FEUP/DEEC:2002/03 4º LEEC/TEC: Comunicações Ópticas- EEC4273 Fibras Ópticas Modulação de um díodo emissor de luz (LED) Equipamento: * * * * * * * * * * * Fonte de alimentação Gerador de sinal Osciloscópio Multímetro digital de bancada LED SFH750V 2N3904 NPN Transístor 2N2222A NPN Transístor Multímetro óptico Resistências: 5 Ω; 15 Ω; 100 Ω; 330 Ω; 470 Ω; 560 Ω; 1 k Ω; 3.3 k Ω; 6.8 k Ω Potenciómetro: 1 k Ω Condensadores: 0. 1 µF; 47 µF Objectivos: * * * * Descrever vários métodos de modulação de LEDs Sugerir aplicações para os princípios envolvidos nos circuitos Testar e analisar circuitos de modulação de LEDs Ler e compreender folhas de características de LEDs IMPORTANTE Tenha cuidado no manuscamento do LED ("Light Emitting Diode"): nunca aplique as pontas de prova do osciloscópio aos seus terminais. Modulação de um LED 1 FEUP/DEEC:2002/03 4º LEEC/TEC: Comunicações Ópticas- EEC4273 Introdução: Nesta experiência as características de LEDs são estudadas, e circuitos de modulação são analisados no laboratório. Os LEDs ("Light Emitting Diodes") são dispositivos bem conhecidos de toda a gente. As suas aplicações vão desde calculadoras, jogos, relógios, passando por painéis luminosos e mostradores. Em muitas aplicações os LEDs substituíram as lampâdas de tungsténio com significativas vantagens: são brilhantes, de várias cores, compactos, de baixo consumo e económicos. Alguns LEDs são projectados para utilização em sistemas de comunicações de dados, sejam analógicos sejam digitais. Estes díodos electroluminiscentes apresentam características importantes: potência emitida; comprimento de onda de operação; velocidade; padrão de radiação emitida; corrente directa IF; tensão de funcionamento. Modulação ac A corrente dc directa (IF) que flui através de um LED serve como portadora da informação, Tal como na modulação em amplitude de sinais hertzianos. Figura 1 – Acoplamento ac de um LED, no qual flui corrente directa dc. A figura 1 esquematiza um circuito básico para acoplamento de um sinal ac ao circuito de modulação do díodo emissor de luz. A resistência e a fonte de alimentação estabelecem a corrente directa do LED; tipicamente esta corrente varia de 10 a 60 mA. A queda de tensão de um LED é aproximadamente de 1.2 a 1.6 V. Assim, assumindo-se que IF= 30 mA, a resistência estática do díodo é RDC = Vo 1.6 = 53Ω = IF 0.03 Assuma-se uma variação de corrente de 2 mA, devido ao sinal de modulação; tal corresponderá a uma variação na corrente de 6.6%. O valor do condensador depende da frequência do sinal ac e da corrente do díodo: Modulação de um LED 2 FEUP/DEEC:2002/03 4º LEEC/TEC: Comunicações Ópticas- EEC4273 τ = RC ⇒ f = 1 1 1 = ⇒C= τ RC fR Para uma frequência de 40 Hz, o valor mínimo de C é 470 µF. A tensão de pico ac requerido para provocar a variação de corrente de 2mA é determinada empiricamente por: 1. 2. 3. 4. Ver, no osciloscópio, a tensão aos terminais do LED; Aumentar a modulação ac até que se verifique distorção; operar então abaixo deste ponto; Tomar metade da tensão pico-a-pico e somá-la à tensão dc do díodo; Determinar a corrente do LED usando a queda de tensão na resistência - o valor do aumento da corrente é uma percentagem da corrente inicial. A figura 2 mostra como a introdução de um transístor no circuito de modulação melhora o desempenho deste. O LED é a carga do andar de saída do transístor; as resistências P e R1 determinam a polarização da base do transístor e da sua corrente de colector Ic (dado que IC=IF, P pode ser usada para estabelecer a corrente do LED); R2 limita a corrente do díodo; R3 é a resistência de carga da base do transístor. Figura 2 – Circuito de modulação do LED com transístor amplificador. O circuito esquematizado na figura 3 apresenta a possibilidade de modulação ac bem como de variação da corrente do díodo. Tem, por isso, numerosas aplicações em modulação de portadora e transmissão de impulsos. Modulação de um LED 3 FEUP/DEEC:2002/03 4º LEEC/TEC: Comunicações Ópticas- EEC4273 Q1 – 2N3904 Q2 – 2N2222A Figura 3 - Circuito de modulação do LED com capacidade de modulação ac e variação da corrente directa. O transístor Q2 estabelece o nível da corrente no LED. O transístor Ql actua como amplificador, e por variação da polarização da sua base consegue-se variar o seu colector, que por sua vez controla a base de Q2: quanto mais o centro do potenciómetro se aproxima da terra, maior será a corrente do LED. Para uma tensão de +0.9 V na base de Ql, a corrente do LED é de ≈ 40 mA; a 1.30 V, a corrente é ≈ nula. Assim, para uma fonte de alimentação de 10 V, a gama de variação da base é de 0.89 a 1.32 V. O sinal ac de modulação pode ser injectado quer na base de Q1 ou de Q2, através de um condensador de acoplamento. O circuito aceita ondas sinusoidais, quadradas ou impulsos. O circuito de modulação esquematizado pode ser precedido por um bloco de amplificação áudio ou um circuito de impulsos de RF. Procedimento experimental: i. Monte o circuito da figura 1. Utilize uma tensão de 10 V para a fonte de alimentação. A partir do valor da queda de tensão na resistência determine a corrente IF. ii. Qual é a queda de tensão do díodo? iii. Ligue no terminal de entrada (condensador de 47 µF) um sinal de 1 kHz. Veja no osciloscópio a tensão aos terminais do LED. Ajuste o nível do sinal de entrada de modo que o sinal de saída não esteja distorcido. Encontre a tensão pico-a-pico à saída VOpp. Some metade deste valor à tensão do díodo. Qual é tensão de pico no LED? iv. Subtraia a tensão de pico assim encontrada aos 10 V da fonte de alimentação, de modo a obter a queda de tensão na resistência VR. v. Determine a resistência estática do LED (sem modulação). Modulação de um LED 4 FEUP/DEEC:2002/03 4º LEEC/TEC: Comunicações Ópticas- EEC4273 Modulação ac i. Monte o circuito da figura 3. Coloque o multímetro digital de bancada nos terminais da resistência de 15 Ω (PT4); ajuste o controlo dc (potenciómetro de 1 kΩ) de modo que o multímetro leia 0.2 V. Qual é a corrente através do LED? Meça a tensão aos terminais do LED, VREF. ii. Ajuste o gerador de sinal para um sinal de frequência de 500 Hz. Injecte o sinal no condensador de entrada. Veja no osciloscópio a forma de onda no ponto de teste PT3. Aumente o nível do sinal de entrada até que comece a haver distorção da forma de onda. Registe a tensão de pico no díodo, VLED, e também na resistência de 15 Ω. iii. O incremento da corrente devido ao sinal de modulação é Imod - IF. Quais os valores para Imod e IF? iv. Determinar se é necessário um maior sinal na entrada quando a corrente IF é aumentada. Ajuste IF para 20 mA, e determine novamente qual a queda de tensão aos terminais do LED. É necessário um aumento do sinal na entrada? v. Pelo facto do LED ser modulado por um sinal ac será que a sua potência óptica também aumenta? Referências: * * Tischler,M.,"Optoelectronics-a text-lab manual",McGraw-Hill(1987); Senior, J., "Optical Fiber Communications", 2nd edition, Prentice-Hall (1992). Modulação de um LED 5