mxolod trivialuri amonaxsni (amas fredholmis alternativa ewodeba). magram dirixles erTgvarovan amocanas, rogorc viciT, mxolod trivialuri amonaxsni aqvs. erTgvarovan amocanas ki erTgvarovani g( x) 0 (3.3.15) gantoleba Seesabameba. e. i., am ukanasknelsac mxolod trivialuri amonaxsni aqvs. es ki imas niSnavs, rom (3.3.15) araerTgvarovani integraluri gantoleba calsaxad amoxsnadia. 3.3.6. martivi fenis potenciali. ganvixiloT SemosazRvruli R n are A k ,h , k 1 , klasis sazRvriT, funqcia, romelic uwyvetia -ze, da V ( x) ( ) E ( x, )dS martivi fenis potenciali. cxadia, rom R n \ -Si V harmoniuli funqciaa, radgan am SemTxvevaSi x . amasTan, Tu n 3 , maSin u( x) 0 , roca x . Tu n 2 , maSin V ( x) 1 2 ln x 1 ( )dS x 2 ln x ( )dS , saidanac gamomdinareobs, rom V ( x) 0 maSin da mxolod maSin, roca ( )dS 0 . SemovifargloT wina qvepunqtis pirobebSi n 2 SemTxveviT. gausis (3.3.11) formulis gamoyenebiT mtkicdeba, rom martivi fenis potenciali uwyvetia sazRvarze gavlisas, xolo V ( x, ) misi normaluri warmoebuli wyvetas ganicdis, amasTan x 0 V 0 x V 0 x 0 1 x x0 V x0 , 2 x0 0 x 1 x0 V x0 . 2 x 0 4 leqcia 8 maTematikuri fizikis gantolebebi ganvixiloT noimanis u( x ) 0 , x , u ( x) x 0 g ( x0 ) , x x 0 amocana da misi u C () C ( ) amonaxsni veZeboT martivi fenis 1 u( x) ( ) ln x dS 2 2 1 potencialis saxiT. radgan martivi fenis potenciali harmoniulia, roca x R n \ , amitom saWiroa, Semowmdes mxolod sasazRvro pirobis Sesruleba. maSin funqciisTvis miiReba 1 1 ( x0 ) 2 2 ln x 0 x ( )dS g ( x ) 0 0 fredholmis meore gvaris gantoleba. noimanis amocanis amonaxsni, cxadia, ganisazRvreba mudmivi Sesakrebis sizustiT da amonaxsnis arsebobisTvis aucilebelia Sesruldes (ix. Teorema 3.1.1) g ( x)dS 0 piroba. integralur gantolebaTa fredholmis Teoriaze dayrdnobiT mtkicdeba, rom es piroba sakmarisicaa amonaxsnis arsebobisTvis. SevniSnoT, rom zogadi saxis meore rigis elifsuri gantolebebisTvis n damoukidebeli cvladis SemTxvevaSi SeiZleba, aigos ganzogadebul potencialTa Teoria, romelsac arsebobis Teoremebis damtkiceba, bunebrivia, integralur gantolebaTa Teoriis gamoyenebaze dayavs. 5